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ABSTRACT
Balancing peer-to-peer graphs, including zone-size distribu-
tions, has recently become an important topic of peer-to-
peer (P2P) research [1], [2], [6], [19], [31], [36]. To bring
analytical understanding into the various peer-join mecha-
nisms, we study how zone-balancing decisions made during
the initial sampling of the peer space affect the resulting zone
sizes and derive several asymptotic results for the maximum
and minimum zone sizes that hold with high probability.

Categories and Subject Descriptors
C.2.2 [Communication Networks]: Network Protocols

General Terms
Algorithms, Performance, Theory
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1. INTRODUCTION
The latest peer-to-peer networks organize users into mas-

sive (millions of nodes) graphs called Distributed Hash Ta-
bles (DHTs), which provide a scalable, efficient, and fault-
tolerant environment for exchanging information between
end-users. Even though static DHTs received significant at-
tention in traditional approaches [35], [37], [38], [43], [45]
and more-recent developments [8], [15], [17], [23], [25], [27],
[33], [42], one of the most important areas of peer-to-peer
research remains the study of evolving DHT graphs as users
randomly join and leave the system [2], [3], [6], [18], [19],
[24], [31], [36].

Many performance metrics in a dynamic graph are deter-
mined by the distribution of DHT zones held by each peer.
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The imbalance in zone sizes may lead to increased diame-
ter, smaller node degree, lower bisection width, and higher
local congestion during routing through the graph. In addi-
tion, uneven zone distribution results in an unfair allocation
of user objects to peers and creates “hotspots” in certain
parts of the graph. Even though hotspots can be relieved
with more sophisticated object-hashing techniques [4], [6],
[7], they have no effect on the weakened structure of the
underlying graph.

In this paper, we study several recently proposed node-
join mechanisms in peer-to-peer networks and derive the
corresponding probabilistic bounds on the maximum and
minimum zone size after all users have joined the system.
In a random graph of size n, define fmax to be the ratio
of the largest zone size to the average zone size and fmin

to be the ratio of the average zone size to the smallest zone
size. Among methods that sample a single point in the DHT
space [35], [37], [38], it is well known that fmax is Θ(log n)
with high probability [18], [33], [38]. We improve this result
by deriving the exact upper and lower bounds on fmax that
hold with probability 1 − n−ε, for arbitrary constants ε,
under both random and center splits of existing nodes.

Although the largest zone is usually studied for the pur-
poses of load-balancing user objects/keys and the bounds
are clear [18], [33], [38], the minimum zone has not received
as much attention. Naor et al. [33] state without proof that
the minimum zone is smaller than average by the same fac-
tor Θ(log n). Both Loguinov et al. [25] and Fraigniaud et
al. [15] implicitly assume in their derivations that fmin is

o(n), while [15] additionally concludes that fmin ≤ 2O(log n),
which essentially means that the upper bound is any power-
function of n. To reconcile these partial results, we show
that fmin is upper bounded by n1+ε with probability 1−n−ε

under random splits and by 3.246
√

log n with probability
1−o(1) under center splits, where log(.) represents the nat-
ural logarithm throughout the paper. We further show that
splitting existing neighbors in the center is in fact optimal
among all possible splitting methods and the use of uniform
(as opposed to non-uniform) hash indexes provides the best
possible performance in terms of both fmax and fmin.

Among multi-point sampling methods, Naor et al. [33]
select d random points in the DHT space and choose the
largest node to split (i.e., the approach used in the classical
balls-into-bins “power of two choices” [4], [20], [30], [40]).
They show using Chernoff-type bounds that for d = 8 log n,
fmax is upper-bounded by 2 with probability 1 − n−2. We
analyze the same problem using an approach from “balls-
into-bins” [29] and derive asymptotic upper/lower bounds
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on fmax for arbitrary d. Our results show that in large
graphs:

fmax ≤ 2 +
(1 + ε) log n

d
(1− o(1)) (1)

simultaneously holds for all values of n with probability at
least 1 − n−ε. Specifically, for d = c log n, fmax ≤ 2 + 1+ε

c
with high probability. Since the bound in (1) is tight, this
result extends the one shown in [33] and demonstrates that
c must tend to infinity for fmax to converge to 2. Also no-
tice that multi-point sampling does not lead to the classical
Θ( log log n

log d
) bound on fmax as might have been expected from

the analysis of various balls-into-bins problems [4], [30].
Another zone-balancing approach is first suggested in CAN

[35] and later analyzed by Adler et al. in [2]. In this method,
each new node samples a random peer x in the graph and
then queries d direct neighbors of x (the graph is assumed
to be d-regular). The paper demonstrates that as long as
the degree of each node is Ω(log n), both fmax and fmin

are some constants (the exact value of the constants is not
shown). We study a similar problem, in which nodes are
allowed to sample other parts of the graph based on some
deterministic function (which, for example, may represent
the graph’s linking rules), and derive upper bounds on fmax

under this model. Our analysis shows that when d = c log n,
the following bound holds with probability at least 1−n−ε:

fmax ≤ 2 +
1 + ε

c
+ η, (2)

where η is log(1+ 1+ε
c

+log(1+ 1+ε
c

+. . . This is in contrast to

the purely random model where fmax converges to 2 + 1+ε
c

.
Using this insight, we find that for d ≈ log n and ε ≈ 1, the
deterministic model requires 2.2 times more samples than
the purely random model to achieve the same bounds on
fmax.

Finally, Loguinov et al. [25] use a variation of Adler’s ap-
proach [2], in which the joining peer walks along the edges
of the graph starting in a random location and splitting the
largest node found within a certain number of hops from the
initial node. At each step, the walk is biased towards the
largest neighbor; however, since the location of this neighbor
varies during the evolution of the graph, closed-form analy-
sis of this approach is rather complicated. We do not offer a
model for this method at this time, but compare its perfor-
mance with that of the remaining methods in simulations.

Other P2P balancing methods include the virtual-server
approach originally used in Chord [17], [34], [38], the Messor
system [32], proximity-aware balancing [44], cluster-based
balancing [31], and several other dynamic algorithms [1],
[19], [36], which provide alternative mechanisms for balanc-
ing P2P graphs and are orthogonal to our analysis.

This paper is organized as follows. Section 2 provides the
background and motivation. Section 3 studies the random-
split model and derives bounds for both fmax and fmin.
In section 4, we re-derive the same bounds for the single-
sample, center-split model. Section 5 studies the maximum
zone of multi-point methods and Section 6 shows P2P sim-
ulations of de Bruijn DHTs. Section 7 concludes the paper.

