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AgendaAgendaAgenda

• Introduction
━ Background
━ Motivation

• Analyzing GED 

• Generic Framework

• Extending GED results
━ PLRG/BA/AB/GLP

• Comparison

• Conclusion
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IntroductionIntroductionIntroduction

• Topology modeling is an inter-disciplinary topic 
━ Computer networks, social/biological/physics systems

• Its goal is to explain how real networks have come 
into being
━ To develop random graph models that capture the 

properties found in those systems

• In the context of computer networks, these models 
are useful for performance evaluations
━ Routing delay, resilience, load balancing, etc. 
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Background – Metrics Background Background –– Metrics Metrics 
• Metrics of interest

━ Main: degree distribution, assortativity and clustering 
coefficients

━ Auxiliary: diameter, spectrum, rich-club connectivity

• Degree correlation of level k is the joint degree 
distribution of k adjacent nodes

• Previous work (Mahadevan 2006) demonstrates 
that up to 3-level degree correlation suffices to 
characterize most of existing topologies 

• Thus, we focus on degree correlation in this talk
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Background – Metrics 2 Background Background –– Metrics 2 Metrics 2 

• Assume an undirected graph G = (V, E) of n
nodes with degrees d1, …, dn

• L1) Degree distribution CDF F(x) = P (d<x)

━ where d is the degree of a random node in V
━ Scale-free graphs exhibit power-law degree 

distributions F(x) = 1—(β/x)α

• L2) Assortativity coefficient r(G) is the Pearson 
correlation coefficient of node degrees of links 
━ It indicates the tendency of high degree nodes 

connecting frequently to other high degree nodes

shape α>1

scale
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Background – Metrics 3Background Background –– Metrics 3Metrics 3

• L3) Clustering coefficient γ(G) quantifies how likely 
the neighbors of a node are to be connected

━ where γi is individual clustering of node i

• We study how r(G) and γ(G) change as graph 
size n grows
━ This allows us to evaluate graph models in terms of 

their two-/three-node correlation 

The set of nodes with 
degree no less than 2

The number of triangles 
residing on node i
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Background – ModelsBackgroundBackground –– ModelsModels

• Graph models
━ GED (Chung 2002)
━ PLRG (Aiello 2000)
━ BA (Barabasi 1999)
━ AB (Albert 2000)
━ GLP (Bu 2002)
━ HOT (Fabrikant 2002)
━ SWT (Jin 2003)
━ WIT (Wang 2006)

Node 
weight

Preferential attachment 
and incremental 

growth

Geographic distance or 
wealth evolution and 

random walk
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Background – Models 2BackgroundBackground –– Models 2Models 2

• Classification
━ Non-evolving and evolving 

BABA ABAB GLPGLP

HOTHOTSWTSWT WITWIT

GEDGED PLRGPLRG

non-evolving evolving
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Background – Models 3BackgroundBackground –– Models 3Models 3

• Classification
━ Degree-based and link-based

BABA ABAB GLPGLP

HOTHOT SWTSWT WITWIT

GEDGED PLRGPLRG

degree-based link-based
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MotivationMotivationMotivation

• Many large-scale networks show invariant degree 
correlation
━ r(G) and γ(G) stay constant with growing n

• However, many algorithms have decreasing 
degree correlation as n increases

• No prior analysis has examined this issue in 
topology models
━ Only partial results are available in the literature for 
α≥2

• Goal is to study 1<α<2 for popular generators
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RoadmapRoadmapRoadmap

Graph ModelsGraph Models

Degree-BasedDegree-Based Link-BasedLink-Based

Non-EvolvingNon-EvolvingNon-EvolvingNon-Evolving

BABAGEDGED ABABPLRGPLRG GLPGLP

EvolvingEvolving

HOTHOTSWTSWT WITWIT

EvolvingEvolving

Analytical results Simulation results
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GED – Basics GED GED –– Basics Basics 

• GED assigns random weights wi drawn from 
Pareto distribution F(x)

• It then creates each link with probability pij

━ where D is total weight: 

• Next, we formalize the relationship between 
node weights and edge-existence probability 
━ We keep our formalization general enough so that it 

can be applied in any graph G
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Link Formation – General DiscussionLink Formation Link Formation –– General DiscussionGeneral Discussion

• Define π(x, y) to be the probability of two nodes 
being connected given their weights x and y

• For GED, this π-function is simply given by

• We next see how E[r(G)] and E[γ(G)] can be 
computed using the π-function
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Assortativity Coefficient - GEDAssortativity Coefficient Assortativity Coefficient -- GEDGED

• For any graph, we can express E[r(G)]

━ where ρ is given by: 

• Theorem 1: the expected assortativity 
coefficient of GED graphs is asymptotically:

Weight PDFGraph size

E[dk] is the k-th
moment of degree

π-function
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Clustering CoefficientClustering CoefficientClustering Coefficient

• Theorem 2: With Pareto distributed weights, the 
expected GED clustering is asymptotically:

• Derivations are fairly convoluted
━ See the paper for details

• We next extend our results of GED to other 
degree-based models
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Generic Framework – EquivalenceGeneric Framework Generic Framework –– EquivalenceEquivalence

