

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

1

On the Performance of MapReduce:

A Stochastic Approach

Sarker Tanzir Ahmed and Dmitri Loguinov

Internet Research Lab
Department of Computer Science and Engineering
Texas A&M University

October 28, 2014

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

2

Agenda

• Introduction

• Background

• Disk I/O

• Merge Overhead

• Runtime

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

3

Introduction

• MapReduce is a popular programming model for

cluster computing, big data processing

• Resource constraints and data properties dictate

MapReduce performance

━ Specifically, RAM size and distribution of key frequency

impact both the run-time and volume of disk I/O

• Existing literature is missing an accurate performance

model for external-memory sorting/merging

• Common to assume a linear relationship between input

size and processing overhead

━ This includes disk spill, number of comparison in sort/merge

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

4

Introduction (2)

• Open questions:

━ Is this dependency indeed linear with some constant factor

converting input size to various metrics of interest?

━ Does the constant stay the same in the full design space?

━ Is the constant easy to obtain/estimate?

• Our objective: analyze a shared-memory MapReduce

system with a single host for all computation

━ Multiple CPU cores provide parallelism

━ Data distribution is only through disks, not network

• Due to limited space, we analyze only the external

merge-sort as the underlying algorithm

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

5

Agenda

• Introduction

• Background

• Disk I/O

• Merge Overhead

• Runtime

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

6

Background

Map

Sort

Merge

Reduce

Reduce

Read input

User functions MapReduce platform

(key, value) pairs

sorted runs on disk

output

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

7

Agenda

• Introduction

• Background

• Disk I/O

• Merge Overhead

• Conclusion

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

8

MapReduce Disk I/O

• Input is a stream of length T

━ Entries are key-value pairs, each K+D bytes

━ At time step t, one pair is processed by MapReduce

━ Keys belong to a finite set V of size n

━ Each key v is repeated I(v) times

• Disk I/O consists of:

━ Input with T pairs (some duplicate)

━ Output with n unique pairs

━ Sorted runs of size L

• Total disk overhead is W = (K +D)(T + n + 2L)

━ Our first goal is to derive L

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

9

MapReduce Disk I/O (2)

• Suppose RAM can hold m key-value pairs

• Let St denote the seen set at time t and ²t = t/T be the

fraction of input processed by t

━ Then, k = dT/me is the number of sorted runs, where each

contains E[jSmj] pairs on average

• Theorem 1: The expected size of the seen set at t is:

• Theorem 2: Disk spill L of a merge-sort MapReduce is:

• Total I/O overhead is thus:

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

10

MapReduce Disk I/O (3)

• Quite a complex function of m and I
• Verification on real graphs

━ IRLbot host graph (640M nodes, 6.8B edges, 55 GB)

━ WebBase web graph (667M nodes, 4.2B edges, 33 GB)

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

11

Agenda

• Introduction

• Background

• Disk I/O

• Merge Overhead

• Runtime

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

12

MapReduce Merge Overhead

• Selection tree for merging

sorted runs, where each

internal node

━ Executes binary comparison

━ Applies reduce operation

• De-duplication makes

upper nodes perform

less work than lower

• Theorem 3: The number of comparisons in a binary
selection tree with k leaf nodes is:

depth
d = log2k

≤

≤ ≤

sorted runs

merged data

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

13

Merge Rate Evaluation

• Comparison with naïve model (no de-duplication):

• Comparison overhead and merge rate °m dictated by k

━ Higher k implies more de-duplication

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

14

Agenda

• Introduction

• Background

• Disk I/O

• Merge Overhead

• Runtime

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

15

MapReduce Runtime

• Total runtime is:

disk speed

sort rate
merge rate slight discrepancy due to

disk seeking during merge

C
o

m
p

u
te

r
S
c

ie
n

c
e

,
Te

x
a

s
A

&
M

 U
n

iv
e

rs
it
y

16

Thank you!

Questions?

