On the Performance of MapReduce: A Stochastic Approach

Sarker Tanzir Ahmed and Dmitri Loguinov

Internet Research Lab
Department of Computer Science and Engineering
Texas A&M University

October 28, 2014
Agenda

- Introduction
- Background
- Disk I/O
- Merge Overhead
- Runtime
Introduction

• MapReduce is a popular programming model for cluster computing, big data processing
• Resource constraints and data properties dictate MapReduce performance
 - Specifically, RAM size and distribution of key frequency impact both the run-time and volume of disk I/O
• Existing literature is missing an accurate performance model for external-memory sorting/merging
• Common to assume a linear relationship between input size and processing overhead
 - This includes disk spill, number of comparison in sort/merge
• Open questions:
 – Is this dependency indeed linear with some constant factor converting input size to various metrics of interest?
 – Does the constant stay the same in the full design space?
 – Is the constant easy to obtain/estimate?

• **Our objective**: analyze a shared-memory MapReduce system with a single host for all computation
 – Multiple CPU cores provide parallelism
 – Data distribution is only through disks, not network

• Due to limited space, we analyze only the *external merge-sort* as the underlying algorithm
Agenda

• Introduction
• Background
• Disk I/O
• Merge Overhead
• Runtime
Background

MapReduce platform

Read input

(key, value) pairs

Sort

sorted runs on disk

Merge

User functions

Map

Reduce

Reduce

output
Agenda

• Introduction
• Background
• Disk I/O
• Merge Overhead
• Conclusion
MapReduce Disk I/O

- Input is a stream of length T
 - Entries are key-value pairs, each $K+D$ bytes
 - At time step t, one pair is processed by MapReduce
 - Keys belong to a finite set V of size n
 - Each key v is repeated $I(v)$ times

- Disk I/O consists of:
 - Input with T pairs (some duplicate)
 - Output with n unique pairs
 - Sorted runs of size L

- Total disk overhead is $W = (K+D)(T + n + 2L)$
 - Our first goal is to derive L
MapReduce Disk I/O (2)

- Suppose RAM can hold \(m \) key-value pairs
- Let \(S_t \) denote the seen set at time \(t \) and \(\epsilon_t = t/T \) be the fraction of input processed by \(t \)
 - Then, \(k = \lceil T/m \rceil \) is the number of sorted runs, where each contains \(E[|S_m|] \) pairs on average

- **Theorem 1**: The expected size of the seen set at \(t \) is:
 \[
 E[|S_t|] = n - nE[(1 - \epsilon_t)^I]
 \]

- **Theorem 2**: Disk spill \(L \) of a merge-sort MapReduce is:
 \[
 L = nk(K + D) \left(1 - E[(1 - \epsilon_m)^I] \right)
 \]

- Total I/O overhead is thus:
 \[
 W = n(K + D) \left\{ E[I] + 1 + 2k \left(1 - E[(1 - \epsilon_m)^I] \right) \right\}
 \]
MapReduce Disk I/O (3)

- Quite a complex function of m and I
- Verification on real graphs
 - IRLbot host graph (640M nodes, 6.8B edges, 55 GB)
 - WebBase web graph (667M nodes, 4.2B edges, 33 GB)
Agenda

• Introduction
• Background
• Disk I/O
• Merge Overhead
• Runtime
MapReduce Merge Overhead

• Selection tree for merging sorted runs, where each internal node
 - Executes binary comparison
 - Applies reduce operation

• De-duplication makes upper nodes perform less work than lower

• Theorem 3: The number of comparisons in a binary selection tree with k leaf nodes is:

$$C_k = nk \sum_{i=1}^{d} \frac{1}{2^{i-1}} \left(1 - E\left[(1 - \epsilon_{im})^I\right]\right)$$
Merge Rate Evaluation

• Comparison with naïve model (no de-duplication):
 \[\hat{C}_k = n \log_2 k \cdot \left(1 - E[(1 - \epsilon_m)^T]\right) \]

• Comparison overhead and merge rate \(\gamma_m \) dictated by \(k \)
 - Higher \(k \) implies more de-duplication
Agenda

• Introduction
• Background
• Disk I/O
• Merge Overhead
• Runtime
MapReduce Runtime

- Total runtime is:

\[T = \frac{W}{\rho} + \frac{T}{\delta} + \frac{L}{\gamma m}, \]

- Slight discrepancy due to disk seeking during merge.
Thank you!
Questions?