• Assume two topology algorithms A and B
━ With edge-existence probabilities πA(x, y) and πB(x, 
y), respectively 

━ With the same weight distribution F(x)

• We say A is asymptotically π-equivalent to B if 
πA(x, y) is upper/lower bounded by πB(x, y):

━ where 0 < cL < 1 and cU ≥1 are some constants
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Generic Framework – Equivalence 2Generic Framework Generic Framework –– Equivalence 2Equivalence 2

• Properties of π-equivalence 
━ Symmetric and transitive

• Theorem 3: If algorithm A is π-equivalent to B, 
then their expected correlation coefficients have 
the same asymptotic trends:

━ where cr and cγ are bounded by:
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RoadmapRoadmapRoadmap

Graph ModelsGraph Models

Degree-BasedDegree-Based Link-BasedLink-Based

Non-EvolvingNon-EvolvingNon-EvolvingNon-Evolving

BABAGEDGED ABABPLRGPLRG GLPGLP

EvolvingEvolving

HOTHOTSWTSWT WITWIT

EvolvingEvolving
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Non-Evolving Model – PLRG NonNon--Evolving Model Evolving Model –– PLRG PLRG 

• PLRG generates wi virtual copies for node i

• Then, it randomly pairs up virtual nodes to form 
actual links 

• Theorem 4: PLRG’s π-function is:

• Theorem 5: PLRG is π-equivalent to GED

• Thus, PLRG has the same asymptotic degree 
correlation as GED



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

20/30

RoadmapRoadmapRoadmap

Graph ModelsGraph Models

Degree-BasedDegree-Based Link-BasedLink-Based

Non-EvolvingNon-EvolvingNon-EvolvingNon-Evolving

BABAGEDGED ABABPLRGPLRG GLPGLP

EvolvingEvolving

HOTHOTSWTSWT WITWIT

EvolvingEvolving
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Evolving Model – GLP Evolving Model Evolving Model –– GLP GLP 

• At each time step t,
━ With probability p, GLP adds m new links among 

existing nodes
━ With probability 1−p, it adds a new node with m new 

links connecting to existing nodes

• The probability of selecting existing node i is 
proportional to its degree di−λ

• No weights used in GLP construction 
━ Thus, we cannot directly apply the GED analysis here

λ · 1 is the 
shift parameter
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Evolving Model – GLP 2Evolving Model Evolving Model –– GLP 2GLP 2

• However, we can still use the framework by setting 
weight wi = di − λ for each node i

• Theorem 6: GLP’s π-function is given by:

━ where c1 and c2 are constants

• Theorem 7: GLP is π-equivalent to PLRG
━ By transitivity, GLP is also π-equivalent to GED

Total weight

Pareto shape 
parameter
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Evolving Model – BA/ABEvolving Model Evolving Model –– BA/ABBA/AB

• BA is the same as GLP with α=2, p=1, and λ=0

• AB without edge rewiring is GLP with λ = —1

• Corollary 1: BA and AB without rewiring are π-
equivalent to GED

• Consider that BA has α=2 and its clustering is 

• This result has been derived (Barabasi 1999)
━ It is just a coproduct of our generic framework
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Degree-Based Models – Discussion DegreeDegree--Based Models Based Models –– Discussion Discussion 
• Conclusion: all studied degree-based algorithms 

become uncorrelated as n→∞ and their decay 
rates are given by:
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RoadmapRoadmapRoadmap

Graph ModelsGraph Models

Degree-BasedDegree-Based Link-BasedLink-Based

Non-EvolvingNon-EvolvingNon-EvolvingNon-Evolving

BABAGEDGED ABABPLRGPLRG GLPGLP

EvolvingEvolving

HOTHOTSWTSWT WITWIT

EvolvingEvolving
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Link-Based AlgorithmsLinkLink--Based AlgorithmsBased Algorithms

• SWT forms p percent of links using geographic 
preference and the rest using random pairing

• HOT models each attachment decision as an 
optimization problem with two objectives 
━ Last-mile cost and reachability

• WIT adjusts the number of links based on a 
stochastic wealth process 
━ Neighbor selection is based on random walks

• We study these algorithms in simulations
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ComparisonComparisonComparison

• We use the Internet AS-level graph as the 
benchmark
━ Route-Views and RIPE 

• We extract E[r(G)] and E[γ(G)] from historical 
data of the BGP graph observed during the last 7 
years
━ The graph size increases from 4,000 to 23,000 nodes

• The data shows E[r(G)] and E[γ(G)] of the 
Internet do not change much over the years

• Next, we compare the studied models
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Comparison – Degree-BasedComparison Comparison –– DegreeDegree--BasedBased

Internet
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Comparison – Link-BasedComparison Comparison –– LinkLink--BasedBased

WIT

HOT

SWT

Internet
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ConclusionConclusionConclusion

• We developed an analytical framework for 
modeling degree-based algorithms
━ We found that all studied degree-based methods 

become uncorrelated as n→∞

• Our simulations showed that some of the studied 
link-based algorithms were capable of keeping 
E[r(G)] and E[γ(G)] time-invariant

• Future work
━ Extension to other degree-based methods
━ Analysis of link-based models
━ Higher-order degree correlation