2. MOTIVATION AND PRELIMINARIES
Generic load balancing is an relatively old and very well-

researched area [20], [30]. This problem typically assumes
the existence of n fixed bins and m ≥ n objects, which
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Figure 1: Peer linkage in Chord (left) and de Bruijn
graphs (right). The degree of the graph is 3.

are placed into the bins using uniform, or possibly non-
uniform, random selection. Assuming m = n, the largest
bin contains Θ(log n) balls, which can be further reduced to
Θ(log log n/ log d) by sampling d random bins before plac-
ing each object [4]. The main application of these results in
P2P systems has been the equal distribution of object keys
(which we simply call “objects”) between the peers [6].

While balancing the number of keys per P2P node is an
important objective, we are also concerned with the struc-
ture of the graph since failure of high-degree nodes (i.e.,
peers with large zones) compromises the strength of the un-
derlying graph, congestion in large zones leads to increased
response delay, and the presence of low-degree nodes (i.e.,
peers with small zones) increases the diameter of the system.
The first two problems are common to all graphs, while the
third one is most noticeable in de Bruijn DHTs [15], [17],
[25], [33].

For example, in a system with n = 106 peers, the maxi-
mum zone is between 12 and 28 times larger than average
with probability 1 − 1/n (we show this result later in the
paper). Given a Chord-like system with the average node
degree log2 n = 20, the in-degree of the largest peer is be-
tween 240 and 560 with high probability. Once this peer
fails, over 200 links are broken simultaneously, leading to
rather adverse effects on the graph. It is also true that the
largest peer receives routing traffic in proportion to its de-
gree, which may increase the response delay of all queries
passing through this node. Finally, if the system utilizes
a variation of de Bruijn graphs [15], [33], peers with the
smallest zone will have their out-degree equal to 1, will be
susceptible to disconnection from the graph, and will expe-
rience a larger routing diameter1. As we show later in the
paper, almost 6% of all nodes in de Bruijn graphs end up
with degree 1 under random node join.

We next briefly describe the model of the DHT space
utilized in this paper and then proceed to zone-balancing
analysis. We use the unit-ring model2 shown in Figure 1
as the DHT space and dissect how “well” the various dis-
tributed join algorithms partition its circumference between
the nodes of a P2P system. Figure 1 shows four peers hold-
ing non-overlapping parts of the ring and three edges origi-
nating from peer y. While the linking rules vary between the
different types of graphs, they all have the same characteris-
tic – the location of each neighbor is computed based on the
location of the zone being held by each peer. Assuming a
generic k-regular graph used in most DHTs, Chord links to

1This is a consequence of the routing rules in de Bruijn
graphs. For more information, see [25].
2Note that our analysis is not limited to ring topologies and
applies to other virtual coordinate spaces.
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Figure 2: Random (left) and center (right) splitting
of existing neighbors.

k = log2 n neighbors at exponentially increasing distances
(the left side of the figure), while de Bruijn graphs link to
k sequential nodes at a certain offset from the original node
(the right side of the figure).

The construction of the ring is accomplished through a
distributed join process. A new node x selects a random
location X in the DHT space based on some hashing func-
tion and then attempts to join the peer-to-peer system in
or around that random location. In the first approach (e.g.,
Chord), node x splits the existing peer at exactly X. This
is illustrated in Figure 2 (left) where node x splits peer y in
the point of x’s random hash index X. Notice that this con-
struction leads to the possibility of having very small zones
when X lands near one of the boundaries of an existing zone.
In the second approach (e.g., CAN), x splits the peer in half
as demonstrated in Figure 2 (right). To keep the notation
consistent, we call the former method a “random split” and
the latter method a “center split.”

To further improve fairness in zone sizes, several recent
DHTs [15], [33] sample d random locations in the graph and
then use a center split of the largest zone they find. Even
though these methods perform much better than any of the
single-point approaches, sampling d random points in the
graph may become costly, especially if d is on the order of
8 log n [33]. This generally leads to Θ(d log n) = Θ(log2 n)
messages per join, where the constants inside Θ(·) depend
on the diameter of the graph. In Chord with 1 million nodes
(both the diameter and degree are 20), sampling 8 log n peers
requires on average 1,105 messages and appears excessive.

To decrease the message join overhead, an alternative ap-
proach [1], [25] is to deterministically sample the neighbors
of the first peer and subsequently walk along the edges of
the graph to discover more nodes. This reduces the join
overhead by a factor of:

dDav

Dav + d/k − 1
= Θ(kDav), (3)

where k is the degree of the graph and Dav is the aver-
age distance between nodes. For example, in Chord with
1 million nodes, the deterministic method can sample the
same d = 8 log n peers using 76 times fewer messages than
the previous approach (i.e., using only 14.5 messages per
join). Note, however, that the deterministic method gener-
ally must sample more than d points in the graph to provide
the same bounds on fmax as in the purely random approach.

In the rest of the paper, we address such issues as whether
8 log n is the “correct” value of d for the graph to achieve a
desired level of balancing and how many samples in the de-
terministic method make it equivalent to the purely random
approach.

3. SINGLE-POINT RANDOM-SPLIT
Our treatment of the DHT space assumes a toroidal unit

circle, a purely random and perfectly uniform number gener-
ator, and infinite precision of each random hash index (i.e.,
the probability of collision is zero). We use n to represent
the number of peers in the system and focus on deriving the
bounds on max/min zone sizes that hold with high probabil-
ity. Due to limited space, certain proofs have been omitted
from this paper and can be found in [41].

Definition 1. An event En occurs with high probability
(w.h.p.) with respect to n if there exists a fixed constant
ε > 0 such that:

P (En) ≥ 1− n−ε, ∀n. (4)

Typically, (4) ensures stronger bounds on the likelihood
of event En compared to simply saying that En happens
“almost surely,” or with probability 1− o(1). Although it is
customary [1], [18], [33] in this class of problems to derive
bounds that hold w.h.p. and study only the asymptotic be-
havior of the system as n →∞, we pay special attention to
o(1) terms whenever possible and keep our results applicable
even to graphs of small size n.

3.1 Maximum Zone
We next formally define the performance metrics men-

tioned in the introduction.

Definition 2. Random variable fmax is the ratio of the
maximum zone size to the average zone size after n points
(peers) have joined a random instance of the system.

Definition 3. Random variable fmin is the ratio of the
average zone size to the minimum zone size after n points
have joined the system.

