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Abstract—In this paper, we seek to understand the intrinsic rea-
sons for the well-known phenomenon of heavy-tailed degree in the
Internet AS graph and argue that in contrast to traditional models
based on preferential attachment and centralized optimization, the
Pareto degree of the Internet can be explained by the evolution
of wealth associated with each ISP. The proposed topology model
utilizes a simple multiplicative stochastic process that determines
each ISP’s wealth at different points in time and several “main-
tenance” rules that keep the degree of each node proportional to
its wealth. Actual link formation is determined in a decentralized
fashion based on random walks, where each ISP individually de-
cides when and how to increase its degree. Simulations show that
the proposed model, which we call Wealth-based Internet Topology
(WIT), produces scale-free random graphs with tunable exponent
� and high clustering coefficients (between 0.35 and 0.5) that stay
invariant as the size of the graph increases. This evolution closely
mimics that of the Internet observed since 1997.

Index Terms—Autonomous systems, clustering coefficient, de-
gree distribution, Internet topology, random walk, wealth evolu-
tion.

I. INTRODUCTION

R ECENT studies show that real-life large-scale networks
not only exhibit power-law degree distributions, but are

highly clustered. Thus, a significant effort has recently focused
on developing graph generators that are capable of constructing
random networks with power-law degree distributions [1]–[3],
[7], [12], [15], [23], [24], [33], [48], [49], [52], [59] and high
clustering [7], [25]. Among the previous approaches, preferen-
tial attachment [7], [18], [60] and optimized-based construction
[15] have become the two major paradigms for explaining the
Internet topology. The former theory relies on the principle
that each joining node attaches its links to existing nodes with
a probability proportional to their current degree, without any
regard for the existing link structure. The latter theory models
node join as an optimization problem and argues that each
joining ISP aims to solve a certain tradeoff between the benefit
of improved connectivity and the cost of adding new links. This
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optimization is run over the existing graph and takes the current
connectivity into account.

As we discuss next, the existing evolution theories exhibit
several limitations in the context of the Internet AS-graph.
While acceptable in certain cases (such as social networks),
preferential attachment [7], [18], [60] is usually too restric-
tive to realistically model the Internet graph as it bases link
formation solely on the degrees of existing nodes1 and places
too much weight on ISP “popularity.” From the practical
perspective, it is clear that such complex factors as geographic
location, technical feasibility, business strategy, existing con-
nectivity, and various economic considerations contribute to
the evolution of each network rather than the mere size of other
networks. Optimization-based topology models [15] are viable
alternatives to preferential attachment that capture more diverse
factors related to ISP peering; however, the lack of mutuality
(i.e., a joining provider cannot attach to an ISP that does not
wish to peer with it) and absence of economic basis for link
formation (e.g., a joining network operator would not attach to
an ISP close to bankruptcy, regardless of how well-connected
the latter one is) make them potentially unrealistic as well.

In addition, both preferential attachment and optimiza-
tion-based construction depend on the global knowledge of
the system and always create random graphs using centralized
information. While this is certainly not a problem during sim-
ulations (i.e., most generators are centralized), we argue that
any theory that relies on global knowledge inherently fails to
explain how the Internet could have reached its current stage
given the fact that no single ISP has complete information
about the AS graph. In preferential attachment, it is hard to
conceive that new ISPs will test the probability of connecting
to each existing ISP and then select the peering point exactly
according to the ratio of degree to the global sum ,
where is the number of nodes in the system. As for the theory
of optimization-based tradeoff, the algorithm requires complete
information about the structure of the graph (not just the degree
of each ISP) and burdens each new node with an optimization
process with complexity , which is hardly possible in
simulations.

Recent studies [21] have revealed that there are missing links
in the data sets based on BGP routing tables and thus the graph
induced from these sources is not representative of the true
Internet structure. While many measurement efforts are under
way to address this problem of completeness, no consensus is
reached yet about how many links are still missing from the
existing measurement data and how far the current view of the
Internet deviates from its true view. Therefore, a graph model
must not only represent the current view, but also be compatible
with future discoveries of new features of the Internet, e.g.,

1We use terms node, user, and ISP interchangeably.
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Fig. 1. Components of the wealth-based evolution model.

nonpower-law degrees and more locality (higher clustering).
This requirement calls for a more natural and flexible solution
than the previous models.

In this paper, we overcome the above limitations and comple-
ment the previous efforts by proposing a different theory for the
structure of the Internet that relies on: 1) principles of economic
evolution that govern the degree of each ISP; and 2) distributed
random walks that determine the actual attachment decisions.
While the main focus of this paper is to understand the evolu-
tion of the Internet, we also provide specific algorithms that can
be used to create new graphs and test them against those ob-
served in the Internet over the last decade. In addition, we also
discuss possible ways to extend our algorithms to support a wide
variety of topologies.

A. Degree

The structure of the proposed model is shown in Fig. 1,
where the construction of the graph is driven by two
paradigms—wealth evolution and random walks. As shown in
the figure, the former is responsible for the degree distribution,
while the latter for the formation of actual links. The main
principle of the proposed model is that the degree of an ISP is
a consequence of complex forces that can be macroscopically
modeled by the wealth2 of the ISP and not by the metrics
found in the topology itself. This characteristic of the Internet
makes it fundamentally different from other real-life graphs
such as neural networks [3], [55], actor collaborations [3],
scientific citations [43], [46], and numerous networks observed
in physics [2], [8], [25], which also exhibit power-law degree
distributions, but lack the financial orientation of the Internet.

Since individual and company wealth in many free-market
societies is governed by Pareto distributions [41], we argue that
the heavy-tailed degree of Internet ISPs is a result of the par-
ticular structure of their wealth rather than anything else. To
understand this correlation, notice that it makes little sense to
build topologies in which small local ISPs are modeled with ex-
tremely large degree, well-established backbone providers are
assigned a handful of peering points, and the structure of in-
dividual companies evolves only based on the degree of other
ISPs. Causality between company wealth and degree can be ex-
plained by many factors such as cost of link maintenance that
makes higher degree more expensive, customer pressure that
forces networks with many subscribers to be better connected,
and the various QoS objectives that necessitate more peering
points to deliver better service and extract more revenue from
transit traffic; however, the exact specifics of this relationship

2Company wealth is an abstract concept that includes its revenue, customers,
income, property and stock value, equipment, bandwidth, etc.

