Modeling Randomized Data Streams in Caching, Data Processing, and Crawling Applications

Sarker Tanzir Ahmed and Dmitri Loguinov

Internet Research Lab
Department of Computer Science and Engineering
Texas A&M University
April 29, 2015
Agenda

• Introduction

• Analysis of 1D Streams
 – LRU Performance
 – MapReduce Disk I/O

• Analysis of 2D Streams
 – Properties of the Seen Set, Discovered Nodes, and the Frontier

• Conclusion
Introduction

- Key-value input pairs are common to MapReduce and many other types of applications.
- Input is typically a finite length stream where the keys come off a finite set.
- Experience of the processing application (e.g., RAM/disk usage, processing speed) depends largely on the properties of the stream (i.e., key frequency).
- Example: Least Recently Used (LRU) cache’s hit rate is governed by popularities of items.
Introduction (2)

- MapReduce applications’ combined output (the result of merging duplicate keys in a window of pairs)
 - Depends on the frequency properties of the keys
 - Usually, the higher the frequencies of each item, the smaller the size of the combined output

- Existing literature is missing accurate model
 - Common to assume linear ratio between input and output
Agenda

• Introduction

• Analysis of 1D Streams
 – LRU Performance
 – MapReduce Disk I/O

• Analysis of 2D Streams
 – Properties of the Seen Set, Discovered Nodes, and the Frontier

• Conclusion
Analysis of 1D Streams

• Define one-dimensional (1D) streams as discrete-time processes \(\{Y_t\}_{t \geq 1} \), where each item \(Y_t \) is observed at \(t \)
 - \(Y_t \) is unique (i.e., previously unseen) with probability \(p(t) \) (also called uniqueness probability), and duplicate otherwise

• Input is a stream of length \(T \)
 - Keys belong to a finite set \(V \) of size \(n \)
 - Each key \(v \) is repeated \(\mathcal{I}(v) \) times (random variable \(\mathcal{I} \) also denotes frequency distribution of \(v \)'s)
 - The seen set at \(t \) is denoted by \(S_t \), and the unseen set by \(U_t \)

• We also assume uniform shuffle of the items across the stream
 - Independent Reference Model (IRM)
Analysis of 1D Streams (2)

- **Theorem 1**: The probability of seeing a unique (previously unseen) key at t (using $\epsilon_t = t/T$) is:

\[
p(t) = \frac{1}{E[I]} E \left[I \cdot (1 - \epsilon_t)^{I-1} \right]
\]

Fig: Verification of $p(t)$ under $E[I]=10$, $n=10K$.

Fig. (a) binomial I

Fig. (b) Zipf I ($\alpha = 1.2$)
Analysis of 1D Streams (3)

• Theorem 2: The size of the seen set at \(t \) after using \(|A| = \phi(A)\) is:

\[
E[\phi(S_t)] = nE[1 - (1 - \epsilon_t)^I]
\]

Fig: Verification of the size of \(S_t \) (\(E[I] = 10, n = 10K \)).
1D Streams - Applications

• We consider two applications:
 – Miss rate of LRU cache
 – Disk I/O of MapReduce

• For verification, we use the following two workloads in addition to simulated input:
 – IRLbot host graph (640M nodes, 6.8B edges, 55 GB)
 – WebBase web graph (635M nodes, 4.2B edges, 35 GB)
LRU Cache Miss Rate

- **Theorem 3:** The miss rate of a LRU cache of size C is:

 \[m(t) = \frac{1}{E[I]} E[I \left(1 - \epsilon_{\min(t,\tau)} \right)^{I-1}] \]

Here, the value τ is obtained as $f^{-1}(C)$, where $f(t) = E[\phi(S_t)]$.

Fig. Verification of LRU miss rate in real graphs.

(a) IRLbot host graph

(b) WebBase web graph
1D Streams - MapReduce Disk I/O

• Input is a stream of length T
 – Entries are key-value pairs, each $K+D$ bytes
 – At time step t, one pair is processed by MapReduce

• Disk I/O consists of:
 – Input with T pairs (some duplicate)
 – Output with n unique pairs
 – Sorted runs of size L

• Total disk overhead is $W = (K+D)(T + n + 2L)$
 – Our goal is to derive L

• RAM can hold m pairs in a merge-sort MapReduce
 – Then, $k = \lceil T/m \rceil$ is the number of sorted runs, where each
 contains $E[|S_m|]$ pairs on average
MapReduce Disk I/O (2)

- **Theorem 4:** Disk spill L of a merge-sort MapReduce is:

$$L = nk(K + D) \left(1 - E \left[(1 - \epsilon_m)^I \right] \right),$$

And, the total disk I/O is thus:

$$W = n(K + D) \left\{ E[I] + 1 + 2k \left(1 - E \left[(1 - \epsilon_m)^I \right] \right) \right\}.$$

Fig: Verification of Disk I/O of a merge-sort MapReduce.
Agenda

• Introduction

• Analysis of 1D Streams
 – LRU Performance
 – MapReduce Disk I/O

• Analysis of 2D Streams
 – Properties of the Seen Set, Discovered Nodes, and the Frontier