Both fmax and fmin are always no less than 1 and provide
the main performance metric used throughout the paper.
Now suppose that n random points X1, X2, . . . , Xn are in-
dependently and uniformly chosen on the unit circle. Define
Yi to be the i-th spacing between the points along the circle,
Mn to be the largest spacing: Mn = max(Y1, . . . , Yn), and
Sn to be the smallest spacing: Sn = min(Y1, . . . , Yn).

Theorem 1. Under random splits, each of the following
inequalities holds with probability 1− n−ε:

log n− log(ε log n) ≤ fmax ≤ (1 + ε) log n. (5)

Proof. First, recall the following result due to Darling
[10]:

lim
n→∞

P

(
Mn <

log n + c

n

)
= e−e−c

. (6)

Next, notice that there exists a critical point c at which (6)
makes a sharp transition from “almost never” to “almost
surely.” This percolation effect is common to our problem
regardless of how the user joins the graph and is often found
in other areas of networking [16]. Recalling that ex for small
x is approximately 1 + x and substituting c = − log(ε log n)
and c = ε log n into (6), we get both bounds in (5).

Hence, one can conclude that there almost always exists
a zone larger than average by a factor of log n − log log n,
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n Range 1− n−ε pl pu

3,000 [7.1,10.4] 91% 91.6% 91.3%

30,000 [9.1, 13.4] 95.5% 95.8% 95.7%

300,000 [11.3, 16.4] 97.7% 97.1% 97.1%

Table 1: Compliance of fmax with its bounds in ran-
dom splits. Column “range” specifies the lower and
upper bounds on fmax that hold w.h.p.

n Range 1− n−ε pl pu

300 [131, 2937] 89.8% 89.8% 89.0%

3,000 [936, 73785] 96.0% 95.8% 96.3%

10,000 [2714, 398107] 97.5% 98.1% 98.0%

Table 2: Compliance of fmin with its bounds in ran-
dom splits.

but almost never larger by a factor of (1 + ε) log n. For
example, in a graph with n = 106 peers, fmax is between 12
and 28 with probability 1 − 1/n. To understand how well
these bounds hold for small n ¿ ∞, we generated 1,000
random graphs of three different sizes – 3,000, 30,000, and
300,000 nodes. Table 1 shows in columns pl and pu the
fraction of graphs in which the actual fmax complies with
(respectively) the lower and upper bounds of (5) for ε = 0.3
(ideally, both pl and pu should equal 1−n−ε). As the table
shows, fmax found in these graphs violates the bounds in
(5) with probability very close to the predicted n−ε.

3.2 Minimum Zone
We next examine the behavior of fmin in the following

theorem and show that these bounds are exponentially worse
than those in (5).

Theorem 2. Under random splits, each of the following
inequalities holds with probability 1− n−ε:

n

ε log n
≤ fmin ≤ n1+ε. (7)

Proof. Recall that all Yi’s are uniformly distributed on
the simplex {(x1, . . . , xn):

∑n
i=1 xi = 1} and that [12], [13]:

P

(
n⋂

i=1

[Yi > a]

)
=

{
(1− na)n−1 na < 1
0 na ≥ 1

. (8)

Note that the left side of (8) is the probability that the
minimum zone size Sn is at least a. Re-write (8) in terms
of Sn and assume sufficiently large n:

P (Sn > n−δ) =

(
1− n2−δ

n

)n−1

≈ e−n2−δ

. (9)

Substituting δ = 2 + ε into (9), we get the upper bound
of (7). Similarly, using δ = 2− log(ε log n)/ log n, we get the
lower bound of (7).

To illustrate the extent of fluctuation in fmin, we again
generated 1,000 random graphs and examined the number of
graphs violating (7) for ε = 0.4. Table 2 shows that (7) holds
with high accuracy for a variety of graph sizes and that the
range to which fmin can be confined w.h.p. is substantially
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Figure 3: Construction of split-trees using random
balls (left). Representation of the same tree on the
circle (right).

larger than traditionally expected [33]. Thus, a 10,000-node
graph almost always has a peer whose zone size is smaller
than average by a factor of 2,700. Furthermore, unfairness
by a factor of over 400,000 occurs in n−ε = 2.5% of all
random graphs.

We next show how these bounds can be improved simply
by using a different peer-splitting algorithm and derive more
pleasant results for fmin.

4. SINGLE-POINT CENTER-SPLIT

4.1 Maximum Zone
Notice that when existing users are split in half by in-

coming nodes, the DHT space is organized into a dynamic
binary trie. The join process of each peer x can be mod-
eled as a ball that drops into the root of the virtual trie and
then descends down the tree randomly choosing whether it
goes left or right. The leaf at which the ball ends up is the
node that x will split. The movement of the ball represents
the digits in the binary expansion of x’s hash index X (re-
call that these digits are independent and uniform across all
peers according to our assumptions). This model is shown in
Figure 3 where a new incoming node with X = 0101... splits
node y, which is the leaf that shares the longest common
prefix with x among the existing nodes. Note that a simi-
lar tree-based model was independently proposed by Adler
et al. in [2]; however, their analysis is completely different
from ours.

Further notice that the zone size of each peer x is a sim-
ple exponential function of its depth hx in the binary trie,
i.e., 2−hx . Thus, the problem of finding fmax and fmin in
“center-split” peer-to-peer DHTs boils down to estimating
the probabilistic bounds on the smallest and largest depth
of any leaf in the trie. Let hi be the depth of peer i in a
particular (random) instance of the graph, D = minn

i=1{hi}
be the smallest depth, and H = maxn

i=1{hi} be the largest
depth of any leaf. Assuming that we can bound both ran-
dom variables D and H with high probability, what can be
said about the resulting bounds on fmax and fmin? We state
the obvious answer to this question in the following lemma
without proof.

Lemma 1. Assume a “center-split” DHT in which Dl ≤
D ≤ Du and Hl ≤ H ≤ Hu hold with high probability. Then,
fmax and fmin are bounded by the following inequalities also
with high probability:

n2−Du ≤ fmax ≤ n2−Dl (10)

n−12Hl ≤ fmin ≤ n−12Hu , (11)
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In what follows, we examine the distribution of D and
derive its probabilistic bounds Dl and Du. The discussion
of H is given in the next section.

