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ABSTRACT

Robust and Scalable Sampling Algorithms for Network Measurement. (August 2009)

Xiaoming Wang, B.S., Beijing University of Posts and Telecommunications;

M.S., Beijing University of Posts and Telecommunications

Chair of Advisory Committee: Dmitri Loguinov

Recent growth of the Internet in both scale and complexity has imposed a num-

ber of difficult challenges on existing measurement techniques and approaches, which

are essential for both network management and many ongoing research projects. For

any measurement algorithm, achieving both accuracy and scalability is very chal-

lenging given hard resource constraints (e.g., bandwidth, delay, physical memory,

and CPU speed). My thesis research tackles this problem by first proposing a novel

mechanism called residual sampling, which intentionally introduces a predetermined

amount of bias into the measurement process. We show that such biased sampling

can be extremely scalable; moreover, we develop residual estimation algorithms that

can unbiasedly recover the original information from the sampled data. Utilizing

these results, we further develop two versions of the residual sampling mechanism:

a continuous version for characterizing the user lifetime distribution in large-scale

peer-to-peer networks and a discrete version for monitoring flow statistics (including

per-flow counts and the flow size distribution) in high-speed Internet routers. For the

former application in P2P networks, this work presents two methods: ResIDual-based

Estimator (RIDE), which takes single-point snapshots of the system and assumes

systems with stationary arrivals, and Uniform RIDE (U-RIDE), which takes multi-

ple snapshots and adapts to systems with arbitrary (including non-stationary) arrival

processes. For the latter application in traffic monitoring, we introduce Discrete
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RIDE (D-RIDE), which allows one to sample each flow with a geometric random

variable. Our numerous simulations and experiments with P2P networks and real

Internet traces confirm that these algorithms are able to make accurate estimation

about the monitored metrics and simultaneously meet the requirements of hard re-

source constraints. These results show that residual sampling indeed provides an ideal

solution to balancing between accuracy and scalability.
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CHAPTER I

INTRODUCTION

1 Overview

During recent years, the Internet has underwent a fast growing period both in scale

and complexity, which imposes an urgent need to better manage and engineer both the

underlying infrastructure and application-level networks. The ability to monitor and

characterize large-scale, complex systems has thus become an important component

for supporting and sustaining the current growing speed in the Internet. For network

management practices, measuring the Internet helps in traffic engineering, accounting,

anomaly detection, etc.; for research purposes, understanding the Internet provides

crucial input to analytic models of many performance metrics such as throughput,

resilience, response time, etc.

However, for any measurement algorithm, achieving both objectives of accuracy

and scalability is very challenging given resource constraints (e.g., bandwidth, delay,

physical memory, and CPU speed) that are commonly found in many large systems

such as the Internet. In particular, accuracy stands for the extent of how close

measured quantities are to the true values and determines usefulness of measurement

results. Scalability refers to the ability to stay within the limit of resources and decides

feasibility of a measurement algorithm. These two properties are especially important

in measuring the Internet and have received considerable attention in a wide range of

contexts from high-speed Internet routers [9], [10], [11], [12], [13], [15], [16], [24], [25],

The journal model is IEEE/ACM Transactions on Networking.
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Fig. 1. Illustration of measurement framework.

[28], [30], [31], [32], [33], [38], [43], [64] to peer-to-peer networks [3], [52], [58], [56] ,

[62]. A tradeoff constantly made between these two objectives by previous efforts is

to sacrifice accuracy for scalability and it remains an open problem to design such a

measurement algorithm that can produce accurate result while satisfying all imposed

constraints.

In this work, we study two cases of such measurement efforts. The first case

performs active measurement in peer-to-peer (P2P) networks by sending probing

queries into the network so as to estimate the lifetime distribution of participating

users, where each lifetime instance represents the duration of a user’s appearance in

the system. The second case conducts passive measurement in high-speed Internet

routers by monitoring the traffic as it passes by and its goal is to measure the statistics

of traffic flows, where a flow is a sequence of packets that share a common pattern

(e.g., the 5-tuple in each packet header). While these two problems are completely

different, they can be addressed by the same framework that we propose in this work.

We propose novel algorithms in the family of residual sampling, which intentionally
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introduces a predetermined amount of bias into the measurement process, and show

that such biased sampling can be extremely scalable; moreover, we develop resid-

ual estimation algorithms that can unbiasedly recover the original information from

the sampled data. Utilizing these results, we implement an accurate and scalable

measurement framework as illustrated by Figure 1, where residual sampling provides

scalability and residual estimation guarantees accuracy. We then develop two versions

of this framework: a continuous version for P2P measurement and a discrete version

for traffic monitoring. Next, I briefly discuss these two problems and our solutions in

the following two sections, respectively.

