# Residual-Based Measurement of Peer and Link Lifetimes in Gnutella Networks

#### Xiaoming Wang

Joint work with Zhongmei Yao and Dmitri Loguinov

Internet Research Lab Computer Science Department Texas A&M University

May 8, 2007

- Introduction
- Related work
  - Create-Based Method (CBM)
- Analysis of CBM
- Proposed method
  - Residual-Based Estimator (RIDE)
- Comparison of overhead
- Experiments
- Conclusion

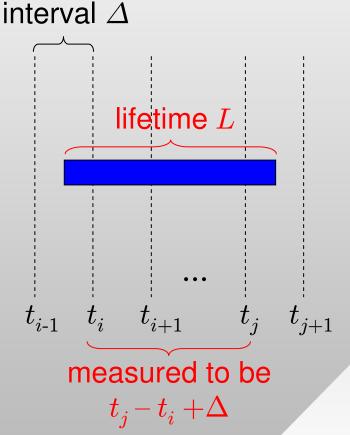
#### **Introduction**

- Current peer-to-peer networks
  - Have a large number of participating users
  - Are organized in a decentralized infrastructure
- Measurements are needed for validation purposes

our focus

- Lifetime distribution
- Inter-arrival delays
- Availability
- Topological information
- Traffic flow rate

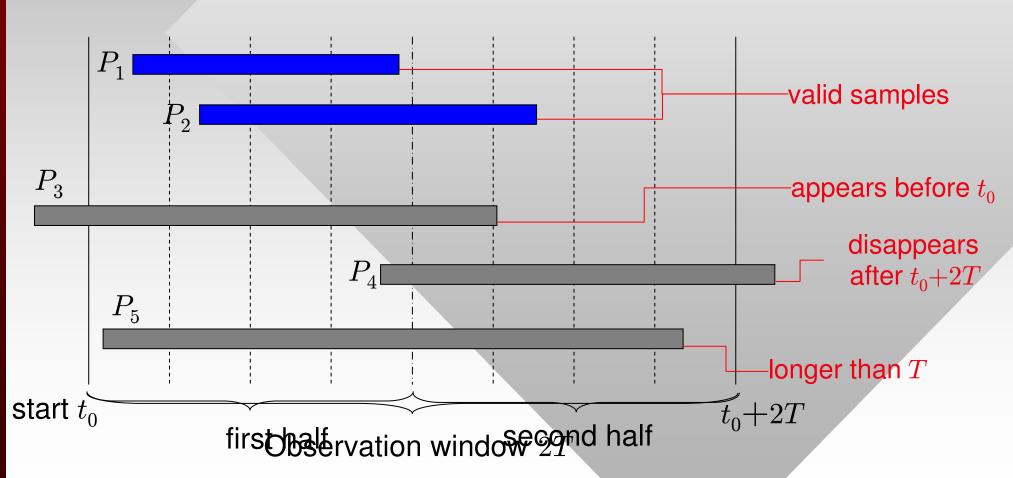
# Introduction - Lifetime Sampling


- Measuring lifetime distribution
  - Collecting lifetime samples
- The lifetime of a user can be measured only if one observes both its birth and death
- To detect arrivals and departures, one must have periodic snapshots of the whole system

#### <u>Introduction – Lifetime Measurement</u>

• Take snapshots of the system every  $\Delta$  time units




- The user is captured in the snapshots taken at time points  $t_i, t_{i+1}, ..., t_j$
- —Then, the measured lifetime of this user is rounded up to  $t_i$ — $t_i$ + $\Delta$
- Create-Based Method (CBM)



- Introduction
- Related work
  - Create-Based Method (CBM)
- Analysis of CBM
- Proposed method
  - Residual-Based Estimator (RIDE)
- Comparison of overhead
- Experiments
- Conclusion

# Related Work - CBM Sampling

- 1. Appear during the first half of the window
- 2. Disappear somewhere in the window
- 3. Stay in the system no longer than T time units