To begin, we define a sequence of indicator random vari-
ables {Ai}, i ≥ 0, where Ai = 1 signifies that level i of the
split-trie is full. We say that a level is full if all nodes of that
level are present and non-leaf. Recall that level i can be full
only if i < D and that Ai = 1 implies that Ak = 1, ∀k < i.
It immediately follows that the smallest leaf depth D is at
least k + 1 if and only if all levels from 0 to k are full:

P (D ≥ k + 1) = P

(
k⋂

i=0

[Ai = 1]

)
. (12)

Using this insight, our next result formulates the distri-
bution of D as a simple recurrence equation.

Lemma 2. In a center-split trie with n leaves, the tail
distribution of D for n ≥ 1 and k ≥ 0 is given by:

P (D ≥ k + 1) = P (D ≥ k)Pn(Ak|Ak−1), (13)

where P (D ≥ 0) = 1 and Pn(Ak|Ak−1) is the conditional
probability of level k being full given that all previous levels
0, . . . , k − 1 are full:

Pn(Ak|Ak−1) = P (Ak = 1|D ≥ k) . (14)

Notice that recurrence (13) does not limit the number
of samples d used in the join process and applies to both
single-point and multi-point methods. The only difference
between these two approaches is the shape of Pn(Ak|Ak−1).
We show the analysis of single-point split in this section and
leave the discussion of multi-point methods for Section 5.

Lemma 3. For single-point center-split of the unit-ring,
the probability that level k is full given that all previous levels
are full is:

Pn(Ak|Ak−1) ≈ exp
{
−2ke−n2−k+1

}
. (15)

Proof. First notice that any split-trie built using n peers
contains n leaves and n − 1 non-leaf nodes. Next, examine
level k of the trie and observe that all 2k possible nodes
at this level must be non-leaf for level k to be fully split.
Assuming that all previous levels are full (i.e., Ak−1 = 1),
exactly 2k − 1 non-leaf nodes contributed to filling up levels
0, . . . , k − 1 and the remaining n − 1 − (2k − 1) = n − 2k

non-leaf nodes had a chance to split level k. After the first
k−1 levels have filled up, each node at level k is “hit” by an
incoming ball (which splits the node in half) with an equal
probability 2−k. Thus, our problem reduces to finding the
probability that u = n− 2k uniformly and randomly placed
balls into m = 2k bins manage to occupy each and every
bin with at least one ball. There are many ways to solve
this problem, one of which involves the application of well-
known results from the coupon collector’s problem [11]. We
use this approach below.

Define Z(u) to be the random number of non-empty bins
after u balls are thrown into m bins. Thus, we can write
Pn(Ak|Ak−1) = P (Z(u) = m). Recall that in the coupon
collector’s problem, u coupons are drawn uniformly ran-
domly (i.e., each with an equal probability 1/m) from a total
of m different coupons. Then, the probability Z(u) = m to

n Smallest depth D

3,000
Simulation 8: 0.7%, 9: 98.7%, 10: 0.6%

Model 8: 0.6%, 9: 97.6%, 10: 1.8%

30,000
Simulation 11: 0.3%, 12: 99.7%, 13: 0.0%

Model 11: 0.2%, 12: 99.7%, 13: 0.1%

300,000
Simulation 14: 0.1%, 15: 99.9%

Model 14: 0.1%, 15: 99.9%

Table 3: The smallest depth D of split-trees in sim-
ulation.

obtain m distinct coupons at the end of the experiment is
given by [11]:

P (Z(u) = m) =

m∑
j=0

(−1)j

(
m

j

) (
1− j

m

)u

. (16)

For large u, the term (1− j/m)u can be approximated by

e−uj/m, yielding:

P (Z(u) = m) ≈
m∑

j=0

(−1)j

(
m

j

)
e−uj/m

=
(
1− e−u/m

)m

. (17)

Since we are only interested in asymptotically large m =
Θ(log n), (17) allows a further approximation:

P (Z(u) = m) ≈ e−me−u/m

, (18)

which immediately leads to the result in (15).

The accuracy of (15) is demonstrated in Table 3, which
shows the distribution of D in simulations for different n. As
the table shows, the combined result of (13)-(15) matches
simulations very well, especially as n increases.

With the result in Lemma 3, we are now in the place to
derive the probabilistic bounds on D.

Theorem 3. Assuming ε ≤ 1, the mass of D concen-
trates on two values Dl and Dl + 1 = Du with probability at
least 1− n−ε, where:

Dl = blog2 n− log2((1 + ε) log n− ρ)c+ 1, (19)

and ρ is Θ(log log n) as shown in the following proof.

Proof. First, we examine the lower bound on D and
derive Dl such that P (D ≥ Dl) = 1 − n−ε. We do not
restrict the value of ε throughout the proof and later show
that ε ≤ 1 conveniently allows D to be constrained to only
two values Dl and Dl + 1.

For ease of presentation, set k = Dl − 1. Then, P (D ≥
Dl) = P (D ≥ k + 1) and from (13)-(15) we have:

P (D ≥ k + 1) ≈ P (D ≥ k) exp
{
−2ke−n2−k+1

}

≈ exp
{
−2ke−n2−k+1

}
, (20)

where the last approximation holds since P (D ≥ k) is no
smaller than P (D ≥ k + 1) ≥ 1−n−ε. Now, select a partic-
ular value of k equal to:

k = log2 n− log2((1 + ε) log n− ρ), (21)
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Figure 4: Unit-ring simulations of the smallest
depth D (left) and largest depth H (right). Both
use center splits and 1,000 graphs per value of n.

where ρ is some function of n that we will determine below.
Expanding ez ≈ 1− z for small z, we get from (20)-(21):

P (D ≥ k + 1) ≈ 1− n−εeρ

(1 + ε) log n− ρ
= 1− n−ε, (22)

which holds as long as ρ satisfies eρ = (1 + ε) log n − ρ.
Solving for ρ, we get:

ρ = (1 + ε) log n−W
(
en1+ε) = Θ(log log n), (23)

where W (z) is Lambert’s function (i.e., a multi-valued so-

lution to eW (z)W (z) = z) [9]. Adding 1 to k in (21) and
taking the floor function, we get Dl in (19).

Next consider the upper bound on D, for which we must
find Du such that P (D ≤ Du) = 1 − n−ε. Notice that this
is equivalent to finding Du such that P (D ≥ Du +1) = n−ε.
To accomplish this task, set:

k = log2 n− log2(log n− ρ). (24)

Then, we can write:

P (D ≥ k + 1) ≈ exp

{ −eρ+1

log n− ρ

}
= n−ε, (25)

which holds if ρ satisfies eρ+1/(log n− ρ) = ε log n. Solving
this equation for ρ, we have

ρ = log n−W

(
en

ε log n

)
= Θ(log log n). (26)

Since Du is an integer, we must apply the ceiling function
to k in (24):

Du = dke = dlog2 n− log2(log n− ρ)e, (27)

which leads to P (D ≤ Du) = 1 − P (D ≥ Du + 1) ≥ 1 −
P (D ≥ k + 1) = 1− n−ε.