2 P2P Measurement

Consider a distributed P2P system with n potential users, all of which alternate

between two states: ON (alive) and OFF (dead). Let L be the lifetime (the length

of an ON session) of a random user of the system and FL(x) be the corresponding

distribution function, i.e., FL(x) = P (L ≤ x). The goal of this problem is to measure

the lifetime distribution FL(x). The user lifetime distribution is one of the essential

metrics in capturing the dynamics of P2P systems and provide useful information to

throughput models [19], [46], resilience analysis [34], [65], [66], and system design [21],

[35], [52]. Prior efforts [3], [52], [56] use Create-Based Method (CBM), which takes

periodic snapshots of participating users by crawling the whole system every ∆ time

units and then directly identifies lifetime samples by comparing adjacent snapshots.

As we show in Chapter II, CBM could 1) miss lifetime samples (a user joins and

departs within the same sampling interval) and 2) produce inconsistent round-offs

(some user lifetimes are rounded up and others down). We provide an analytic model

for CBM and show that it generally produces biased estimation of FL(x) and the bias
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cannot be removed without letting ∆ → 0. We also show that the overhead of CBM

in measuring a system with n users is proportional to n/∆. Therefore, to scale to

large P2P systems like Gnutella [20] and KaZaA [27], we need to use large ∆, which

unfortunately could lead to inaccurate results.

We address this problem using the result from renewal theory [49]. Instead of

capturing the lifetimes of new users, we collect the residuals of existing users. In the

proposed approach called residual sampling, we only take one snapshot of the entire

network and then tracks residual (i.e., remaining) lifetimes R of the users seen in the

first crawl. From renewal theory [63], residual sampling is biased since it is more

likely to capture long-lived users. However, there are two facts that make residual

sampling desirable in P2P measurement. First, it provides an accurate estimator of

FL(x). Let H(x) = P (R ≤ x) be the residual distribution and E[L] be the expected

lifetime. Utilizing the asymptotic results from [34], [65] for systems with a stationary

arrival process:

H(x) =
1

E[L]

∫ x

0

(1− FL(y))dy, (1)

we develop a simple mechanism called ResIDual-based Estimator (RIDE), which can

accurately recover FL(x) from the measured residuals. Second, residual sampling

is able to aggressively reduce traffic overhead since initial users captured by RIDE

die quickly and the amount of probing traffic decays to zero accordingly. We also

present a subsampling strategy, where each user found in the first crawl is uniformly

selected with probability ε and only selected users are then probed for residuals. Our

analysis and experiments show that this subsampling technique does not change the

correctness of RIDE and more importantly, it reduces traffic overhead compared to

that in CBM by a factor of up to 1/ε.

While RIDE can achieve a decent tradeoff between accuracy and bandwidth
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consumption, its application is limited to systems with constant arrival rates since

(1) assumes a stationary arrival process, which we call Stationary Renewal Churn

Model (SR-CM). However, many systems have been discovered to exhibit diurnal

behavior [22], [52], [55], [60], which motivates us to develop a more general sampling

algorithm. As the first step to achieve this goal, we design a novel generic arrival

model called Non-Stationary Periodic Churn Model (NS-PCM) that can replicate

first-order dynamics (i.e., mean arrival rate) of almost any non-stationary arrival

process. In NS-PCM, each user again alternates between ON (alive) and OFF (dead)

states, but OFF states are now split into two sub-states: REST and WAIT. The

former sub-state represents the delay between the user’s departure and midnight of

the day when it joins the system again, while the latter is the delay from midnight

until the user’s arrival into the system within a given day. Let A be the length of a

random WAIT period and fA(x) its distribution density. We prove that NS-PCM can

mimic any system with a continuous non-stationary periodic arrival rate by adjusting

the arrival density fA(x).

Utilizing this result, we then show that RIDE’s estimator under non-stationary

arrivals does not converge and sometimes produces completely invalid results (includ-

ing CDF functions that are non-monotonic). Define R(t) to be the remaining session

duration of a random online user at time t and H(x, t) = P (R(t) ≤ x) to be the CDF

of residuals of currently alive users. Our analysis shows that unlike in prior models

where limt→∞ H(x, t) = H(x) existed, NS-PCM does not admit a limiting distribution

of R(t), which explains why RIDE’s manipulation of the residual distribution H(x, t)

produces unpredictable results. To address the problem in RIDE, we suggest a mech-

anism called Uniform RIDE (U-RIDE), which takes multiple snapshots and measures

the system in uniformly random points in the observation window. To decide random

time instances for residual sampling, we study a scheduling algorithm called Bernoulli
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Scheduling (BS), which leverages the BASTA principle (Bernoulli Arrival See Time

Average) [40] and allows accurate measurement even when the network is small or the

arrival process is unknown. We show that U-RIDE can be efficiently implemented in

large systems and that it admits a subsampling technique similar to that in RIDE. Our

simulation results and experiments with Gnutella networks demonstrate that U-RIDE

is able to accurately estimate the actual distribution FL(x) in various non-stationary

systems and at the same time significantly reduce traffic overhead compared to CBM.

