Modeling Randomized Data Streams
in Caching, Data Processing, and
Crawling Applications

Sarker Tanzir Ahmed and Dmitri Loguinov

Internet Research Lab
Department of Computer Science and Engineering
Texas A&M University

April 29, 2015

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q0
O
(Vo)
i
2
Q
S
O
O

Agenda

* [ntroduction

* Analysis of 1D Streams
- LRU Performance
- MapReduce Disk 1/O

* Analysis of 2D Streams

- Properties of the Seen Set, Discovered Nodes, and the
Frontier

« Conclusion

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q0
O
(Vo)
i
2
Q
S
O
O

Introduction

« Key-value input pairs are common to MapReduce and
many other types of applications

* Input is typically a finite length stream where the keys
come off a finite set

* EXxperience of the processing application (e.qg.,
RAM/disk usage, processing speed) depends largely
on the properties of the stream (i.e. key frequency)

 Example: Least Recently Used (LRU) cache’s hit rate
IS governed by popularities of items

>
-
0
)
2
-
D
>
ol
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
)
0
D
Q
&
O
Q

Introduction (2)

« MapReduce applications’ combined output (the result
of merging duplicate keys in a window of pairs)
- Depends on the frequency properties of the keys

- Usually, the higher the frequencies of each item, the smaller
the size of the combined output

 Existing literature is missing accurate model
- Common to assume linear ratio between input and output

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
(V9]
o
o)
O
&
O
Q

Agenda

* |ntroduction

* Analysis of 1D Streams

- LRU Performance
- MapReduce Disk 1/O

* Analysis of 2D Streams

- Properties of the Seen Set, Discovered Nodes, and the
Frontier

« Conclusion

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q0
O
(Vo)
i
2
Q
S
O
O

>
-
0
)
2
-
D
>
ol
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
)
0
D
Q
&
O
Q

Analysis of 1D Streams

Define one-dimensional (1D) streams as discrete-time
processes {Y,},.,, where each item Y, is observed at ¢

- Y, is unique (i.e., previously unseen) with probability p(¢) (also
called uniqueness probability), and duplicate otherwise

Input is a stream of length T’
- Keys belong to a finite set V of size n

- Each key v is repeated Z(v) times (random variable 7 also
denotes frequency distribution of v’s)

- The seen set at ¢ is denoted by S;, and the unseen set by U,

We also assume uniform shuffle of the items across
the stream

- Independent Reference Model (IRM)

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
09
i
2
Q
S
O
O

Analysis of 1D Streams (2

« Theorem 1: The probabillity of seeing a unique
(previously unseen) key at ¢ (using e¢,=t/T) is:

p(t) = B [T-(1-ea)]

E[T]
10° ————
o simulation
' |—model
10_2 ____________________________________
ot
L0 SRR R R R B
-6 ! '. '. !
10 0 0.2 0.4 0.6 0.8

stream fraction VT

(a) binomial Z

1

10

0

| |
o simulation|:
—model

02 04 06 08 1
stream fraction t/T

(b) Zipf T (o = 1.2)

Fig: Verification of p(¢) under E|Z]=10, n=10K.

7

Analysis of 1D Streams (3

 Theorem 2: The size of the seen set at ¢ after using

Al=¢(4) is:
El¢p(Sy)] = nE[1 — (1 — e)’]

| | | |
1| o simulation 1| o simulation

” | '. [——model 0 '. | [——model
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
stream fraction t/T stream fraction t/T
(a) binomial Z (b) Zipf Z (v = 1.2)

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
09
i
2
Q
S
O
O

Fig: Verification of the size of S, (E[Z]=10, n=10K). ®

1D Streams - Applications

* \We consider two applications:
- Miss rate of LRU cache
- Disk I/0O of MapReduce

 For verification, we use the following two workloads in
addition to simulated input:
- IRLbot host graph (640M nodes, 6.8B edges, 55 GB)
- WebBase web graph (635M nodes, 4.2B edges, 35 GB)

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
V)
o
o)
O
&
O
Q

LRU Cache Miss Rate

I3 ° Theorem 3: The miss rate of a LRU cache of size C'Is:
= 1

) — -1

2 m(t) = E[Z(1 — e)l

= E[I] m|n(t,7')