Our final step is to show that Du − Dl = 1 for ε ≤ 1.
Neglecting asymptotically small ρ, we have:

Du −Dl =

⌈
log2

(1 + ε) log n

log n

⌉
= dlog2(1 + ε)e, (28)

which equals 1 as long as 1 < 1 + ε ≤ 2.

To verify the correctness of the random-tree model, we
generated 1,000 random graphs using center splits of the unit
circle and examined the smallest depth D in each execution.
We used ε = log 1, 000/ log n in (19) to guarantee 99.9%
confidence in the bounds (this also ensured that ε was no
more than 1). Figure 4 (left) shows that the actual results

n Hl Hu Actual height H

3,000 14 16 14: 5.5%, 15: 86.1%, 16: 8.4%

30,000 18 20 18: 3.8%, 19: 89.7%, 20: 6.5%

300,000 22 24 22: 17.5%, 23: 81.0%, 24: 1.5%

Table 4: Height H of split-trees in simulation. The
percentage in the last column indicates the fraction
of graphs with a given height H.

(whose spread is shown with vertical bars) follow the model
very well. Notice that as n → ∞, the mass of D indeed
concentrates on two values Dl and Dl + 1.

As far as fmax is concerned, it is easy to notice that de-
pending on the value of n, which affects the floor function in
(19), the upper bound on fmax fluctuates anywhere between
1+ε
2

log n−Θ(log log n) and (1 + ε) log n−Θ(log log n).

4.2 Minimum Zone
Next, we focus on estimating the largest depth H (i.e., the

height) of the tree in Figure 3 (left). Even though this prob-
lem appears similar to the one just studied, the results are
substantially different as can be seen in the next theorem.

Theorem 4. With probability 1− o(1), the mass of H in
center-split DHTs concentrates on three values Hl, Hl + 1,
and Hl + 2 = Hu, where:

Hl =
⌊
log2 n +

√
2 log2 n− 1.5

⌋
. (29)

Proof. The random binary tree constructed by dropping
balls and splitting leaves in Figure 3 (left) is a well-known
structure called the Patricia trie [21], [39]. This tree is a
collapsed version of the regular binary trie in which all in-
termediate nodes with a single child are removed. Recalling
that with probability 1 − o(1), the height of a random Pa-
tricia trie is concentrated on three values Hl, Hl + 1, and
Hl + 2 [21], where Hl is given by (29), we immediately get
the statement of the theorem.

Note that the “o(1)” term in the statement of Theorem
4 depends on the decimal expansion of n and simply equals
zero in many practical graphs of non-trivial size [21]. Figure
4 (right) shows simulation results (99.9% confidence) from
the unit-ring topology for the largest leaf depth H and the
corresponding bounds from (29). Together with Table 4,
these simulations demonstrate that the mass of H in fact
centers on three values as n →∞.

The result of Theorem 4 is quite interesting since it shows
that by constructing a simple split-tree, the bound on fmin

can be significantly improved from Θ(n1+ε) shown in the

previous section to Θ(2
√

2 log2 n) = Θ(3.246
√

log n). Nev-
ertheless, this bound is still noticeably worse than fmax’s
Θ(log n). Neglecting the ceiling and floor functions in (19)
and (29), consider n = 106 and ε = 1. In this case, fmin

is upper limited by 67, while fmax is just below 28. For
n = 109, fmin is limited by 274 and fmax by 41. Another
example of this difference can be observed from the simula-
tions in Tables 3 and 4. Using the last row in both tables
(n = 300, 000), notice that fmax ≤ 18.3, while fmin ≤ 55.9
with probability 1− o(1).
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Figure 5: The average fmax and fmin in off-center
split schemes with probability p. Both simulations
use 30,000 nodes and 1,000 iterations.

4.3 Optimality
We conclude this section by observing that splitting an ex-

isting neighbor in half is in fact optimal among all methods
that sample a single peer in the circle.

Theorem 5. The best (i.e., lowest) bounds on fmax and
fmin are achieved by using a uniform hashing function and
splitting existing neighbors in the center.

The result of this theorem is illustrated in Figure 5, which
shows the average values of fmax and fmin in 1,000 random
graphs for n = 30, 000 and off-center splitting of existing
peers (p and 1 − p are the two fractions into which each
peer is split). The same splitting method can be interpreted
as peers applying a non-uniform hashing function in which
1’s appear with probability p and 0’s with probability 1− p.
The figure clearly shows that p = 0.5 is optimal in both cases
and confirms our prior observation that fmin is substantially
harder to bound than fmax.

5. MAXIMUM ZONE MULTI-POINT SPLIT

5.1 Random Model
We start this section by examining the behavior of the

maximum zone when each incoming peer is allowed to sam-
ple d random locations in the ring (as before, the implicit
assumption here is that the peer will split the largest discov-
ered node). We again model this problem with split-trees,
examine the evolution of the system as we add a new peer
into the network during each time step, and derive the con-
ditional probability Pn(Ak|Ak−1) that level k is fully split
given that all previous levels are.

We only model the center-split approach since all pro-
posed multi-point methods split found nodes in the middle.
Further note that in multi-point sampling, Du is equal to ei-
ther Dl (large d) or Dl + 1 (small d). Therefore, in the rest
of the paper, we limit our analysis to Dl since its value can
be trivially used to obtain Du and also deduce tight upper
bounds on fmax.

In what follows, we convert the non-linear stochastic pro-
cess of the model into differential equations borrowing our
inspiration from continuum (mean-field) theory [14] that is
often used in modeling scale-free dynamics of the Internet
topology (e.g., [5]). Note that an identical approach has
been independently proposed by Mitzenmacher in [28], [29]
based on Kurtz’s theorem and general theory of density-
dependent Markov processes [22].
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Figure 6: Comparison of the expected number of
non-empty bins to the solution of (31) in 1,000 iter-
ations (left). Comparison of the actual probability
P (Z(n) = m) to the solution of (30) (right).