#### Related Work - CBM Estimators

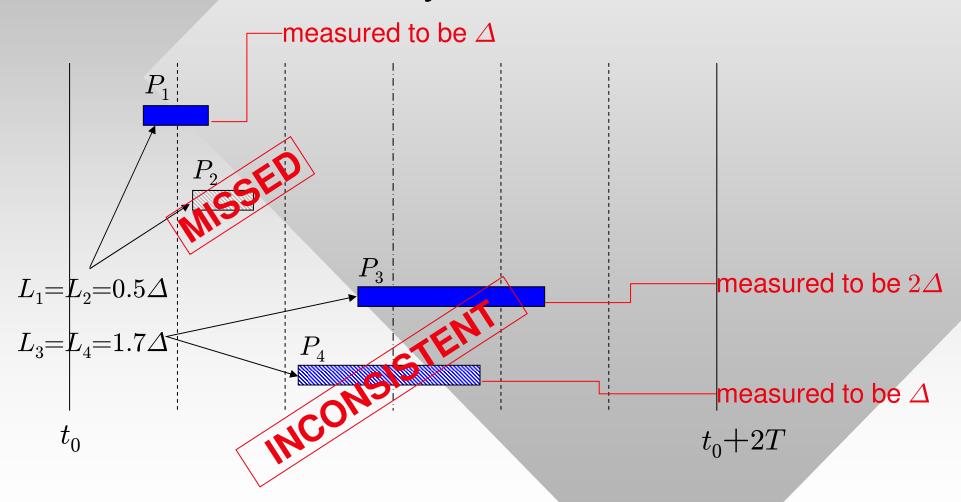
criteria of unbiased estimator

CDF function F(x)

- Denote by  $\underline{E(x)}$  the estimated value for the probability a random lifetime L is no larger than x
  - We want  $E(x) = P(L \le x) \not\equiv F(x)$  to hold for discrete points  $x = j\Delta, j = 0, 1, 2, ..., T/\Delta$
- Two CBM estimators have been proposed
  - Roselli 2000

$$E_A(x_j) = \underbrace{\frac{N(x_j)}{N(T)}}_{\text{total valid samples}} \text{smaller than } x_j$$

- Saroiu 2002, Bustamante 2003, Stutzbach 2006


$$E_B(x_j) = rac{N(x_j)}{N}$$
 total obsappear is

total observed samples that appear in the first half window

- Introduction
- Related work
  - Create-Based Method (CBM)
- Analysis of CBM
- Proposed method
  - Residual-Based Estimator (RIDE)
- Comparison of overhead
- Experiments
- Conclusion

#### **CBM** – Round-off Errors

Round-off errors may cause bias in CBM



#### **CBM** – Model

probability of round-off errors

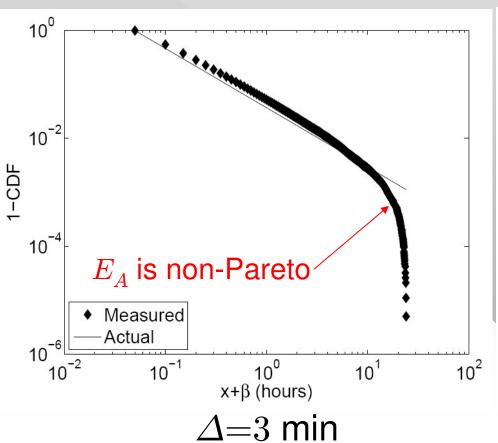
not affected by T more accurate

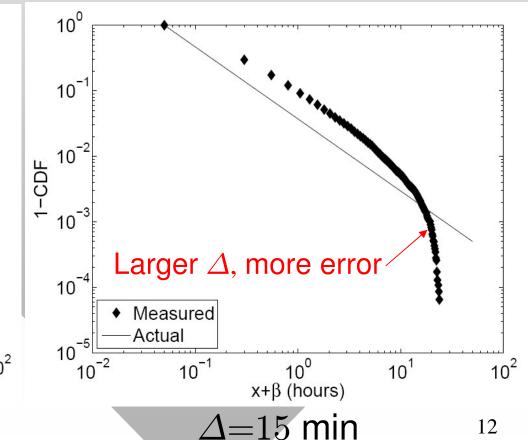
target  $P(L \leq x_i)$ 

• Theorem 1: Both CBM estimators differ from the actual lifetime distribution as follows

$$E_A(x_j) = F(x_j) + \rho_j - \rho_0$$
  $E_B(x_j) = F(x_j) - \rho_0 + \rho_j$  — where