Fig. 2. Birth-death wealth evolution.

are not essential and may be hidden under the umbrella of a
simple economic model discussed below.

To capture the dynamics of open-market competition between
the ISPs, our model assigns certain wealth to each ISP
and acts on behalf of the ISP to keep its degree propor-
tional to its wealth at time . Individual ISP wealth is
governed by one of the simplest wealth evolution models that
relies on random multiplicative increases/decreases in response
to the stock market and various random economic decisions of
the company. To account for bankruptcy that is prevalent among
new startups, each ISP is removed from the system when its
wealth drops below a certain threshold needed to operate and
provide service to its customers. This framework is illustrated
in Fig. 2, where ISPs sequentially join the system
and compete in the Internet market using their individual as-
sets that include their initial funding, customer revenues,
stock market gains, etc. As shown in the figure, at any time , the
system is composed of a random number of ISPs that are still
alive (i.e., those that avoided bankruptcy), whose distribution of
wealth determines the degree structure of the AS-level graph.

B. Links

For the construction of actual links, it is rather clear that the
Internet evolves in a distributed fashion where the ISPs might
not be aware of any global characteristics of the network. To
reflect the distributed nature of real attachment decisions, our
model allows each ISP that plans to expand to perform random
walks along the existing graph until it finds a neighbor that is
willing to accept its peering request and satisfy its financial re-
quirements (e.g., offer the right customer base, necessary eco-
nomic model, and reasonable peering conditions). While the ac-
tual attachment decisions in real life are not “haphazard,” we
argue that the event that a given ISP satisfies all of the above
criteria for attachment may be modeled at some high level as
purely random.

The final note is that our theory of random walks (as op-
posed to other means of finding neighbors) may be viewed as a
by-product of the Internet market being a large social network,
where many companies and individuals discover new acquain-
tances through existing links (i.e., business or personal relation-
ships) rather than by approaching complete “strangers.” This
also allows our model to preserve locality, i.e., geographically
close ISPs are more likely to peer, which is a well-known phe-
nomenon in [4], [6], [19], [24], [28], [31], [34], [54], and [57].

We combine the above two methods (degree evolution and
random walks) into a set of algorithms we call Wealth-based In-
ternet Topology (WIT). Simulations show that (WIT) succeeds



WANG AND LOGUINOV: UNDERSTANDING AND MODELING THE INTERNET TOPOLOGY 259

in producing power-law degree distributions with a flexible ex-
ponent (including observed in the Internet) and is
able to achieve levels of clustering close to those in the Internet
(i.e., 0.45). More importantly, we find that the clustering coef-
ficient of (WIT) matches that of the Internet during the entire
evolution of the graph (i.e., as the size of the system increases)
rather than for a single value of as usually examined in prior
work. We also show that WIT preserves the evolving nature of
other graph-theoretic metrics in the Internet (e.g., assortativity,
average path length, and the second smallest eignevalue) better
than previous approaches.

C. Possible Extensions

It should be noted that WIT can be extended to support a
wider range of degree distributions and clustering coefficients
than shown in this paper (see Section VI for more details). The
former objective can be achieved by using an interaction-based
or exchange-based wealth evolution process [20], which can
produce a variety of degree distributions besides the traditional
power-law. The latter objective can be implemented by ad-
justing the length of random walks for finding neighbors, which
leads to different levels of locality and thus clustering. Another
possible extension is to construct hierarchical Internet topolo-
gies under the framework of (WIT). This can be performed
by explicitly labeling nodes as ISPs and non-ISPs during join,
limiting neighbor attachment to only ISPs with enough wealth,
and creating inter-ISP peering or customer-provider links
based on a purely random event or the ratio of wealth among
the connecting nodes. This flexibility allows one to cover a
relatively general class of topologies, potentially including the
true Internet structure that is at present time partially hidden
from RouteViews observations.

The remainder of the paper is organized as follows. We
first review the background and related work in Section II.
We then present our wealth evolution model in Section III
and discuss the details of the topology construction algorithm
in Section IV. Finally, we compare our model with existing
methods in Section V, discuss its possible extensions in
Section VI, and conclude the paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we overview a small subset of related work
and mention several well-known models that we study later in
the paper.

A. Internet Topology and Power-Law Degree Distribution

Faloutsos et al.. [16] show that the Internet AS-level topology
exhibits a power-law degree distribution, or the so-called “scale-
free” phenomenon

(1)

where is the degree of node , is the scale parameter, and
is the shape parameter of the power-law distribution. Note

that many similar observations [7], [9] are obtained from the
archived snapshots of Border Gateway Protocol (BGP) routing
tables collected by the Oregon RouteViews Server [45]. While
sometimes it is argued that this data set does not reflect the
whole view of the Internet, it has been reported in [9], [22] that
graph properties such as the degree distribution are robust even

with certain incompleteness in the data set of the Oregon Route-
Views Server. In fact, it is shown in [9] that the number of links
is the only difference between the graph inferred from the in-
formation collected by the Oregon Server and the one comple-
mented with other sources (e.g., the Looking Glass tool and In-
ternet Routing Registry database) and that the power-law degree
distribution holds for both graphs. Note that similar observation
can be found in [22] regarding the size of the largest connected
component.

To model the scale-free property in the Internet, many ef-
forts have been brought forward to design topology genera-
tors that produce power-law degrees. Some of them construct
random graphs incrementally and others do not allow the growth
of the network. We call the former algorithms evolving and
the latter nonevolving. We next review two major classes of
evolving models, i.e., preferential-attachment and optimization
tradeoffs, and follow it up with a discussion of nonevolving
methods.

B. Preferential Attachment

The most common scale-free models used today are based
on the theory of “preferential attachment” which is proposed by
Barabási et al.. [3] and implemented in their topology model
Barabási-Albert (BA). At each discrete time step, BA adds a
new node to the graph, which is then randomly linked to

existing nodes using the preferential-attachment function

(2)

where is the probability that node is selected for link for-
mation at time , is its degree at time , and is the
number of nodes in the graph at time . This version of prefer-
ential attachment always produces graphs with shape parameter

. To relax the constraint on , a method known as Al-
bert-Barabási (AB) [2] adds the operations of link rewiring and
growth suspension (i.e., the graph evolves without adding new
nodes).