-

8 Here, the value 7is obtained asf*(C), where f(t)=FE|¢(S,)]

od 0.6 - — 0.4 : —

<C { o C=100M (simulation) o C=25M (simulation)
(%) —C=100M (model) —C=25M (model)

9 o C=200M (simulation) o C=50M (simulation)
) o 04w — C=200M (model) o —C=50M (model)

= © ! © A C=75M (simulation)
0 2 SR —C=75M (model)

O S S R £ ——

0] e . on
O) 1 Hl
%) # 2 A~

O 0 ‘ 0.2 '

1) 107 107 10° 107 107 10°
8_ stream fraction t/T stream fraction t/T

g (a) IRLbot host graph (b) WebBase web graph

@)

Fig. Verification of LRU miss rate in real graphs. 10

1D Streams - MapReduce Disk I/O

* Input is a stream of length T’
- Entries are key-value pairs, each K+ D bytes
- At time step ¢, one pair is processed by MapReduce

* Disk I/O consists of:
- Input with 7" pairs (some duplicate)
- Output with n unigue pairs
- Sorted runs of size L

 Total disk overheadis W = (K+D)(T + n + 2L)
- Our goal is to derive L

 RAM can hold m pairs in a merge-sort MapReduce

- Then, k = [T/m/] is the number of sorted runs, where each
contains E/[|S, || pairs on average "

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
(V9]
o
o)
O
&
O
Q

MapReduce Disk /O (2)

« Theorem 4: Disk spill L of a merge-sort MapReduce is:

L = nk(K + D) (1 _ E[(l _ (—:m)ID ,
And, the total disk I/O is thus:
W = n(K + D) {E[I] + 1+ 2k (1 _ E[(l _ em)ID} .

220

110

o simulation o simulation
| |
—model ! ! —model
1 | | |

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
09
i
2
Q
S
O
O

16%0 4IO .GIO o 8|O. 100 8%0 4|0 _ESIO - 8|O_ 100
RAM capacity (million pairs) RAM capacity (million pairs)
(a) IRLbot host graph (b) WebBase web graph

Fig: Verification of Disk I/O of a merge-sort MapReduce. **

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q0
O
(Vo)
i
2
Q
S
O
O

Agenda

* |ntroduction

* Analysis of 1D Streams
- LRU Performance
- MapReduce Disk 1/O

* Analysis of 2D Streams

- Properties of the Seen Set, Discovered Nodes, and the
Frontier

« Conclusion

13

Analysis of 2D Streams

 Two-dimensional (2D) streams are mainly applicable in
analyzing graph traversal algorithms

 Consider a simple directed random graph G(V,E)

- Vand FE are the set of nodes and edges, respectively. Let |E]
= T and the in/out-deg sequences be {Z(v)},. and {O(v)} .

« Define the stream of edges of this graph seen by a
crawler as a 2D discrete-time process {(X,, Y;)}7,_,

- Here X, Is the crawled node and Y, the destination node

- Define the crawled set as C; = U!_,{X;}, the seen set
as Sy = U!—,{Y;}, and the frontier as £, = s; \ C;

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
(V9]
o
o)
O
&
O
Q

* The goal is to analyze the stream of Y,'s, and the sets
S, and F; as they change over crawl time ¢ 14

Ana |s of ZD Streams 2

i © simulation ‘ | | /[o simulation

'|—model ! ! ‘
."? 107 8-t Ry - S —
el ~ |
0 : i
= 107 . ———————— By
) |

-6 ‘. '. i : -3 '. ' ‘ ‘.
E 10 0 0.2 0.4 0.6 0.8 1 10 0 0.2 06 0.8 1
ﬁ link fraction UT ik fraction VT
A (a) binomial Z (b) Zipt Z (o« = 1.5)
@)
0 Fig. Verification ofp() under BFS crawl on graph (E[|=10, n=10K).
— 1
o |
O i I R B
GC_) %ﬁ 0.8t P]
0 3 S o
= |
,G) 0-2 % °© sm“;ulahon 02 o % o S|m‘ulat|on
D) i .. /|—model | i ||—model
Q_ OO 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
stream fraction t/T stream fraction t/T

