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Introduction

« Key-value input pairs are common to MapReduce and
many other types of applications

* Input is typically a finite length stream where the keys
come off a finite set

* EXxperience of the processing application (e.qg.,
RAM/disk usage, processing speed) depends largely
on the properties of the stream (i.e. key frequency)

 Example: Least Recently Used (LRU) cache’s hit rate
IS governed by popularities of items
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Introduction (2)

« MapReduce applications’ combined output (the result
of merging duplicate keys in a window of pairs)
- Depends on the frequency properties of the keys

- Usually, the higher the frequencies of each item, the smaller
the size of the combined output

 Existing literature is missing accurate model
- Common to assume linear ratio between input and output
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Analysis of 1D Streams

Define one-dimensional (1D) streams as discrete-time
processes {Y,},.,, where each item Y, is observed at ¢

- Y, is unique (i.e., previously unseen) with probability p(¢) (also
called uniqueness probability), and duplicate otherwise

Input is a stream of length T’
- Keys belong to a finite set V of size n

- Each key v is repeated Z(v) times (random variable 7 also
denotes frequency distribution of v’s)

- The seen set at ¢ is denoted by S;, and the unseen set by U,

We also assume uniform shuffle of the items across
the stream

- Independent Reference Model (IRM)
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Analysis of 1D Streams (2

« Theorem 1: The probabillity of seeing a unique
(previously unseen) key at ¢ (using e¢,=t/T) is:

p(t) = B [T-(1-ea) ]

E[T]
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Fig: Verification of p(¢) under E|Z]=10, n=10K.
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Analysis of 1D Streams (3

 Theorem 2: The size of the seen set at ¢ after using

Al=¢(4) is:
El¢p(Sy)] = nE[1 — (1 — e)’]
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Fig: Verification of the size of S, (E[Z]=10, n=10K). ®



1D Streams - Applications

* \We consider two applications:
- Miss rate of LRU cache
- Disk I/0O of MapReduce

 For verification, we use the following two workloads in
addition to simulated input:
- IRLbot host graph (640M nodes, 6.8B edges, 55 GB)
- WebBase web graph (635M nodes, 4.2B edges, 35 GB)
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LRU Cache Miss Rate

I3 ° Theorem 3: The miss rate of a LRU cache of size C'Is:
= 1

) — -1

2 m(t) = E[Z(1 — e )l

= E[I] m|n(t,7')

-

8 Here, the value 7is obtained asf*(C), where f(t)=FE|¢(S,)]
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Fig. Verification of LRU miss rate in real graphs. 10



1D Streams - MapReduce Disk I/O

* Input is a stream of length T’
- Entries are key-value pairs, each K+ D bytes
- At time step ¢, one pair is processed by MapReduce

* Disk I/O consists of:
- Input with 7" pairs (some duplicate)
- Output with n unigue pairs
- Sorted runs of size L

 Total disk overheadis W = (K+D)(T + n + 2L)
- Our goal is to derive L

 RAM can hold m pairs in a merge-sort MapReduce

- Then, k = [T/m/] is the number of sorted runs, where each
contains E/[|S, || pairs on average "
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MapReduce Disk /O (2)

« Theorem 4: Disk spill L of a merge-sort MapReduce is:

L = nk(K + D) (1 _ E[(l _ (—:m)ID ,
And, the total disk I/O is thus:
W = n(K + D) {E[I] + 1+ 2k (1 _ E[(l _ em)ID} .
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Fig: Verification of Disk I/O of a merge-sort MapReduce. **
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Analysis of 2D Streams

 Two-dimensional (2D) streams are mainly applicable in
analyzing graph traversal algorithms

 Consider a simple directed random graph G(V,E)

- Vand FE are the set of nodes and edges, respectively. Let |E]
= T and the in/out-deg sequences be {Z(v)},. and {O(v)} .

« Define the stream of edges of this graph seen by a
crawler as a 2D discrete-time process {(X,, Y;)}7,_,

- Here X, Is the crawled node and Y, the destination node

- Define the crawled set as C; = U!_,{X;}, the seen set
as Sy = U!—,{Y;}, and the frontier as £, = s; \ C;
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* The goal is to analyze the stream of Y,'s, and the sets
S, and F; as they change over crawl time ¢ 14




Ana |s of ZD Streams 2
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Seen Set Properties

« Theorem 5: The average in/out-degree of the nodes In
the seenset: 7oy EIZ-(1—(1- et) )]
1 - E[(1—e)f]
El0-(1-(1—-enh)]
1 -E[(1-e)t]
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Fig: Verification of the average in/out-degree
of the seen set
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Destination Node Properties

 Theorem 6: The in-degree distribution of the Y, Is :

EP(Z =k)
P(Z(Y;) = k) = :
TV =k =—F—
- Helps obtain an unbiased estimator 21 11(1/;):/@
of P(I=k) after observing m edges: k> 1/7(Y;)

« Theorem 7: The average in/out-degree of Y, IS
Independent of timezand equals:

B =2 BlOGR) = S
while that of Y,, conditioned on its being unseen Is:
E[Z?- (1 —e)* 1]

E[Z(1 —e)t—1] ~
E[ZO - (1 — )t ']
E[Z(1 — e)f71]

E[Z(Y)|Y: € Us—1] =

EO(Y)|Y; € Up—1] =

17
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Destination Node Properties -

Verification
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Properties of the Frontier

» A crawling method’s efficiency is a function of the
frontier size

- The more the size, the more the load on duplicate-elimination,
prioritization algorithms

 Theorem 8: The following iterative relation computes
the size of the frontier (let ¢(A)=|A|):
1

Elp(F)] = Elop(Fi—1)] +p(t — 1) — E[O(X;_1)]

« We consider two crawling methods to examine their
frontier sizes:
- Breads First Search (BFS)

- Frontier RaNdomization (FRN), where any node from the
frontier is picked randomly for crawling
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Properties of the Frontier (2)

« Theorem 9: For BFS, the out-degree of the crawled
node Is given by: | BZO — )T ]
BElO(Xey plo@))] = E[Z(1 — )T
while that for FRN is simply: E|¢(F,)|= E|O(F,)|/E|O].
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Fig: Verification of the frontier size with E[Z]=10 and n = 10K. 20
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Conclusion

* Presented accurate analytic models of performance
based on workload characterization

* Proposed a common modeling framework for a
number of apparently unrelated fields (i.e., caching,
MapReduce, crawl modeling)
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