Bu et al.. [7] utilize shift-parameter in their
model, which they call Generalized Linear Preference (GLP),
and modify (2) to

(3)

Through the use of (3), GLP achieves arbitrary values of
and high levels of clustering. Similar methods

are proposed by Simon [5], [48], [49] and Krapivsky et al.. [26],
[27].

Other mechanisms in this category include BRITE [34] and
Inet [23]; however, throughout this paper, we only study BA,
AB, and GLP since their performance can be used to infer that
of the other models.

C. Optimization-Based Models

Another major class in generating power-law degree dis-
tributions was first proposed by Carlson et al. [8] and later
studied by Fabrikant et al. [15] in the context of the Internet.
In these models generally called Highly Optimized Tolerance



260 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 1, FEBRUARY 2010

(HOT) each new node selects the attachment point based on
the minimization of two objectives: the geographical length of
the peering link and the average number of hops to other nodes
in the graph. In particular, a new node attaches to node that
minimizes the following:

(4)

where is the Euclidean length of link , is the average
distance from to other nodes in the graph, and is a param-
eter tuning the relative significance of the two objectives and

. Chang et al.. [9], [10] further explore optimization-based
construction methods by allowing each AS to have multiple ge-
ographical locations, called Points of Presences (PoPs), where
each new node computes (4) by replacing with the min-
imum distance to all PoPs of node .

D. Nonevolving Power-Law Generators

In this category, we mention several generators that do not
grow (evolve) the network over time. One of the simplest
power-law graph construction models is called Given Expected
Degree (GED) [12], [35], [36], [38]. GED is an extension of
the classical Erdös-Rényi graph model [14] in which
edge-existence probability is adjusted on a per-link basis
to produce a heavy-tailed degree distribution. Specifically, a
sequence of weights is first generated according to a
Pareto distribution and then each edge is created with
independent probability

(5)

where . The function is necessary since
product may exceed , especially in sequences drawn
from power-law distributions with shape parameter .

A similar graph construction method called Power-Law
Random Graph (PLRG) [1] replicates each node exactly
times and then places random edges between the replicated
nodes with equal probability. Thus, nodes with larger initial
weight receive proportionally more edges than nodes with
smaller weight.

Additional nonevolving generators include random geo-
metric graphs [24] and rewired small-world (Watts) networks
that exhibit a heavy-tailed degree distribution [42], [55].

III. WEALTH MODEL

We present our wealth evolution model in this section and
show how it fits into our topology generator in Section IV.

A. Wealth Evolution

According to the theory proposed in this paper, the Internet
can be modeled as an economic entity, where ISPs dynamically
join and leave the system based on random events. Denote by

the wealth of ISP at time . When a new ISP joins the
system at time , it comes with a certain amount of initial wealth

, which accounts for the startup capital obtained from venture
capitalists, banks, private investors, and other sources.3 During
the lifetime of an ISP, it invests its wealth in business activities,

3Our model uses fixed � ; however, a simple extension to random startup
funding is possible as well. Simulations show that such an extension produces
almost identical results.

retrieves financial return, and suffers losses, all of which allows
its wealth to randomly evolve over time.

In what follows, we adapt the idea from the work of [29], [30],
[51] and describe wealth using a random process. Notice
that the amount of investment return is usually considered to be
proportional to the wealth of a company [29], [30], [51]. Thus,
we start with a basic unscaled model in which the individual
investment-return cycle is a multiplicative stochastic process

(6)

where is the unscaled wealth of user at time , is
a random variable drawn from some distribution describing the
randomness of the investment-return market cycle, and is the
join time of node . We assume that is a stationary process
that is independent among the ISPs.

Note that in (6), we do not constrain the distribution of
for generality of the model; however, such generality may re-
sult in a collapse or explosion of system wealth. Specifically, if

, the average wealth will grow to infinity as the
system evolves. On the other hand, if , the average
wealth will diminish to zero. To keep system wealth constant,
we counteract any possible inflation of wealth by scaling (6) and
taking the result to be the real wealth of each ISP

(7)

where is the scaled wealth of user at time and is a
random process that we determine next.

As before, define to be the number of ISPs in the system
and to be the average unscaled system wealth at time

(8)

Define to be

(9)

Then combining (7)–(9), we establish that the average scaled
wealth of the system remains constant and equals

(10)

Note that it may appear that (7) requires global knowledge.
However, this is not the case. Stochastic process can be
viewed as inflation adjustment inherent in economic systems
that is automatically reflected in the cost of goods and services
(i.e., money spent in leasing links and the corresponding main-
tenance). To show that the system can be implemented in a dis-
tributed fashion, we use the expectation of the right-hand side
of (9) instead of in (7). It is easy to verify that the redefined

has the following form:

(11)

Therefore, we can rewrite (7) as

(12)
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Fig. 3. Wealth distribution at time � � ��� under static join (10 000 joining
ISPs). (a) � � ���. (b) Effect of boundary ratio �.

with the initial condition . It is worth noting that
in (12) only depends on and , which can

be computed locally. In addition, it is straightforward to verify
that the average scaled wealth of the system defined by
(10) using the new definition of in (11) is asymptotically
constant and equal to

(13)

Given the model of ISP wealth represented by (12), we next
examine the conditions of bankruptcy and obtain the power-law
exponent of as a function of the bankruptcy boundary.
As discussed in the introduction, we impose a lower boundary

on each ISP’s wealth such that no one in the system
is poorer than this baseline. For simplicity of discussion in the
rest of the paper, we use metric as the ratio of the
bankruptcy boundary to the initial wealth of each joining
ISP. Armed with (10) and bankruptcy definitions above, one can
observe that the system defined by(12) is the same to the mul-
tiplicative stochastic process with a reflective barrier, which is
well studied in economics. Specifically, the wealth distribution
produced by(12) follows a power law with exponent deter-
mined by the lower boundary scaled by the average social
wealth [29], [30]. In addition, [51] points out that ’s sole de-
pendence on holds only if the average social wealth is
fixed. Since this condition asymptotically holds in (13), we im-
mediately obtain the following result.

Theorem 1: For sufficiently large , the wealth evolution
process characterized by (12) achieves a power-law
distribution with exponent

(14)

where is the ratio of the lower boundary of
personal wealth to the initial wealth .