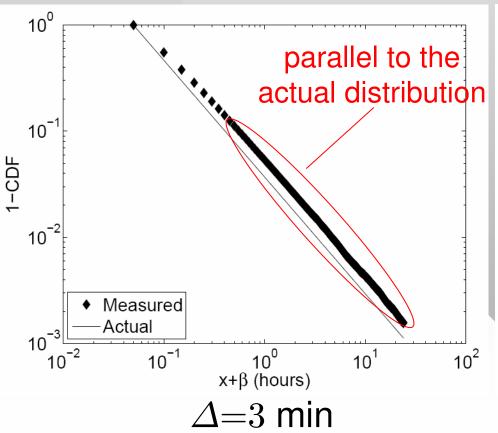
probability  $ho_j = rac{1}{\Delta} \int_0^\Delta F(x+x_j) dx - F(x_j)$ 

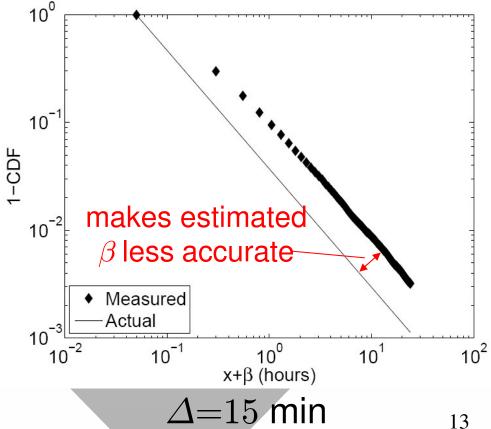

- In fact, actual F(x) can be recovered from  $E_B$  only if  $\rho_j$  are known
  - However,  $\rho_j$  can be neither measured in practice nor calculated without knowing F(x)
- Therefore,  $E_B$  as well as  $E_A$  are inherently biased


# CBM – Simulations with $E_A$

$$F(x) = 1 - (1 + x/\beta)^{-\alpha}$$

Actual lifetimes follow a Pareto distribution


$$-\alpha$$
=1.1,  $\beta$ =0.05, $E[L]$ =0.5 hours,  $T$ =24 hours

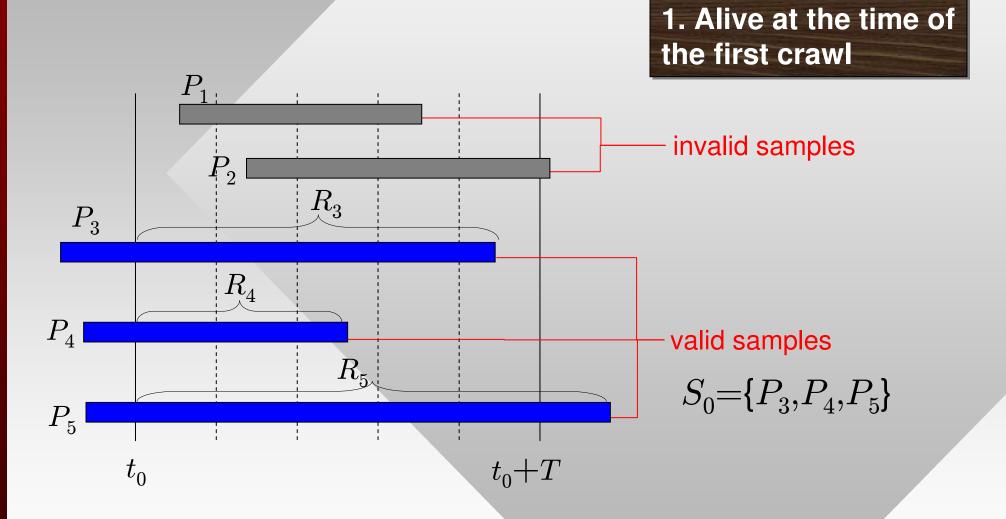





# CBM – Simulations with $E_B$

- Estimator  $E_B$  preserves the Pareto shape  $\alpha$  for small  $\rho_i$ 
  - But makes the Pareto scale  $\beta$  inaccurate