&
8 (a) binomial 7 (b) Zipf T (o = 1.2)

Fig. Verification of the seen set size in BES (E[Z]=10, n=10K). 15

Seen Set Properties

« Theorem 5: The average in/out-degree of the nodes In
the seenset: 7oy EIZ-(1—(1- et))]
1 - E[(1—e)f]
El0-(1-(1—-enh)]
1 -E[(1-e)t]

i | © simulation
I
' |[—model

O(St) ~

i | o simulation
|

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
link fraction t/T link fraction t/T

Fig: Verification of the average in/out-degree
of the seen set

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
09
i
2
Q
S
O
O

16

>
-
0
)
2
-
D
>
ol
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
V)
0
D
Q
&
O
Q

Destination Node Properties

 Theorem 6: The in-degree distribution of the Y, Is :

EP(Z =k)
P(Z(Y;) = k) = :
TV =k =—F—
- Helps obtain an unbiased estimator 21 11(1/;):/@
of P(I=k) after observing m edges: k> 1/7(Y;)

« Theorem 7: The average in/out-degree of Y, IS
Independent of timezand equals:

B =2 BlOGR) = S
while that of Y,, conditioned on its being unseen Is:
E[Z?- (1 —e)* 1]

E[Z(1 —e)t—1] ~
E[ZO - (1 —)t ']
E[Z(1 — e)f71]

E[Z(Y)|Y: € Us—1] =

EO(Y)|Y; € Up—1] =

17

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
09
i
2
Q
S
O
O

Destination Node Properties -

Verification

3 ' — :
i o simulation
' |—model
o ‘
g 2 _______________________________________
i}
RS NN PO
o o teode)
0 X X \ ‘.
0 0.2 0.4 0.6 0.8

link fraction /T

(a) in-degree of Y (normalized)

1

i| o simulation
|

'l —model

| |

'. '. =2~
0 02 04 06 0.8 1
link fraction t/T

(b) in-degree of unseen Y%

Fig: Verification of the average in-degree of all ¥,'s
and the unseen Y;'s, respectively

18

Properties of the Frontier

» A crawling method’s efficiency is a function of the
frontier size

- The more the size, the more the load on duplicate-elimination,
prioritization algorithms

 Theorem 8: The following iterative relation computes
the size of the frontier (let ¢(A)=|A|):
1

Elp(F)] = Elop(Fi—1)] +p(t — 1) — E[O(X;_1)]

« We consider two crawling methods to examine their
frontier sizes:
- Breads First Search (BFS)

- Frontier RaNdomization (FRN), where any node from the
frontier is picked randomly for crawling

>
-
0
)
2
-
D
>
ol
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
)
0
D
Q
&
O
Q

19

Properties of the Frontier (2)

« Theorem 9: For BFS, the out-degree of the crawled
node Is given by: | BZO —)T]
BElO(Xey plo@))] = E[Z(1 —)T
while that for FRN is simply: E|¢(F,)|= E|O(F,)|/E|O].

: :
| © simulation

0 simulation i
oL | [model '. N N '. :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
link fraction t/T link fraction t/T
(a) BES (b) FRN

>~
-
(Z
)
2
-
-
>
o
<
(2]
O
x
O
—
)
©)
C
Q
O
09
i
2
Q
S
O
O

Fig: Verification of the frontier size with E[Z]=10 and n = 10K. 20

>
-
0
)
2
-
D
>
ol
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
V)
0
D
Q
&
O
Q

Agenda

* |ntroduction

* Analysis of 1D Streams
- LRU Performance
- MapReduce Disk 1/O

* Analysis of 2D Streams

- Properties of the Seen Set, Discovered Nodes, and the
Frontier

« Conclusion

21

>
-
Iz
)
2
cC
-
>
&
<
(7p)
@)
>
)
|_
0}
@)
-
0
@)
V)
o
o)
O
&
O
Q

Conclusion

* Presented accurate analytic models of performance
based on workload characterization

* Proposed a common modeling framework for a
number of apparently unrelated fields (i.e., caching,
MapReduce, crawl modeling)

22

23

Thank you!
Questions?

AlISISAIUN WY SOX8] ‘@ouslos Jajndwo)