B. Simulations

We confirm (14) under two different ISP join schemes. The
first method, which we call static, forces all individual ISPs to
start their wealth evolution processes at the same time. We plot
in Fig. 3(a) the resulting distribution of and observe that it
is indeed power-law with an exceptionally good fit. We next vary

in simulations and generate 1000 instances of the evolution
process to examine the correlation between and . Fig. 3(b)

Fig. 4. Wealth distribution at time � � ��� under dynamic join �� � ���.
(a) � � ���. (b) Effect of boundary ratio �.

presents the resulting boxplot4 distribution of actual power-law
exponents and shows that their average value agrees with
model (14) very well.

The second method, which we call dynamic, allows ISPs
to join the system according to some arrival process of rate

. We experimented with several join processes and observed
no impact on the corresponding wealth distribution. Without
loss of generality, the rest of the paper uses Poisson arrivals
of rate ISPs per time unit and keeps the average number of
ISPs that join the network by time equal to . Simulations
shown in Fig. 4 demonstrate that dynamic join also produces
power-law wealth distributions and that the corresponding ex-
pected power-law exponent follows (14) very accurately.

C. Discussion

In addition to multiplicative stochastic processes, prior ef-
forts also use an interaction-based mechanism to model a wealth
process. We refer readers to [20] for an extensive review of this
direction. In such a model, two randomly selected nodes and
exchange their wealth: at time , node loses some amount of its
wealth to node and the sum of their wealth remains constant
before and after such an interaction, i.e.,

for all . This scenario of wealth exchange arises
when two ISPs form a contractual partnership, in which one
provides services to the other and as a result gets paid over the
service period. According to [20], the wealth exchange model
can achieve a wide variety of wealth distributions ranging from
exponential to Gamma, which could be useful when the target
distribution is not power-law. However, due to the page limit,
we leave the discussion of the wealth exchange model to future
work.

With the result in (14), we are ready to present our topology
model and show how the power-law wealth distribution affects
topology generation in the next section.

IV. TOPOLOGY MODEL

We start this section by introducing the role of wealth in our
topology model, then present link-construction algorithms, and
finally study the degree distribution and clustering properties of
the resulting generator.

4The boxplot produces a box and whisker plot for each variable (e.g.,
power-law exponent or clustering coefficient). The box has lines at the lower
quartile, median, and upper quartile values. The whiskers are lines extending
from each end of the box to show the extent of the rest of the data. Outliers are
data with values beyond the ends of the whiskers.
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A. From Wealth to Topology

This subsection describes how the wealth model interacts
with the topology generator and how it determines the degree
evolution of the Internet.

In the hypothetical Internet market modeled in this paper, the
connectivity of an ISP to the rest of the network decides its use-
fulness to the customers. In order to maximize its revenue, an
ISP tends to build as many links to other ISPs as possible. How-
ever, such link expansion is always limited by the wealth of the
ISP since each link incurs a certain amount of expense, which
represents the cost of purchasing routers and other equipment,
leasing bandwidth, and maintenance. Therefore, an ISP builds
additional links when it has spare wealth and similarly removes
links when its wealth cannot sustain the expense of existing
links.

In this regard, we model the degree of an ISP as being
proportionally dependent on its wealth and closely related to
random fluctuations in . In reality, it is possible that ISP
connectivity and wealth might be dependent through a more
complex closed-loop system; however, the proposed model is
a simple abstraction of this unmeasurable process, in which
wealth evolves independently of ISP’s topological properties
(e.g., only based on the stock market, current business plan,
customer satisfaction).

Suppose that the link between nodes and induces certain
cost . Denote by the expense induced by all
links of node at time . Then, whenever the wealth of an ISP
drops below its current link expense

(15)

the ISP must remove some of the existing links to reduce ex-
pense below its wealth . On the other hand, if the
wealth of ISP allows more links than it currently has

(16)

new connections are built until reaches its wealth limit.
A direct result of the above mechanism for link adjustment is

the linear mapping between link expense and wealth

(17)

which leads to the following result:

(18)

Recalling that the economic system presented in (6)–(9) pro-
duces a power-law wealth distribution, the next theorem follows
immediately.

Theorem 2: For large enough , the degree distribution of
random graphs constructed under (15) and (16) is power-law
with exponent

(19)

where constant is the wealth boundary ratio.
Proof: Notice that the degree of node is proportional

to its wealth , that is

(20)

Fig. 5. Random walks in topology generation. (a) Initial attachment. (b) Link
addition.

where is constant for all and . Furthermore, the wealth
of node has a power-law distribution with exponent given
by (14) and constant in (20) only affects the corresponding
scale parameter. Therefore, we have that also follows a
power-law distribution with the same exponent as that in (14).

Notice that conditions (15)–(16) may result in oscillatory link
behavior, which is not the case in reality. To this end, we provide
a dampening threshold to relax (15)–(16) to read

(21)

and

(22)

By carefully choosing dampening threshold , we are able to
suppress the oscillations in link adjustment while allowing (19)
to hold (see below for simulations).

B. Topology Construction

At each step , our generator first updates the wealth of all ex-
isting nodes according to (12) and then evolves the topology by
adding new nodes and adjusts links of the existing nodes based
on changes in their wealth. In this section, we introduce a basic
model that uses uniform labeling for all links. In Section VI,
we discuss a possible extension that exhibits an explicitly hier-
archical structure with peer-peer and customer-provider links.
The detailed algorithms of link addition and deletion are given
next.

As mentioned in the Introduction, link addition in our
topology generator depends on a simple set of rules based on
random walks. When a new node decides to enter an existing
graph, it uniformly and randomly selects one existing node in
the network as the point of entry. Once the node is introduced
into the graph, it decides to “explore” its new location by per-
forming a random walk of steps. Once the initial walk stops
at a node , the new node establishes a link to , which is
illustrated as the dotted line in Fig. 5(a). The above represents a
selection process in which searches for the first “acceptable”
peering ISP. In the second phase of the join, node starts from

and performs additional random walks to find the
remaining neighbors, where is determined by the
initial wealth and the link price . The decision to attach
is determined solely by the final node where the walk stops
and represents the random process where ISPs seek business
partners with matching interests.
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Fig. 6. Degree distributions of (WIT) graphs (� � ���, � � ��, � � ���, � � ���). (a) � � ��� and � � �. (b) � � ��� and � � �. (c) � � ��� and � � ��.
(d) � � ��� and � � ���.