- Introduction
- Related work
  - Create-Based Method (CBM)
- Analysis of CBM
- Proposed method
  - Residual-Based Estimator (RIDE)
- Comparison of overhead
- Experiments
- Conclusion

#### Residual-Based Method - Motivation

- Larger  $\Delta$  implies more bias in CBM
  - It is desirable to crawl the system as frequently as possible
- - Moreover,  $\Delta$  cannot be smaller than the time needed for crawling the entire system
- There is an inherent tradeoff between accuracy and overhead in CBM
- We propose Residual-Based Estimator (RIDE)

# RIDE - Sampling



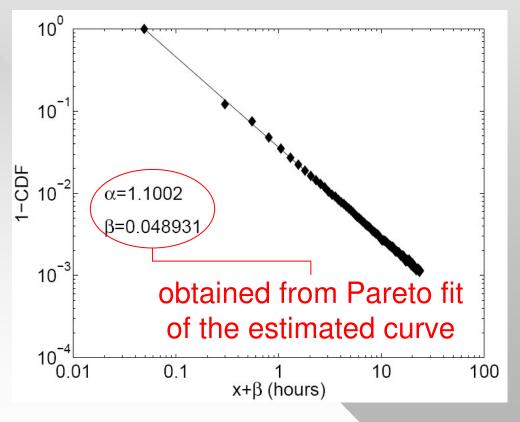
- RIDE samples the residual lifetime  ${\cal R}$  of users in  $S_0$ 
  - From time  $t_0$  until the user dies

# RIDE - Subsampling

- RIDE acquires all valid samples in the initial set  $S_0$  during the very first crawl
  - This allows us to randomly subsample the users in set  $S_0$
- Suppose we track the residuals of only  $\epsilon$  percent of the entire initial set  $S_0$ 
  - Significantly reduce traffic requirements
- Note that subsampling is not possible in CBM
  - It requires full system crawls to discover new users

#### RIDE - Estimator

- RIDE has all valid samples starting from  $t_0$ 
  - It will never miss any sample nor have any round-off errors
- Theorem 2: The following equation defines an unbiased estimator

