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Agenda 

• Introduction 

• Analysis of 1D Streams 

━ LRU Performance 

━ MapReduce Disk I/O 

• Analysis of 2D Streams 

━ Properties of the Seen Set, Discovered Nodes, and the 

Frontier 

• Conclusion 
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Introduction 

• Key-value input pairs are common to MapReduce and 

many other types of applications 

• Input is typically a finite length stream where the keys 

come off a finite set  

• Experience of the processing application (e.g., 

RAM/disk usage, processing speed) depends largely 

on the properties of the stream (i.e. key frequency) 

• Example: Least Recently Used (LRU) cache’s hit rate 

is governed by popularities of items 
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Introduction (2) 

• MapReduce applications’ combined output (the result 

of merging duplicate keys in a window of pairs) 

━ Depends on the frequency properties of the keys 

━ Usually, the higher the frequencies of each item, the smaller 

the size of the combined output 

• Existing literature is missing accurate model 

━ Common to assume linear ratio between input and output 
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Agenda 

• Introduction 

• Analysis of 1D Streams 

━ LRU Performance 

━ MapReduce Disk I/O 

• Analysis of 2D Streams 

━ Properties of the Seen Set, Discovered Nodes, and the 

Frontier 

• Conclusion 
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Analysis of 1D Streams 

• Define one-dimensional (1D) streams as discrete-time 
processes fYtgt¸1, where each item Yt is observed at t  

━ Yt   is unique (i.e., previously unseen) with probability p(t) (also 

called uniqueness probability), and duplicate otherwise 

• Input is a stream of length T 

━ Keys belong to a finite set V  of size n  

━ Each key v is repeated I(v) times (random variable I also 

denotes frequency distribution of v’s) 

━ The seen set at t is denoted by St, and the unseen set by Ut 

• We also assume uniform shuffle of the items across 

the stream 

━ Independent Reference Model (IRM) 
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Analysis of 1D Streams (2) 

• Theorem 1: The probability of seeing a unique 
(previously unseen) key at t (using ²t =t=T) is: 

 

 

 

 

 

 

 

Fig: Verification of p(t) under E[I]=10, n=10K. 
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Analysis of 1D Streams (3) 

• Theorem 2: The size of the seen set at t  after using 

jAj=Á(A) is:  

 
 

 

 

 

 

 

Fig: Verification of the size of St (E[I]=10, n=10K). 
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1D Streams - Applications 

• We consider two applications: 

━ Miss rate of LRU cache 

━ Disk I/O of MapReduce 

• For verification, we use the following two workloads in 

addition to simulated input: 

━ IRLbot host graph (640M nodes, 6.8B edges, 55 GB) 

━ WebBase web graph (635M nodes, 4.2B edges, 35 GB) 
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LRU Cache Miss Rate 

• Theorem 3: The miss rate of a LRU cache of size C is: 
 

 

Here, the value ¿  is obtained asf-1(C),  where f(t)=E[Á(St)] 

 

 

 

 
 

  

 Fig. Verification of LRU miss rate in real graphs. 
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1D Streams - MapReduce Disk I/O 

• Input is a stream of length T 

━ Entries are key-value pairs, each K+D bytes 

━ At time step t, one pair is processed by MapReduce 

• Disk I/O consists of: 

━ Input with T pairs (some duplicate) 

━ Output with n unique pairs 

━ Sorted runs of size L 

• Total disk overhead is W = (K +D)(T + n + 2L) 

━ Our goal is to derive L 

• RAM can hold m pairs in a merge-sort MapReduce 

━ Then, k = dT/me is the number of sorted runs, where each 

contains E[jSmj] pairs on average 
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MapReduce Disk I/O (2) 

• Theorem 4: Disk spill L  of a merge-sort MapReduce is: 

 

 And, the total disk I/O is thus: 

 
 

 

 

 

 

 

Fig: Verification of Disk I/O of a merge-sort MapReduce. 
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Analysis of 2D Streams 

• Two-dimensional (2D) streams are mainly applicable in 

analyzing graph traversal algorithms 

• Consider a simple directed random graph G(V,E) 

━ V and E are the set of nodes and edges, respectively. Let |E| 

= T  and the in/out-deg sequences be fI(v)gvϵV  and fO(v)gvϵV  

• Define the stream of edges of this graph seen by a 

crawler as a 2D discrete-time process f(Xt, Yt)gTt=1  
━ Here Xt is the crawled node and Yt the destination node 

• Define the crawled set as                        , the seen set 

as                      , and the frontier as                    

• The goal is to analyze the stream of Yt’s, and the sets 

St and Ft as they change over crawl time t 
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Analysis of 2D Streams (2) 

 
 

 

 

 

Fig. Verification of p(t) under BFS crawl on graph (E[I]=10, n=10K). 

 

 

 

 

 

Fig. Verification of the seen set size in BFS (E[I]=10, n=10K).     
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Seen Set Properties 

• Theorem 5: The average in/out-degree of the nodes in 

the seen set: 

 

 

 

 

 

 

 

 

Fig: Verification of the average in/out-degree  

of the seen set 
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Destination Node Properties 

• Theorem 6: The in-degree distribution of the Yt    is : 

 

 

━ Helps obtain an unbiased estimator  
of P(I=k) after observing m edges: 

• Theorem 7: The average in/out-degree of Yt is 

independent of time and equals: 

  

 while that of Yt, conditioned on its being unseen is: 
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Destination Node Properties - 

Verification 

 

 

 

 

 

 

Fig: Verification of the average in-degree of all Yt’s  

and the unseen Yt’s, respectively 
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Properties of the Frontier 

• A crawling method’s efficiency is a function of the 

frontier size 

━ The more the size, the more the load on duplicate-elimination, 

prioritization algorithms 

• Theorem 8: The following iterative relation computes 
the size of the frontier (let Á(A)=|A|): 

 

• We consider two crawling methods to examine their 

frontier sizes: 

━ Breads First Search (BFS) 

━ Frontier RaNdomization (FRN), where any node from the 

frontier is picked randomly for crawling 
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Properties of the Frontier (2) 

• Theorem 9: For BFS, the out-degree of the crawled 

node is given by: 

 

 while that for FRN is simply: E[Á(Ft)]= E[O(Ft)]/E[O]. 

 

 

 
 
 

 

 

 
Fig: Verification of the frontier size with E[I]=10    and n = 10K. 
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Conclusion 

• Presented accurate analytic models of performance 

based on workload characterization 

• Proposed a common modeling framework for a 

number of apparently unrelated fields (i.e., caching, 

MapReduce, crawl modeling) 
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Thank you! 

Questions? 