Fig. 7. Shape parameter � under � � ����, � � ���, � � ���, � � � (� � ���, � � ��). (a) Effect of boundary ratio �. (b) Effect of cost ratio �. (c) Effect of
dampening ratio � . (d) Effect of walk length �.

When an existing node needs to build a new link, the pro-
cedure of finding a new neighbor is the same as in the initial
attachment except that random walks start from as shown in
Fig. 5(b). On the other hand, when a node is forced to eliminate
some of the existing links, it uniformly and randomly chooses a
neighbor from its peering list and terminates the corresponding
connection.

Finally, our topology model starts at time zero with a fully
connected core network of size , which represents the ini-
tial stage of the Internet. Since simulations show that does
not affect the properties of constructed graphs, we use the com-
monly suggested value from prior methods BA, AB,
and GLP. If a user fails to find a suitable attachment point after
20 random walks, it preserves its current wealth until the
next cycle .

We refer to the set of algorithms described above as Wealth-
based Internet Topology (WIT) and next study its degree distri-
bution and clustering properties.

C. Degree Distribution

Before we begin, we first verify the quality of power-law dis-
tributions produced by (WIT). Fig. 6 plots four examples of de-
gree distributions obtained in simulations using several different
values of and . This figure combined with additional results
indicates that WIT’s degree exhibits very clear power-law tails
that hold remarkably well for both short and long walks .

Our analysis of (WIT) in this subsection focuses on how de-
gree exponent is affected by four parameters: lower boundary

, link cost , dampening threshold , and walk length . For
convenience, we normalize the first three metrics by to obtain
lower-boundary ratio (as defined in the previous
section), cost ratio , and dampening ratio .

To avoid confusion as to which parameter is responsible for
which graph property, we study the effect of these factors sepa-
rately by changing only one of them and keeping the other three
fixed. We generate 1000 random graphs for each point in the
figures and show the distribution of shape parameter in the
boxplots of Fig. 7. The results in Fig. 7(a) demonstrate that
increases as a function of and follows model (19) very accu-
rately. Additionally, Fig. 7(b)–(d) indicate that is not sensitive
to cost ratio , dampening ratio , or walk length , which also
agrees with Theorem 2 very well.

Numerous additional simulations with different parameters
show similar results (omitted for brevity) and conclusively es-
tablish that boundary ratio is the only parameter that affects
shape of degree distribution, which explains our global view
of the model in Fig. 1. By tuning , one can achieve arbitrary
power-law exponents , and, as we show in the next
subsection, tuning walk length allows (WIT) to achieve flex-
ible clustering .

D. Clustering

The clustering coefficient of a graph measures how frequently
neighbors of a node connect to each other. Define to be the
number of triangles incident to node . The clustering coefficient

of node is [56]

(23)

where is the degree of node . Then for a graph , its
clustering coefficient is given by [56]

(24)
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Fig. 8. Clustering coefficient under � � ���, � � ���, � � ���, � � � (� � ���, � � ��). (a) Effect of boundary ratio �. (b) Effect of cost ratio �. (c) Effect of
dampening ratio � . (d) Effect of walk length �.

where is the set of degree-one nodes in .
In what follows, we study clustering of (WIT) and show that

it only depends on walk length and not other parameters of the
generator. Again, we conduct four sets of simulations as in the
previous subsection and vary one of the four parameters in each
set while keeping the other ones fixed. The boxplot of Fig. 8
shows clustering coefficients of (WIT) graphs generated under
these conditions. In Fig. 8(a)–(c), the average clustering coef-
ficient stays around 0.52 and does not exhibit much correlation
with the change in the corresponding parameters. On the other
hand, Fig. 8(d) shows that responds to walk length , which
we analyze in more detail next.

We start our discussion of how random walks determine
local connectivity and clustering under the assumption that
walk lengths are large, i.e., . Recall that random walks
on graphs represent the evolution of a stationary Markov chain.
For a stationary chain the probability for a walk to terminate at
node is simply [58]

(25)

which is exactly the same as preferential probability (2). There-
fore, we immediately obtain the following result.

Theorem 3: For walks longer than the mixing time of the
corresponding Markov chain, (WIT) ’s clustering reduces to that
of preferential attachment.

To validate Theorem 3, we implement a variant of our model
that deploys preferential attachment instead of random walks
in link construction. We refer to this variant as WIT-PA and
compare it to pure (WIT) in simulations. By setting ,
we generate 1000 (WIT) graphs of different sizes and plot
their average clustering coefficients along with those of WIT-PA
in Fig. 9(a). The figure shows that of the two models
is almost identical.

Analysis of short (i.e., significantly smaller than the mixing
time of the chain) walks in (WIT) becomes nontrivial since the
stationary distribution (25) does not hold. For , (WIT) al-
ways produces a lattice of triangles, where each node with de-
gree has triangles. Therefore, without considering
link deletion and rewiring, the clustering of node is given by

, where is the degree of node . This immediately leads
to

(26)

Fig. 9. Clustering in (WIT) (� � ���, � � ����, � � ���). (a) ��		

� for
� � ����. (b) ��		

� for � � � for � � �.

where is the CDF of the power-law degree
distribution. It follows from (26) that

which is a constant independent of the graph size . Combining
this with and (obtained from simulations with

, , , ), we get .
The actual expected clustering of (WIT) for is slightly
lower and equals 0.64 as shown in Fig. 9(b), which can be ex-
plained by link deletion and rewiring not included in the above
analysis.

For , new nodes produce mostly quadrangles instead
of triangles and thus construct a poorly clustered graph, while
for , (WIT) builds a mixture of triangles and pentagons,
and exhibits lower clustering than with , but much higher
than with . Fig. 9(b) plots (WIT) ’s average clustering
coefficient for and shows that it also stays constant as the
graph evolves.

Alternating behavior in clustering between odd and even walk
lengths is obvious for short walks and disappears when be-
comes long enough. In Fig. 10(a), we show that (WIT) ’s clus-
tering coefficient starts from 0.64 with , drops to 0.008
with , then oscillates with a decreasing amplitude, and fi-
nally converges to 0.038 as walk length reaches 40. For larger

, Fig. 10(b) shows that when the system contains more “ran-
domness” (i.e., 2000 nodes join the system), the clustering co-
efficient converges to its asymptotic value much quicker than in
Fig. 10 (a).