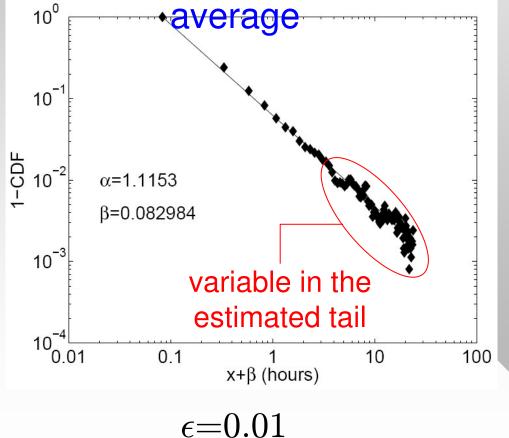

$$E_R(x_j) = 1 - \underbrace{\frac{h(x_j)}{h(0)}}$$

estimated probability  $P(L \leq x_j)$ 

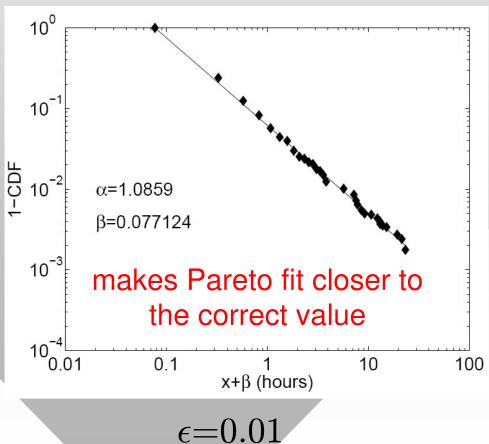
PDF of residuals lifetimes

# RIDE - Simulations without Subsampling

- Lifetimes are Pareto with  $\alpha$ =1.1,  $\beta$ =0.05
  - -E[L]=0.5 hours, T=24 hours,  $\Delta$ =15 min,  $|S_0|$ =1M

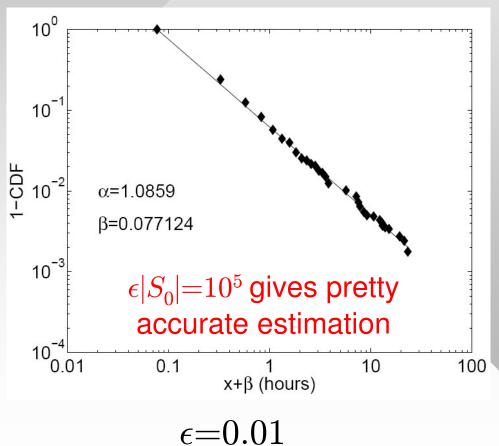


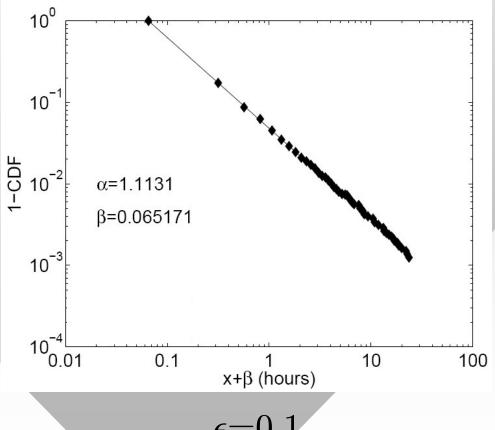

$$\epsilon=1$$


# RIDE - Simulations with Subsampling

Applying inverse average

#### before inverse





#### after inverse average



# RIDE - Simulations with Subsampling

Applying inverse average





- Introduction
- Related work
  - Create-Based Method (CBM)
- Analysis of CBM
- Proposed method
  - Residual-Based Estimator (RIDE)
- Comparison of overhead
- Experiments
- Conclusion

# **Overhead Comparison**

• Theorem 3: Total bandwidth overhead of  $(\Delta,T)$ sampling using CBM and RIDE is given by:

$$b_{CBM} = \frac{Cn}{\Delta} \left(T + \int_0^T [H(T) - H(x)] dx\right)$$
 cost of users concurrently in residual CDF the system subsampling percentage 
$$b_{RIDE} = \frac{C|S_0|}{\Delta} \left(\Delta + \epsilon \int_0^T [1 - H(x)] dx\right)$$

• Define  $q(\epsilon)$  the ratio of overhead of CBM and RIDE

$$q(\epsilon) = \frac{b_{CBM}}{b_{RIDE}}$$

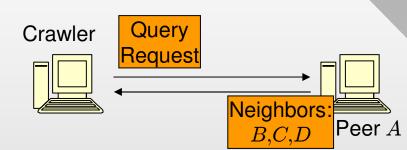
# Overhead Comparison (cont.)