We use the same technique as in the previous section and
model u = n − 2k non-leaf nodes as balls dropping into
m = 2k bins. Before each ball is placed into a bin, we
sample d random bins and place the ball into the least oc-
cupied bin. The goal of our analysis is to determine the
probability that all m bins are occupied at the end of this
process. We assume that the system starts at time t0 = 2k,
stops at time n, and adds one new node to the DHT at each
integer time unit t ≥ t0. Next, suppose that Z(t) is the
number of non-empty bins at time t in a given (random)
instance of the graph process and E[Z(t)] is the expecta-
tion of Z(t) over all random graphs. Under this notation,
Pn(Ak|Ak−1) = P (Z(n) = m) and Z(t) = 0,∀t ≤ t0. The
following lemma shows how E[Z(t)] can be approximated
with a solution µ(t) to a simple differential equation and
used to derive Pn(Ak|Ak−1).

Lemma 4. For d-point sampling and center-splits of the
unit-ring, Pn(Ak|Ak−1) is given by:

Pn(Ak|Ak−1) =

(
µ(n)

2k

)2k

, (30)

where µ(t) is the solution to the following differential equa-
tion:

dµ(t)

dt
= 1−

(
µ(t)

2k

)d

, t ≥ 2k (31)

with initial condition µ(t) = 0, ∀t ≤ 2k.

We conducted numerous balls-into-bins simulations to ver-
ify the accuracy of (31). For all values of d and even values of
n as small as 500, µ(n) matched E[Z(n)] remarkably well.
Figure 6 (left) shows the quality of the fit between µ(n)
and E[Z(n)] for m = 10, 000 and two cases of n: 10,000
and 20,000 balls (simulation results are plotted as isolated
points and the models are drawn as continuous lines). Fig-
ure 6 (right) shows probability P (Z(n) = m) in another
simulation for m = 10, 000 and n = 30, 000 balls. As seen
in both figures, both models (30) and (31) follow the actual
result seamlessly.

Our next simulation compares the bounds on the small-
est depth D obtained from (30) to those observed in sim-
ulations of the unit-ring for n = 30, 000. We use a bi-
nary search to find two values of k in (30) that guarantee
Pn(Ak|Ak−1) = 1 − n−ε = 0.999 (lower bound on D) and
Pn(Ak|Ak−1) = n−ε = 0.001 (upper bound on D). Note
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Figure 7: Continuous upper/lower bounds on D
from (30) and the actual smallest depth in simula-
tions (left). The discrete upper bound on fmax and
that in simulations (right).

that we call these bounds “continuous” since they generally
produce non-integer k. Figure 7 (left) shows the spread of
D observed in 1,000 simulations (99.9% confidence) and the
corresponding continuous upper and lower bounds. After
converting non-integer k of the previous example to “dis-
crete” lower bound Dl = bk +1c, we plot in Figure 7 (right)
the upper bound on fmax in comparison to that in sim-
ulations. As seen in both figures, the result of Lemma 4
provides a very accurate estimate of both D and fmax.

Since (30) does not generally allow a closed-form solu-
tion for large d, one must resort to binary search or similar
methods to obtain the probability that fmax exceeds a cer-
tain threshold. This approach is time consuming and says
nothing about how fmax behaves as a function of d. Thus,
to overcome these limitations, we next derive an asymptotic
expansion of (30) for arbitrary d and demonstrate its accu-
racy in simulations.

5.2 Asymptotic Expansion of (30)
In this section, we study the behavior of the solution to

(31) and obtain a closed-form expression for the bounds on
D that are satisfied with high probability.

Theorem 6. Under d-point sampling and center-splits,
the minimum tree depth D is bounded from below by Dl with
probability at least 1− n−ε, where:

Dl = blog2 n + log2 d− log2((1 + ε) log n− β)c+ 1, (32)

and

β = log (2d + (1 + ε) log n)− log ξ − 2d, (33)

for some small constant 0.2 < ξ < 0.5.

We verify the result of this theorem by again solving (30)
for Dl using a binary search to achieve 99.9% confidence. We
test these numerical bounds against the model (32) using
two examples with 3,000 and 1 million nodes n. In the
former case, ε = 0.86 and in the latter case, ε = 0.5. We
use these values of ε in (32) and directly obtain Dl, which
leads to the corresponding upper bound on fmax. Figure
8 shows the result of this process and confirms that (32) is
very accurate. As both figures show, the value of fmax first
drops almost linearly, but then the slope flattens out and
fmax converges to 2.1 and 2.2, respectively, at d = 100.

We can now re-write the main result (32) in terms of fmax.

Corollary 1. For all sufficiently large n, fmax is bounded
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Figure 8: Comparison of the continuous bounds on
fmax from a numerical solution to (30) (99.9% confi-
dence) to those from the closed-form model (32) for
3,000 nodes (left) and 1 million nodes (right).

by the following with probability at least 1− n−ε:

fmax ≤ 2 +
(1 + ε) log n

d
− Θ(log(d + log n))

d
. (34)

This bound cannot be lowered and is best possible.

Note that (34) is an upper bound that holds for all large
n. It is possible to carefully select n such that the term
inside the floor function in (32) is an integer, in which case
fmax can be bounded by half of what is shown in (34). For

other choices of n, fmax will fluctuate between 1+ (1+ε) log n
2d

and 2 + (1+ε) log n
d

. Since we are concerned with an upper
bound that simultaneously holds for all n, (34) represents
the best possible result on fmax.

Further analysis of (34) for d = c log n yields:

fmax ≤ 2 +
1 + ε

c
− o(1). (35)

Assuming sufficiently large graphs and neglecting the o(1)
term, d = log n samples can bound fmax by 3 + ε and d =
8 log n samples by 2.125 + ε/8 with high probability.

5.3 Deterministic Model
In this section, we use a different model of sampling d

points along the circle, which relies on one random and
d − 1 deterministic choices. This method arises when the
new node samples direct neighbors of a randomly chosen
peer, where the neighbors are pre-determined by some fixed
rules (a similar model is studied in [2] as discussed in the in-
troduction). To model this situation, we organize the nodes
at level k of the split-trie into non-overlapping groups of size
d. If the first random point (ball) lands into group j, the
peer is allowed to sample the remaining d− 1 points of the
group. Hence, grouping is symmetric and deterministically
leads to the same result regardless of where within the group
any given point (ball) lands.