In reality, it is not hard to conceive that a new node in the In-
ternet prefers short walks instead of long ones when deciding
on link attachment. This in practice means that (WIT) equipped
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Fig. 10. Effect of walk length on the clustering coefficient (� � ���, � � ����,
� � ���). (a) �����	
 for � � ���. (b) �����	
 for � � ����.

with short walks builds graphs with both constant and high clus-
tering. Other preferential attachment-based algorithms [7], [18],
[60] on the other hand, only capture the behavior of long walks,
produce small and decreasing clustering [see Fig. 9(a)], and,
thus, cannot fully explain the observed structure of the Internet
as we show next.

V. EVOLUTIONARY COMPARISON OF TOPOLOGY MODELS

With the topology model developed in the previous sections,
we are now ready to answer the question of whether our model
can track the evolution of the Internet. We start by understanding
Internet’s graph-theoretic properties as functions of time.

A. Metrics of Interest

In addition to the degree distribution and the clustering coef-
ficient, the characteristic path length and average degree of a
given graph are usually used in the evaluation of topology gen-
erators [3], [7]. Considering that analyzing degree correlation of
neighboring nodes and spectrum have recently become two im-
portant methods in graph characterization [11]–[13], [37], [53],
we include two additional metrics in our comparison: assorta-
tivity coefficient and the second smallest eigenvalue of the
normalized Laplacian matrix of each graph. A combination of
these six metrics is usually sufficient to distinguish between the
existing random graph models.

Denote by the hop distance between nodes and
and by the average distance from to the rest of the graph.
Recall that characteristic path length is defined as the median
of average distances over all nodes in the graph, i.e.,

[56]. For the degree-degree correlation, we
first define to be the empirical joint degree distribution of
graph

(27)

where set consists of edges whose end-nodes have
degrees and . Then, the assortativity of a given graph is
[13], [53]

(28)

where is the PMF of degree and is its
corresponding -th moment. Note that metric reflects how the
degree of neighboring nodes is correlated with each other [53]

negative values of imply that high-degree nodes tend to estab-
lish links to low-degree nodes; on the contrary, graphs with pos-
itive have many links connecting nodes with similar degrees;
and implies that the degree of neighbors is not correlated.

For the spectral analysis, we adopt the normalized Laplacian
matrix as defined in [11], [53]

if and
if
otherwise

(29)

where is the degree of node . Denote by the eigenvalues
of and label them in an increasing order, i.e.,

, where is the graph size. Note that
and for any connected graph [11], [37]. Further recall
that metric of a graph is closely related to its connectivity,
graph expansion, bisection width, and diameter; more specifi-
cally, small implies that the graph is poorly connected and
vulnerable to node/edge failures [11], [37]. Thus, to better un-
derstand the resilience of constructed topologies, we focus on

instead of the entire spectrum in our graph-evolution study.
With the help of these metrics, we next explore how the In-

ternet has evolved in the last 8 years.

B. Observing Internet Evolution

The Internet topology is usually built using: 1) BGP routing
tables provided by the Oregon RouteViews project [45] and
RIPE [44]; or 2) traceroute data obtained from Skitter [50],
DIMES [47], or iPlanet [32]. Both measurement approaches
have their own drawbacks and their topologies are generally
believed to be incomplete. This paper does not aim to solve
the topology completeness issue, but rather evaluate the per-
formance of our method against one of the existing datasets.
Throughout the rest of the paper, we use BGP tables from
Oregon and leave additional comparisons for future work.

We collected AS snapshots from BGP routing tables [45]
between November 1997 and January 2006, extracted the
corresponding AS topologies, and computed for each graph its
average degree, power-law exponent , clustering coefficient

, characteristic path length , assortativity , and the second
smallest Laplacian eigenvalue . To examine the dynamic
behavior of the Internet, we plot in Fig. 11 these graph prop-
erties against the size of the Internet. Fig. 11(a) shows that the
degree distribution exhibits a constant power-law exponent,
which is rather stable in . Besides the scale-free
degree distribution, the Internet is almost invariant in its av-
erage degree and characteristic path length, which stay around
4 and 3.7 in Fig. 11(b)–(c), respectively. More interestingly,
Fig. 11(d) indicates that the clustering coefficient of the Internet
is not only high as reported in [7], [25], but also fairly constant
between 0.35 and 0.47. In Fig. 11(e), Internet’s assortativity is
approximately , which indicates that ISPs tend to con-
nect to networks with dissimilar degree. The second smallest
eigenvalues of the Internet in Fig. 11(f) are contained within

with a linear decaying trend.

C. Comparison of Topology Models

It is possible for a topology generator to construct graphs
that match the structural metrics of the Internet at a given time
point (i.e., size ). However, as the Internet evolves and its
size increases, graph properties of the generator may deviate
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Fig. 11. Evolutionary view of the Internet topology observed from the Oregon
RouteViews project [45] between November 1997 and January 2006. (a) Degree
exponent �. (b) Average degree. (c) Characteristic path length�. (d) Clustering
coefficient ����. (e) Assortativity �. (f) Second smallest eigenvalue � .

from those in the Internet. Therefore, it is important to compare
existing topology models from an evolutionary point of view,
which tracks the corresponding graph metrics over the entire
construction process. Fig. 11 shows that even though the size
of the Internet keeps increasing over time, the six graph-theo-
retic properties remain more or less invariant to the growth. The
main question we aim to address in this section is whether this
invariance is captured by the existing generators? We answer
this question by examining how several existing models behave
during the graph construction process and its evolution. Note
that our dynamic comparison complements previous static ef-
forts [7], [25] since it performs analysis from a completely dif-
ferent perspective.

In particular, we compare (WIT) to several classical topology
generators. For preferential attachment, we use BA, AB, and
GLP. For optimization-based algorithms, we study HOT and
allow each new node to link to peering points. For
nonevolving models, we modify GED to support incremental
construction, where each new node joins the system and builds
links to existing nodes with the probability described by (5). We
refer to our version of GED as Evolving GED (EGED).

In our simulations of these generators, we attempt to ensure
that the average degree and exponent are the same as in the
Internet (i.e., 4 and 1.2, respectively). Considering that BA and

HOT always produce fixed , we allow this rule to be vi-
olated in these two methods, but guarantee full conformance
of the two metrics in the remaining models examined in this
paper. Further note that AB and EGED usually produce discon-
nected graphs, where the metric of characteristic path length
cannot be applied. However, it has been proved in [1] that for a
power-law graph with exponent , there exists a giant
component of size and all smaller components are of size

, almost surely. Since in our comparison study, we
only examine graph properties of the largest connected compo-
nent of graphs built by AB and EGED. The difference in using
the subgraph induced by the largest connected component in-
stead of the whole graph can be neglected for sufficiently large
graph size .