3 Traffic Monitoring

The goal of flow measurement is to monitor flow statistics of the packet stream that

passes through an Internet router. The flow statistics of interests typically include

single-flow usage — the number of packets that has been observed from a single

flow and flow size distribution — the probability of a flow with size i. Accurately

monitoring these flow statistics is critical for network management and operation and

has received considerable attentions [9], [10], [11], [12], [13], [15], [16], [24], [25], [28],

[33], [30], [31], [32], [38], [43], [64]. This can be accomplished by keeping a counter

in a table for each flow that passes the router. However, for high-speed Internet

links, this approach could lead to a huge flow table since a large number of distinct

flows could traverse the router per second. Such a big table not only consumes

a significant amount of memory, which makes algorithms using fast SRAM (Static

Random Access Memory) prohibitively expensive, but also drastically slows down

per-packet processing, which obviates any possibility of using slow DRAM (Dynamic

Random Access Memory). Previous efforts in flow measurement suggest to use traffic

sampling to reduce memory consumption and per-packet processing time. While these

sampling methods could make traffic monitoring affordable for high-speed links, either
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they make estimation inaccurate and too complicated as shown in [11], [24]; or they

do not capture all elephant flows and thus cannot support usage-based applications

as suggested by [10], [16], [17], [18], [44].

In this work, we analyze a discrete version of residual-geometric sampling, which

has two appealing properties for traffic monitoring: 1) it can keep all large flows

with high probability and provide all necessary information for generating accurate

estimation about flow statistics; 2) it has the potential to scale to high-speed links.

In the proposed method, each incoming packet is processed as follows: if the packet

is from a new flow z, a counter is then created for z with probability p; otherwise, the

corresponding counter is then incremented. Denote by RL the number of remaining

packets of a flow with size L. We first show that previous estimator L̂(RL) = RL −
1+1/p of original size L suggested by [16], [28] can be arbitrarily biased in estimating

both the original size L and the flow size distribution fi = P (L = i). We then develop
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two estimation algorithms, which we call Discrete ResIDual-based Estimators (D-

RIDE), L̃(RL) = RL−1+1/p−(1−p)RL/p for single-flow usage and f̃i = Mi−(1−p)Mi+1

Mp+(1−p)M1

for flow size distribution, where M is the number of sampled flows and Mi the number

of those with residual size i. Our analysis and experiments with Internet traces

indicate that D-RIDE produces accurate estimation about single-flow usage and flow

size distribution. Moreover, we propose a technique that periodically removes inactive

flows from the flow table and show that residual sampling with periodic removal can

be very scalable in terms of memory consumption and per-packet processing time.

The organization of this dissertation is illustrated in Figure 2. We start with

P2P measurement and introduce RIDE in Chapter II and U-RIDE in Chapter III.

We then discuss the problems in traffic monitoring and present D-RIDE in Chapter

IV. Finally, we summarize this dissertation and discuss future work in Chapter V.
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CHAPTER II

RESIDUAL-BASED ESTIMATOR (RIDE)

1 Introduction

Peer-to-peer networks are popular platforms for many applications such as file-sharing,

content distribution, and multimedia streaming. Besides modeling and simulating

system dynamics of P2P networks under churn (e.g., [5], [19], [23], [34]), validation

of proposed techniques in real networks has recently become an important area for

understanding P2P performance and design limitations in practice. In this regard,

several efforts have been undertaken to characterize peer-to-peer systems by measur-

ing churn-related user behavior (e.g., distribution of lifetime, inter-arrival delays, and

availability) [1], [3], [6], [14], [52], [56], topological information (e.g., degree distribu-

tion and clustering coefficients) [36], [58], and traffic flow rate [23], [53].

Sampling of large-scale networks usually faces two fundamental problems – 1)

obtaining an unbiased distribution of the target quantity and 2) keeping bandwidth

overhead reasonable as system size increases. While sampling bias in topology mea-

surement is understood fairly well [57], the same issue in lifetime sampling has not

been addressed before. What makes the latter problem different is that sampled

users cannot be queried for their lifetimes or even arrival instances. Measurement in

such cases generally requires taking repeated snapshots of the system every ∆ time

units, detecting new arrivals by user appearance in a given snapshot, and inferring

Reprinted with permission from “Residual-Based Estimation of Peer and Link
Lifetimes in P2P Networks” by Xiaoming Wang, Zhongmei Yao, and Dmitri Loguinov,
2009. IEEE/ACM Transactions on Networking, Copyright 2009 by IEEE.
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departures based on user absence in another snapshot. Since ∆ cannot be lowered

below the delay it takes to crawl the network, the issue of precisely reconstructing

the lifetime distribution from measured samples remains open.