• Pareto lifetime with E[L]=1 hours,  $\Delta=3$  min

| $\alpha$ | T      | q(0.1) | q(0.01) |
|----------|--------|--------|---------|
| 1.1      | 24 hrs | 16     | 125     |
|          | 48 hrs | 17     | 151     |
|          | 72 hrs | 18     | 164     |

| $\alpha$ | T      | q(0.1) | q(0.01) |
|----------|--------|--------|---------|
| 2        | 24 hrs | 71     | 319     |
|          | 48 hrs | 116    | 573     |
|          | 72 hrs | 157    | 811     |

smaller  $\epsilon$ , more savings


larger T, more savings

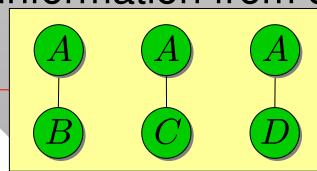
RIDE saves overhead by a fact of more than 800

- In fact, we can choose proper  $\epsilon$  based on the size of the initial set  $S_0$ 
  - $-\epsilon |S_0|$  is fixed at some pre-determined value, e.g.,  $10^5$

- Introduction
- Related work
  - Create-Based Method (CBM)
- Analysis of CBM
- Proposed method
  - Residual-Based Estimator (RIDE)
- Comparison of overhead
- Experiments
- Conclusion

#### Experiments - Gnutella



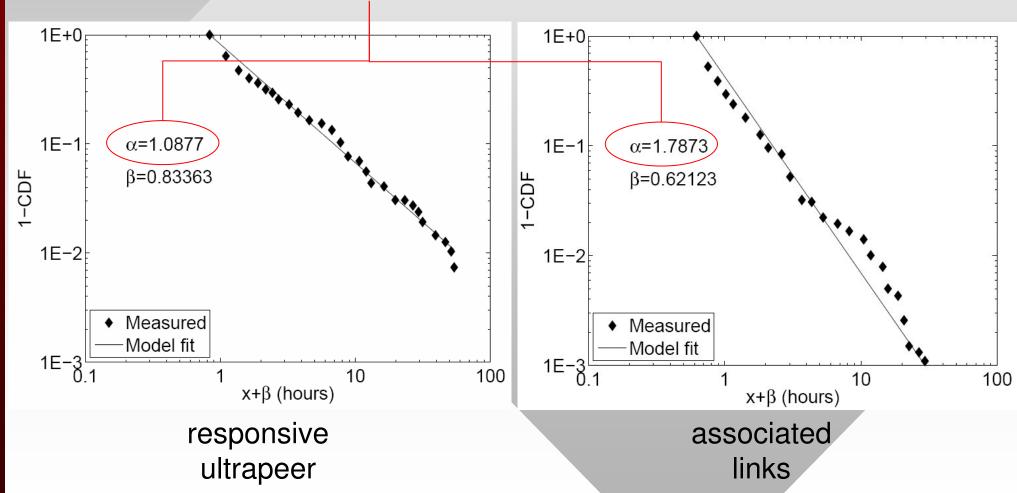

- Gnutella is fully distributed
  - However, it allows to query the neighbor list of any node
- Using Breadth-First-Search (BFS), we can take the snapshots of the users in the average

— Peers A, B, C, Dpeer snapshot

Moreover, we can infer link information from query

replies

- Links (A,B), (A,C), (A,D) link snapshot




# Experiments - Gnutella Crawler

- We implemented a Gnutella crawler GnuSpider
  - BFS search among ultra-peers
  - Up to 60,000 simultaneous connections
  - 216,000 contacted ultra-peers per min
- Entire system crawled in 3 min on July 22, 2006
  - -6.4 million users (1.2 million ultra and 5.2 million leaves)
- First crawl obtains 468,000 responsive ultra-peers
  - Subsampling  $\epsilon |S_0| = 100{,}000$
  - $-\Delta$ =3 min, T=72 hours

# **Experiments – Lifetime Distributions**

Lifetimes are Pareto with very heavy-tailed  $\alpha \approx 1.09$  and 1.8 for ultrapeers and links



#### **Conclusion**

- CBM is generally biased for  $\Delta > 0$ 
  - It may not scale to large networks
- RIDE can reduce traffic overhead by several orders of magnitude
  - Generally more accurate and scalable than CBM
- Ultrapeer lifetimes are Pareto with  $\alpha \approx 1.09$ 
  - $-\alpha \approx 1.06$  (Bustamante 2003)
- Link lifetimes exhibit much lighter tails with  $\alpha \approx 1.8$ 
  - More volatile than ultrapeers