In our first simulation, we let each generator build a random
graph with 22 000 nodes. During graph construction, we record
snapshots of the partial graphs at different time epochs and com-
pute their clustering coefficients, characteristic path lengths, as-
sortativity coefficients, and the second smallest eigenvalues. We
omit the snapshots of small graphs to be consistent with the
size of the Internet whose structure before 1997 is not currently
available.

As we show below, oscillation in the clustering coefficient ex-
ists in all studied generators. To augment the information pro-
vided by a single instance of each stochastic process, we also
show the expected clustering coefficients in all studied methods.
For each generator, we create 1000 random graph evolutions and
average the clustering coefficient at each time . All figures dis-
cussed below plot instant clustering as solid lines and their ex-
pected values as dotted curves. In what follows, we compare
these simulation results against the Internet topology observed
from the Oregon RouteViews project [45].

Fig. 12(a) shows that BA exhibits very small clustering coef-
ficients, which decay towards zero as the graph grows in size.
This is clearly not representative of the situation in the Internet
in Fig. 11(d). The characteristic path length of BA grows from
4.6 to 5.1 as shown in Fig. 12(b). Compared to the Internet where

is fixed around 3.7, BA tends to push new nodes away from
the center of the graph and, thus, produces increasingly larger
characteristic path lengths as grows. The curve of BA’s as-
sortativity in Fig. 12(c) tends to 0, which indicates that the cor-
relation of neighbor degree vanishes as the graph evolves in its
size, which also does not match the evolution of this metric in
Fig. 11(e). In Fig. 12(d), BA’s shows a similar decreasing
trend as that in Fig. 11(f), but with a larger intercept, which in-
dicates that BA builds graphs that are less congested than the
Internet.

AB improves over BA in terms of clustering as shown in
Fig. 13(a); however, its also decreases as the graph size in-
creases. Fig. 13(b) indicates that AB’s characteristic path length
is not only high, but also increasing as a function of , which is
similar to that in BA. Fig. 13(c) shows that AB’s assortativity
is constant at zero, which is the result of rewiring. In Fig. 13(d),
AB’s is stable around 0.2, which is 4 times larger than that
of the Internet.

Among the three preferential attachment methods, GLP
shows the highest clustering in Fig. 14(a) reaching as high as
0.37 for . However, as increases to 22 000,
drops to 0.32, which is a common drawback of all examined
preferential attachment methods, whose clustering coefficient
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Fig. 12. Evolution of BA compared to the Internet topology observed from the Oregon RouteViews project [45]. (a) Clustering ����. (b) Characteristic path
length �. (c) Assortativity �. (d) Second smallest eigenvalue � .

Fig. 13. Evolution of AB compared to the Internet topology observed from the Oregon RouteViews project [45]. (a) Clustering ����. (b) Characteristic path
length �. (c) Assortativity �. (d) Second smallest eigenvalue � .

Fig. 14. Evolution of GLP compared to the Internet topology observed from the Oregon RouteViews project [45]. (a) Clustering ����. (b) Characteristic path
length �. (c) Assortativity �. (d) Second smallest eigenvalue � .

decreases as . From Fig. 14(b), we observe that the
characteristic path length of GLP is close to that of the In-
ternet and its corresponding time average is 3.2. As shown in
Fig. 14(c), GLP’s assortativity is similar to that of the Internet
in terms of its time average; however, its trend deviates from
what is observed in the Internet. In Fig. 14(d), the second
smallest eigenvalue of GLP graphs oscillates around 0.074,
which is twice as large as Internet’s .

In the category of nonevolving methods, EGED also demon-
strates decaying clustering in Fig. 15(a) and keeps its sig-
nificantly smaller than that of the Internet. Its characteristic path
length starts from 2.9, but then “overshoots” to 4.0 when
reaches 22 000 as shown in Fig. 15(b). In Fig. 15(c), the assor-
tativity of EGED is fairly stable around , which is slightly
larger than the time average found in the AS graphs. The cor-
responding second smallest eigenvalue in Fig. 15(d) indicates
significant variance and has a larger time average than that of
the Internet.

Interestingly, HOT exhibits in Fig. 16(a) very high clustering
that oscillates around 0.45. However, its characteristic path

length is much higher than in the Internet and increases from
6.1 to 8.1 almost as a linear function of as shown in Fig. 16(b).
The preference of HOT for geographically short links leads to
a graph that spreads out over the entire coordinate plane and
thus results in a significantly larger characteristic path length
than needed to model the Internet. This is also reflected in the
evolution of and plotted in Fig. 16(c)–(d): assortativity

is stable around , which is smaller than observed in
the Internet; metric is almost negligible compared to that
in Fig. 11(f), which implies a substantially more congested
structure compared to the AS topology.

Similar to HOT, (WIT) displays high clustering during the
entire graph evolution as shown in Fig. 17(a). The average clus-
tering starts from 0.39 for and converges to 0.43 for

. Instant clustering oscillates around the dotted line
in Fig. 17(a) and at certain points reaches as high as 0.45, which
closely mimics the random fluctuation of in the Internet. In
addition to producing flexible , (WIT) is different from HOT
in terms of its characteristic path length, assortativity, and eigen-
values. In Fig. 17(b)–(c), (WIT) ’s metrics and are initially
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Fig. 15. Evolution of EGED compared to the Internet topology observed from the Oregon RouteViews project [45]. (a) Clustering ����. (b) Characteristic path
length �. (c) Assortativity �. (d) Second smallest eigenvalue � .

Fig. 16. Evolution of HOT compared to the Internet topology observed from the Oregon RouteViews project [45]. (a) Clustering ����. (b) Characteristic path
length �. (c) Assortativity �. (d) Second smallest eigenvalue � .

Fig. 17. Evolution of (WIT) compared to the Internet topology observed from the Oregon RouteViews project [45]. (a) Clustering ����. (b) Characteristic path
length �. (c) Assortativity �. (d) Second smallest eigenvalue � .

small, but eventually converge from below to 3.7 and , re-
spectively, observed in the Internet. In Fig. 17(d), (WIT) ’s
is oscillating but its trend is slowly decreasing as in Fig. 11(f),
showing that connectivity properties of (WIT) graphs tend to re-
semble those of the Internet.

