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AgendaAgendaAgenda

• Introduction

• Underlying model of residual sampling

• Analysis of existing estimators

• Proposal of new estimators

• Performance evaluation

• Conclusion
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IntroductionIntroductionIntroduction

• Traffic monitoring is an important topic for today’s 
Internet
━ Security, accounting, traffic engineering

• It has become challenging as Internet grew in scale 
and complexity

• In this talk, we focus on two problems in the 
general area of measuring flow sizes
━ Determining the number of packets of elephant flows
━ Recovering the distribution of flow sizes
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Related WorkRelated WorkRelated Work

• Packet sampling
━ Sampled NetFlow (Cisco)
━ Adaptive NetFlow (Estan, SIGCOMM’04)
━ Sketch-guided sampling (Kumar, INFOCOM’06)
━ Adaptive non-linear sampling (Hu, INFOCOM’08)

• Flow sampling
━ Sample-and-hold (Estan, SIGCOMM’02)
━ Flow thinning (Hohn, IMC’03)
━ Smart sampling (Duffield, IMC’03/SIGMETRICS’03)
━ Flow slicing (Kompella, IMC’05)
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Analysis of Underlying ModelAnalysis of Underlying ModelAnalysis of Underlying Model

• Our talk is based on the sampling method proposed 
by sample-and-hold (Estan, SIGCOMM’02)

• We call this method by Residual-Geometric 
Sampling (RGS) due to two reasons:
━ This belongs to the class of residual-sampling techniques 

(Wang, INFOCOM’07/P2P’09)
━ It can be modeled by a geometric process

• Our analysis of RGS covers two goals:
━ Providing a unifying analytical model
━ Understanding the properties of samples it collects
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Analysis of Underlying Model 2Analysis of Underlying Model 2Analysis of Underlying Model 2

• How does RGS work?
━ For a sequence of packets traversing a router, it checks 

each packet’s flow id x
 

in some RAM table
━ If x

 
is found, its counter is incremented by 1

━ Otherwise, an entry is created for x
 

with probability p
 

and 
this packet is discarded with probability 1 −

 
p

• The state of a flow can be modeled by a simple 
geometric process

SampledNot 
Sampled

p1−p
1
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Analysis of Underlying Model 3Analysis of Underlying Model 3Analysis of Underlying Model 3

• We need several definitions:
━ Assume that flow sizes are i.i.d
━ Given a random flow with size L, define geometric age 
AL

 

the number of packets discarded from the front
━ Define geometric residual RL

 

the final counter value

• A flow of size 9 is not sampled until the 4th packet
Flow size L=9

Residual RL
 

=6Age AL
 

=3

Packets 
from a flow
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Analysis of Underlying Model 4Analysis of Underlying Model 4Analysis of Underlying Model 4

• Assume flow size L
 

has a PMF fi
 

:

• Lemma 1: Probability ps
 

of a flow being selected by 
RGS is:

• Lemma 2: PMF hi
 

of geometric residual RL
 

can be 
expressed as:
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Previous Method – Single-Flow UsagePrevious Method Previous Method –– SingleSingle--Flow UsageFlow Usage

• Prior work on RGS (Estan, SIGCOMM’02) 
suggested following estimator of single-flow size:

• Theorem 1: For given size l, the expected value of 
estimator e(Rl

 

)

 
is:

• It tends to overestimate the original flow size by a 
factor of up to 1/p
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Simulations – Estimated SizeSimulations Simulations –– Estimated SizeEstimated Size

p=0.01 p=0.001
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Previous Method – Single-Flow Usage 2Previous Method Previous Method –– SingleSingle--Flow Usage 2Flow Usage 2

• Quantifying the error of individual values e(Rl
 

)

 
in 

estimating flow size l
━ Relative Root Mean Square Error (RRMSE) 

where                            is relative error

• Theorem 2: RRMSE of the existing RGS estimator:
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Simulations – Relative RMSESimulations Simulations –– Relative RMSERelative RMSE

p=0.01 p=0.001
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Previous Method – Flow-Size DistributionPrevious Method Previous Method –– FlowFlow--Size DistributionSize Distribution

• Consider PMF qi
 

of e(RL
 

) and compare it with fi

• Theorem 3: PMF of flow sizes estimated from e(RL
 

)

 is:

━ where ps
 

is the probability of a flow is selected and

• The estimated distribution qi
 

is quite different from 
actual fi
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Simulations – Flow Size DistributionSimulations Simulations –– Flow Size DistributionFlow Size Distribution

p=0.01 p=0.001
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URGE – Single-Flow UsageURGE URGE –– SingleSingle--Flow UsageFlow Usage

• For single-flow size, we propose following 
estimator:

• Lemma 3:              is unbiased for any flow size l

• Theorem 4: RRMSE of              as:

differentsame
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URGE Simulations – Single-Flow UsageURGE Simulations URGE Simulations –– SingleSingle--Flow UsageFlow Usage

p=0.01 p=0.001
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URGE Simulations – Relative ErrorURGE Simulations URGE Simulations –– Relative ErrorRelative Error

p=0.01 p=0.001
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URGE – Flow Size Distribution URGE URGE –– Flow Size Distribution Flow Size Distribution 

• Lemma 5: The flow size distribution fi
 

can be 
expressed using PMF of geometric residual hi

 

as:

• For flow size distribution, we propose following 
estimator:

• Corollary 2: Estimator         is asymptotically 
unbiased, that is,          converges in probability to 
fi

 

as the number M of sampled flows →∞
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URGE Simulations – Flow Size Dist.URGE Simulations URGE Simulations –– Flow Size Dist.Flow Size Dist.

p=0.01 p=0.001
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URGE ConvergenceURGE ConvergenceURGE Convergence

• We next examine the effect of sample size M on 
the convergence of estimator

p=10-4, M=3,090 p=10-5, M=337
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URGE Convergence 2URGE Convergence 2URGE Convergence 2

• Theorem 5: For small constants η and ξ
 

with 
probability 1

 
−

 
ξ, following holds for j

 
∈ [1, i+1]

 

if sample size M is no less than: 

where Φ(x)

 
is the CDF of the standard Gaussian 

distribution N(0,1)
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Performance EvaluationPerformance EvaluationPerformance Evaluation

• We applied our estimation algorithm to the traces 
collected by NLANR and CAIDA
━ All of them confirm the accuracy of URGE

• As example, we show our experiment on dataset 
FRG, collected from a gigabit link between UCSD 
and Abilene
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Performance Evaluation – UsagePerformance Evaluation Performance Evaluation –– UsageUsage

Previous method URGE
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Performance Evaluation – DistributionPerformance Evaluation Performance Evaluation –– DistributionDistribution

p=0.01 p=0.001p=0.0001
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ConclusionConclusionConclusion

• We proposed a novel modeling framework for 
analyzing residual sampling 
━ Proved that previous estimators based on RGS  had 

certain bias

• We also developed a novel set of unbiased 
estimators
━ Verified them both in simulations and on Internet traces

• Results show that the proposed method provides 
an accurate and scalable solution to Internet traffic 
monitoring
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The EndThe EndThe End

• Thanks!
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