One example of this framework is shown in Figure 9 for
d = 4. In the figure, zone A always samples three other
(known) locations of the circle. This can be implemented
by adding 1/4, 1/2, and 3/4 of the circle’s circumference to
the location of the first point and then sampling the peers
holding these additional points. If these locations happen to
be A’s neighbors, then sampling comes with no additional
message overhead. This model is simple to generalize to any
value of d as long as the individual zones do not overlap.

Finally, note that this deterministic model does not di-
rectly correspond to the linking rules of any particular P2P

8



 

��

��

��

��

      

 

group ���� 

0 1 

  

Figure 9: The model of deterministic peer sampling
(left). Its representation in terms of groups (right).

network since it isolates the nodes in each group from the
rest of the graph. Nevertheless, the above model leads to
very interesting results and provides a baseline comparison
with the purely random approach.

Lemma 5. Assuming deterministic sampling of d bins in
each group and non-overlapping groups, Pn(Ak|Ak−1) is given
by:

Pn(Ak|Ak−1) =

(
Bd/2k (d, n− 2k − d + 1)

B(d, n− 2k − d + 1)

)2k/d

, (36)

where B(a, b) is the beta function and Bx(a, b) is the incom-
plete beta function [26]:

Bx(a, b) =

x∫

0

ta−1(1− t)b−1dt. (37)

Proof. We apply the same approach as in previous sec-
tions and study the probability that u = n− 2k balls placed
into m = 2k bins are able to “split” each of the m bins.
First notice that every bin within a given group j is split
as long as at least d balls land into group j. Therefore, we
need to compute the probability that each group receives at
least d random balls out of u. The number of balls Nj that
are thrown into group j is given by a binomial distribution
B(u, d/m), where u is the number of balls and d/m is the
probability that a new ball is randomly placed into group j.
Ignoring the mild dependency between {Nj} (which asymp-
totically makes no difference), the probability that all groups
receive at least d points is:

P




m/d⋂
j=1

[Nj ≥ d]


 ≈ P (B(u, d/m) > d)m/d. (38)

Next, recall that the upper tails of a binomial random
variable can be estimated using the regularized beta function
[26]:

P (B(u, d/m) ≥ d) =
Bd/m(d, u− d + 1)

B(d, u− d + 1)
, (39)

where B(a, b) is the beta function and Bx(a, b) is the incom-
plete beta function in (37). From (38) and (39), the result
(36) follows immediately.

As expected, for d = 1, (36) simplifies to become (15);
however, for larger values of d, we need to use numerical
methods to compute (36). An alternative method is to de-
rive an estimate for the upper tails of the binomial distribu-
tion and simplify (36) to a more workable form. We carry
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Figure 10: Continuous upper/lower bounds from
model (36) and the actual D (99.9% confidence) in
simulations of the unit circle for 30,000 nodes (left).
The discrete upper bound on fmax computed from
(36) and that in simulations (right).

out this task in the next section and in the meantime, check
the accuracy of the beta-function model in simulations.

In all balls-into-bins experiments, (36) was perfectly ac-
curate. We skip these results for brevity and instead focus
on the accuracy of the model in bounding the value of the
smallest depth D. Using binary-search and n = 30, 000, we
solved (36) to obtain continuous upper/lower bounds Du

and Dl. In Figure 10 (left), we compare these bounds to
the actual value of D (99.9% confidence) observed in simu-
lations of the unit circle. During simulations, each joining
peer deterministically sampled d− 1 additional locations in
the ring by adding i/d, i = 1, . . . , d− 1, to its original hash
index X. As seen in the figure, the beta-function model
accurately tracks the evolution of D.

In Figure 10 (right), we show the discrete version of fmax

(i.e., after applying the corresponding floor function) from
model (36) and compare it to that obtained in simulations.
As the figure shows, the fixed-bin structure of the model is
too “conservative” for the unit-ring (mostly in cases when
the number of groups 2k/d is not an integer) and overesti-
mates the real fmax in points when D makes a jump. This
issue notwithstanding, we find that (36) provides a good ap-
proximation to our class of deterministic sampling methods.

5.4 Asymptotic Expansion of (36)
We next study how (36) behaves for different values of d.

Lemma 6. The result in (36) can be converted to a more
“digestible” form as following:

Pn(Ak|Ak−1) ≈ exp

{
−n−εe−β+d

(d− 1)!
(40)

× ((1 + ε) log n + β − d)d

((1 + ε) log n + β − d)2 − d2

}
,

where

β = dn2−k − (1 + ε) log n. (41)

The approximation in (40) was almost identical to the
original beta function in (36) in all comparisons that we
performed. A typical fit between the two models for one
case of n = 30, 000 is shown in Figure 11 (left). However,
since (40) by itself is not very useful and requires a binary
search just like (36), our next step is to derive the exact
bound on the smallest depth D that holds with probability
1− n−ε.

9
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ification of the closed-form model (42) against the
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Theorem 7. In deterministic sampling, the minimum split-
tree depth D is bounded from below by Dl = b− log2 Mnc+1
with probability at least 1−n−ε, where Mn is the largest zone
size:

Mn =





W (en1+ε)

n
d = 1

(1 + ε) log n + 2

2n
d = 2

(d− 2)Q(n, d, ε) + d

dn
d ≥ 3

, (42)

where W (z) is Lambert’s function as before, Q(n, d, ε) is
given by:

Q(n, d, ε) = −W−1


−

(
(d− 1)!n−(1+ε)

)1/(d−2)

d− 2


 , (43)

and W−1(z), for negative z, is the secondary branch of multi-
valued Lambert’s function W [9].

The result in (42) is a major improvement over (36) since
it requires no binary search to compute the upper bounds
on fmax. For any given d, n, and ε, (42) directly produces
the result, where W−1(z) can be easily computed in many
software packages (such as Matlab or Mathematica). We
verified the bounds on fmax derived from (42) in numerous
tests. One example for 1−n−ε = 0.999 and 1 million nodes
is shown in Figure 11 (right).

While the result of the last theorem allows an easy com-
putation of the bounds on fmax, it is still not clear how this
metric in the deterministic method compares to that in the
random approach. To address this question, we present a
much simpler shape of (43) assuming d = c log n.