Based on a combination of several metrics examined in this
section, one must conclude that graphs constructed by (WIT) are
the closest among the compared models to the Internet’s evolu-
tionary structure observed by the Oregon RouteViews project
[45]. We also believe that (WIT) is a more realistic framework
than some of the existing methods as it relies on distributed con-
struction rules and allows each ISP to independently select its
peering points based on internal factors such as its wealth, cus-
tomer base, and QoS requirements that do not depend on the
parameters or decisions of other ISPs.

VI. DISCUSSION

We now make several observations and discussion points
about the methods proposed in this paper. We also examine
possible extensions of this framework to support construction

of graphs with nonpower-law degree, different levels of clus-
tering, and hierarchical structure.

A. Why Random Walks?

It may be argued that ISPs do not literally perform random
walks on the existing graph and are likely to make connectivity
decisions based on a plethora of factors such as technical fea-
sibility, strategic performance considerations, business/market
incentives, and price sensitivity; however, this paper merely sug-
gests that their complex decisions (which cannot be easily for-
malized or even measured in practice) could be replaced with
tractable theoretical approximations based on random walks. As
with any model, one must weigh the tradeoff between the fea-
sibility of understanding the actual underlying process and re-
placing it with a high-level approximation. Since the former is
impossible in our case, the latter is the only possible solution.

It should also be noted that (WIT) ’s short random walks serve
the purpose of preserving locality (in the sense that geographi-
cally close ISPs are preferred in neighbor selection), which res-
onates with the well-known fact that the formation process of



WANG AND LOGUINOV: UNDERSTANDING AND MODELING THE INTERNET TOPOLOGY 269

the Internet topology exhibits geographical preference [4], [6],
[19], [24], [28], [31], [34], [54], [57].

B. Possible Extensions

We next briefly mention two possible extensions to (WIT).
1) Degree Distribution and Clustering: For now, we have

seen how (WIT) produces graphs with a power-law degree dis-
tribution and high clustering that remains invariant as graph size
evolves, which are the two key properties of the observed In-
ternet structure. However, as reported by recent studies [21], cer-
tain links/nodes are missing from the data sets collected by ex-
isting measurement efforts, which implies that graphs inferred
from these data sources may not be representative of the true
Internet structure, e.g., the degree distribution and/or clustering
coefficient of the underlying graph may be different. Therefore,
our goal is this section is to explain how (WIT) can be adapted
to future Internet topologies that may potentially exhibit drasti-
cally different properties from those currently observed in mea-
surement data.

We start with the degree distribution. Note that (WIT) directly
correlates degree with the underlying wealth, which means that
simply changing the economic model of wealth evolution al-
lows one to achieve a different degree distribution in the graph.
As discussed in Section III-C, a variety of wealth distributions
ranging from exponential to Gamma to power-law can be gen-
erated from so-called wealth exchange models [20], where ISPs
trade wealth among themselves in a more explicit fashion than
modeled earlier in this paper. Thus, by replacing the multiplica-
tive wealth process with an economic exchange model, one can
produce a much wider variety of degree distributions using the
general framework of (WIT), which is an excellent direction for
future work.

Extension of (WIT) in regard to clustering is even more
straightforward given the results in the previous section. As
shown in Section IV-D, the clustering of (WIT) graphs is de-
cided by walk length during neighbor selection. If a different
clustering coefficient is desired, one can vary to achieve any
value of between 0.038 and 0.68 according to Fig. 10.
These results provide evidence that the proposed model is ca-
pable of producing a wide range of clustering coefficients and
thus potentially cover the currently unknown graph structure of
the true Internet.

2) Hierarchical Structure: It should be noted that inter-AS
Internet links are generally believed to fall into one of the two
categories depending on the contractual relationship between
the neighbors: peer-peer and customer-provider [17]. However,
the model introduced in Section IV-B treats all links equally and
does not explicitly create a hierarchical structure commonly at-
tributed to the AS graph. One solution to this issue, which we
call implicit hierarchy, is to perform processing of WIT topolo-
gies for presence of hierarchical structure after the graph has
been built and assign to each link a label “peer-peer” or “cus-
tomer-provider” using heuristics from related work [21], [40].
The second approach, which we call explicit hierarchy, is to
determine link types during the construction process as part of
WIT. We next briefly expand on this idea.

Assume that during join, each node in the graph is labeled
as ISP or non-ISP using some random determination (e.g., a
stochastic Bernoulli process). As in the regular WIT model,
random walks during attachment find nodes with enough wealth

to reciprocate link formation, but now the targets of these at-
tachments are limited to ISPs only (i.e., non-ISPs do not at-
tach to each other). If a non-ISP node connects to an ISP, the
link is automatically labeled “customer-provider.” If two ISPs
decide to attach to each other, the type of link may be based
on a purely random event (e.g., a coin flip) or the wealth ra-
tios of the two ISPs (e.g., if ISPs’ wealth is within 50% of
each other, the link is of type “peer-peer” and otherwise, of
type “customer-provider”). To leverage this hierarchy more ex-
plicitly, a wealth exchange model can be naturally incorporated
into this framework. Specifically, during each time step, wealth
travels from customers to providers, which emulates payment
for services rendered. No wealth is exchanged along peering
links, which assumes that peering ISPs provide equal amounts
of traffic and service to each other. For non-ISPs to not go
bankrupt and for ISP wealth to randomly fluctuate in response
to the market, the usual multiplicative wealth model (6) ap-
plies to each node before the wealth is distributed along all cus-
tomer-provider links. More detailed exposition of these algo-
rithms and related simulations are left to future work.

VII. CONCLUSION

In this paper, we presented an alternative theory of the
Internet evolution and developed a new topology generator
based on wealth evolution and random walks. We showed that
the generated graphs exhibited power-law degree distributions
with flexible and high, nondecreasing clustering coefficients.
The characteristic path length and degree-degree correlation of
the proposed model were also close to that of the Internet and
demonstrated invariance with respect to . This combination
of (WIT)’s properties indicates that the proposed topology
algorithm is viable in explaining the structural evolution of the
Internet, at least to the extent possible in a very simple model.

Future work includes verifying the proposed algorithm
against the complete graph of the Internet and extending WIT
to construct hierarchical topologies.
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