• Conclusion
Analysis of 2D Streams

- Two-dimensional (2D) streams are mainly applicable in analyzing graph traversal algorithms.
- Consider a simple directed random graph $G(V,E)$
 - V and E are the set of nodes and edges, respectively. Let $|E| = T$ and the in/out-deg sequences be $\{I(v)\}_{v \in V}$ and $\{O(v)\}_{v \in V}$.
- Define the stream of edges of this graph seen by a crawler as a 2D discrete-time process $\{(X_t, Y_t)\}_{t=1}^T$.
 - Here X_t is the crawled node and Y_t the destination node.
- Define the crawled set as $C_t = \bigcup_{i=1}^t \{X_i\}$, the seen set as $S_t = \bigcup_{i=1}^t \{Y_i\}$, and the frontier as $F_t = S_t \setminus C_t$.
- The goal is to analyze the stream of Y_t's, and the sets S_t and F_t as they change over crawl time t.
Analysis of 2D Streams (2)

Fig. Verification of $p(t)$ under BFS crawl on graph ($E[I]=10$, $n=10K$).

Fig. Verification of the seen set size in BFS ($E[I]=10$, $n=10K$).
Seen Set Properties

- **Theorem 5**: The average in/out-degree of the nodes in the seen set:

\[
\bar{I}(S_t) \approx \frac{E[I \cdot (1 - (1 - \epsilon_t)I)]}{1 - E[(1 - \epsilon_t)I]},
\]

\[
\bar{O}(S_t) \approx \frac{E[O \cdot (1 - (1 - \epsilon_t)I)]}{1 - E[(1 - \epsilon_t)I]}.
\]

Fig: Verification of the average in/out-degree of the seen set.
Destination Node Properties

- **Theorem 6:** The in-degree distribution of the Y_t is:

$$P(\mathcal{I}(Y_t) = k) = \frac{kP(\mathcal{I} = k)}{E[\mathcal{I}]}.$$

- Helps obtain an unbiased estimator of $P(\mathcal{I} = k)$ after observing m edges:

$$\frac{\sum_{t=1}^{m} 1_{\mathcal{I}(Y_t) = k}}{k \sum_{t=1}^{m} 1/\mathcal{I}(Y_t)}.$$

- **Theorem 7:** The average in/out-degree of Y_t is independent of time and equals:

$$E[\mathcal{I}(Y_t)] = \frac{E[\mathcal{I}^2]}{E[\mathcal{I}]}, \quad E[\mathcal{O}(Y_t)] = \frac{E[\mathcal{I} \mathcal{O}]}{E[\mathcal{I}]}.$$

while that of Y_t, conditioned on its being unseen is:

$$E[\mathcal{I}(Y_t)|Y_t \in U_{t-1}] = \frac{E[\mathcal{I}^2 \cdot (1 - \epsilon_t)^{\mathcal{I}^{-1}}]}{E[\mathcal{I}(1 - \epsilon_t)^{\mathcal{I}^{-1}}]},$$

$$E[\mathcal{O}(Y_t)|Y_t \in U_{t-1}] = \frac{E[\mathcal{I} \mathcal{O} \cdot (1 - \epsilon_t)^{\mathcal{I}^{-1}}]}{E[\mathcal{I}(1 - \epsilon_t)^{\mathcal{I}^{-1}}]}.$$
Destination Node Properties - Verification

Fig: Verification of the average in-degree of all Y_t’s and the unseen Y_t’s, respectively

(a) in-degree of Y_t (normalized) (b) in-degree of unseen Y_t
Properties of the Frontier

• A crawling method’s efficiency is a function of the frontier size
 – The more the size, the more the load on duplicate-elimination, prioritization algorithms

• **Theorem 8:** The following iterative relation computes the size of the frontier (let \(\phi(A) = |A| \)):

\[
E[\phi(F_t)] \approx E[\phi(F_{t-1})] + p(t - 1) - \frac{1}{E[O(X_{t-1})]}
\]

• We consider two crawling methods to examine their frontier sizes:
 – Breads First Search (BFS)
 – Frontier RaNdomization (FRN), where any node from the frontier is picked randomly for crawling
Properties of the Frontier (2)

• **Theorem 9:** For BFS, the out-degree of the crawled node is given by:

\[
E[O(X_t + E[O(F_t)])] = \frac{E[IO(1 - \epsilon_t)I^{-1}]}{E[I(1 - \epsilon_t)I^{-1}]},
\]

while that for FRN is simply: \(E[\phi(F_t)] = E[O(F_t)] / E[O]. \)

Fig: Verification of the frontier size with \(E[I] = 10 \) and \(n = 10K. \)
Agenda

• Introduction
• Analysis of 1D Streams
 – LRU Performance
 – MapReduce Disk I/O
• Analysis of 2D Streams
 – Properties of the Seen Set, Discovered Nodes, and the Frontier
• Conclusion
Conclusion

• Presented accurate analytic models of performance based on workload characterization
• Proposed a common modeling framework for a number of apparently unrelated fields (i.e., caching, MapReduce, crawl modeling)
Thank you!
Questions?