Theorem 8. For d = c log n, (42) − (43) simplify to the
following:

fmax ≤ 2 +
1 + ε

c
+ η − Θ(log log n)

c log n
, (44)

where η is:

η = log
(
1 + 1+ε

c
+ log

(
1 + 1+ε

c
+ . . . (45)

The result in (44) is very interesting as it shows that for
example, for d = log n and ε = 0, η is log(2 + log(2 +
. . . ≈ 1.1462 and fmax converges to 3 + η ≈ 4.1462 for
sufficiently large n. This is in contrast to random sampling,

n 106 109 1012 1032 1072 10305

Model (36) 3.72 3.93 4.05 – – –

Model (42) 3.71 3.91 4.02 4.27 4.37 4.43

Table 5: Values of fmax computed by models (36)
and (42) for very large n.
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Figure 12: Comparison of fmax in random and de-
terministic sampling for n = 106 (left) and n = 107

(right).

where fmax converges to 3. We next verify the asymptotics
of (44) for growing n and ε = 0.22. For this ε, the value
of η is 1.2418 and the asymptotic bound in (44) is 4.4618.
Table 5 shows the convergence process for fmax computed
using both the beta function in (36) and Lambert’s function
in (43). Matlab’s ability to compute the incomplete beta
function (36) stops at approximately n = 1012, while (43)
provides results up to n = 10305. The table shows that
the o(1) term in (44) slowly decays to zero and that fmax

converges to a value very close to the one predicted by the
model.

5.5 Discussion
The deterministic model clearly provides worse perfor-

mance than the random model studied earlier; however, the
difference in terms of fmax between the models is not as sig-
nificant as one might have expected. This is shown in Figure
12 for two values of n, where the deterministic model obtains
fmax larger than that in the random model by a small ad-
ditive constant.

Several remaining issues are whether random or determin-
istic sampling can achieve optimal (i.e., best possible) load
balancing of P2P zones using logarithmic d and how many
samples make the deterministic model equal to the random
one. We first define “optimality” and then discuss which
models can actually achieve it.

Theorem 9. For any N > 0, there always exists such
n > N that under arbitrary splitting mechanisms and for
any number of samples d, the actual fmax in every random
graph of size n is at least 2.

With the aid of this theorem, it becomes apparent that the
random sampling mechanism in (35) achieves optimal load
balancing with d = c log n only when c →∞. All such func-
tions (e.g., log log n · log n and log2 n) are super-logarithmic
and thus provide a negative answer to our question above.
In deterministic sampling, fmax in (44) also converges to 2
if and only if c →∞ (which makes η → 0 as can be observed
in (45)).
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The same degree distribution in the various multi-
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We next study the issue of making the random and deter-
ministic models exhibit similar performance.

Corollary 2. Assuming that the random method sam-
ples c1 log n nodes and the deterministic method samples
c2 log n nodes, the corresponding upper bounds on fmax are
equal if:

c2 =
(1 + ε)c1

1 + ε− c1 log(1 + 1+ε
c1

)
. (46)

Assuming that d ≈ log n and ε ≈ 1, the two methods
are equivalent in terms of fmax if the deterministic model
uses approximately 2.2 times more samples than the random
model. Notice, however, that as c1 → ∞, the deterministic
factor c2 in (46) asymptotically grows as 2c2

1/(1 + ε), which
increases quite aggressively and quickly voids any benefits
(such as the reduced message overhead) obtained by the de-
terministic method. Therefore, one must conclude that if an
application desires bounds on fmax very close to 2 (i.e., large
c1), it will typically find the random model more appeal-
ing. In other cases when the application needs a “quick and
dirty” bound (i.e., small c1), the deterministic method pro-
vides a viable alternative. For example, to achieve fmax ≤ 3
with probability 1 − 1/n (i.e., c1 = 2), the deterministic
model requires only 3.3 times more samples than the ran-
dom model.

We apply this analysis in the next section to study the
performance of multi-point methods in actual peer-to-peer
systems.

6. P2P SIMULATIONS
In this section, we briefly analyze the performance of multi-

point sampling methods in actual DHTs. We selected de
Bruijn graphs for the underlying model since multi-point
methods have been proposed mostly in this context and also
because the linking rules of this graph provide an interesting
platform for observing the effect of large/small zone sizes on
node degree.

We implemented a variation of k-regular de Bruijn DHTs
borrowing design ideas from [15], [17], [25], [33]. In all sim-
ulations, we use n = 30, 000, k = 8 (diameter of the graph
is 5), and examine the following sampling methods: 1) ran-
dom sampling of d = log n points in the DHT [15], [33]; 2)
deterministic sampling of approximately 2.2d points using
a random walk along the out-going edges of the graph [1];

Model 1 ≤ k ≤ 3 k = 8 k > 16

Random Sampling 0.23% 40.9% 0.13%

Random Walk 0.41% 40.0% 0.22%

Biased Walk 0.001% 40.6% 0.001%

Table 6: Fraction of nodes in the final graph with a
certain degree k.

and 3) deterministic sampling of the same 2.2d points using
a biased walk [25].

Our main performance metric is the degree distribution of
the nodes in the graph after all peers have joined the system.
We average our results over 100 simulations and show the
resulting distribution of degree below. A baseline example
is shown in Figure 13 (left) for the single-point, center-split
method. Although the maximum degree 81 is quite rare,
there are 5.7% of nodes with degree 1, 13% with degree 2 or
less, and 22% with degree 3 or less.

In Figure 13 (right), we show the CDF of the degree distri-
bution for the three multi-point methods. We sample d = 11
random points in the first method and 24 points in the two
deterministic methods. The random walk method examines
8 neighbors of the original peer and then randomly walks for
two hops recording zone sizes of the neighbors of each visited
node (i.e., an extension of [2]). The biased method does the
same, except it always chooses the largest neighbor to walk
towards to [25]. After the walk is finished, the largest dis-
covered node is split by the joining peer. As shown in Figure
13 (right), sampling 2.2d nodes in the deterministic method
approximates the purely random model rather well. Addi-
tional results in Table 6 confirm this observation and also
show that the biased walk performs better than the other
two methods at removing the extreme values (i.e., below 4
and above 16) of degree k from the graph.

We finally analyze the message overhead involved in the
three methods. The diameter of the graph is 5 hops (which
also happens to be the average distance in de Bruijn graphs
[25]) and the join overhead of the purely random method is
approximately 55 messages. The same metric in the other
two approaches is only 7 as long as each peer maintains a
list of zone sizes held by its current neighbors.

7. CONCLUSION
We examined the distribution of the maximum and min-

imum zone sizes in peer-to-peer networks and derived tight
bounds for these metrics. We found that deterministic meth-
ods were in fact suboptimal, but could match purely random
methods using a larger sampling size. Future work involves
analysis of the height of split-trees under multi-point sam-
pling and design of greedy algorithms for the random walk
that can improve the balancing performance of existing de-
terministic methods.
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