In this chapter, we aim to formalize the notion of lifetime sampling bias, un-

derstand its source in existing methods, and design a robust and bandwidth-efficient

sampling mechanism for estimating peer and link lifetime distributions in unstruc-

tured P2P networks (e.g., Gnutella [20], KaZaA [27]). Note that peer lifetimes are

important for understanding general user behavior, their habits, and application per-

formance offered by the peers to the system. Link lifetimes, on the other hand, have

a significant impact on resilience [34], [65] and routing ability [29] of the network

since broken links, rather than dead peers, contribute to formation of stale neighbor

pointers, network disconnection, and routing failure.1

We start by creating a novel analytical framework for understanding and char-

acterizing bias in lifetime sampling. We first explain what constitutes inaccuracy in

measuring the target distribution of lifetimes FL(x) and define sampling methods to

be biased if, given an infinite population of sampled users, they cannot reproduce

FL(x) in all discrete points j∆ in the interval [∆, T ]. Armed with this definition,

we then offer a closed-form model for the measurements obtained by Create-Based

Method (CBM) [51], which is a widely used heuristic for sampling lifetimes in com-

puter systems. We show that both CBM and its modification in [3], [52], [56] are

generally biased as long as ∆ > 0, where the bias is caused by two factors – in-

consistent round-offs (i.e., some user lifetimes are rounded up and others down) and

missed users (i.e., users arrive and depart within a ∆ interval). In fact, we generalize

1There are many reasons why peer lifetime may be different from link lifetime,
which include peers reaching their maximum neighbor capacity and dropping excess
links, leaves migrating from one ultrapeer to another to achieve better performance,
path outages between certain nodes, and demotion of ultrapeers to leaf status.
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this result to show that any sampling technique that attempts to directly measure

user lifetimes every ∆ time units is biased as long as ∆ > 0 and that the bias is

not removable regardless of the mathematical manipulation applied to the measured

samples.

To overcome the discovered limitations of direct sampling, we next propose a

technique called ResIDual-based Estimator (RIDE), in which a crawler takes a snap-

shot of the entire network and then tracks the residual (i.e., remaining) lifetimes of

the users seen in the first crawl. We show that this approach produces an unbiased

version of the residual distribution H(x), which allows us to develop a simple mech-

anism based on renewal churn models of [34], [65] that accurately reconstructs the

lifetime distribution FL(x) from the sampled residuals with a negligible amount of

error.

The next issue we address is bandwidth consumption of lifetime sampling. With

small ∆ and large T , CBM requires significant overhead since it must track all users

that appear in the system in the observation interval, i.e., old peers discovered early

in the crawl and new ones constantly arriving into the system.2 In RIDE, however,

initial users die quickly and the amount of bandwidth needed to sustain the crawl

decays to zero proportionally to the tail of the residual lifetime distribution H(x).

Additional bandwidth savings are possible if the initial set S0 of users found in the

system is uniformly subsampled and only ε-fraction of the users is monitored during

the interval [0, T ]. For example, given Pareto lifetimes with α = 1.1 observed in

our experiments, window T = 24 hours, and sampling interval ∆ = 3 minutes, the

proposed technique reduces the download overhead compared to that in CBM by a

2Note that besides lifetimes CBM can measure additional metrics (e.g., ar-
rival/departure process of users) and its overhead might be justified when these met-
rics are important.
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factor of 16 for ε = 0.1 and a factor of 125 for ε = 0.01.

We finish this chapter by implementing a Gnutella crawler that is about 18

times faster than the fastest prior crawler [56], which allows it to cover the entire

network of 6.4 million users (1.2 million contacted ultrapeers) in under 3 minutes.

Our results using RIDE indicate that ultrapeer lifetimes are Pareto distributed with

shape α ≈ 1.1, which is very close to the results of [3]. At the same time, Gnutella

links are much more volatile and can be described by a Pareto distribution with shape

α ≈ 1.8. These results, fed into the latest resilience models for unstructured systems

[34], [65], suggest that node isolation among joining ultrapeers in Gnutella and thus

partitioning of the network must indeed be extremely rare events.

The remainder of this chapter is organized as follows. In Section 2, we formalize

sampling and bias. In Section 3, we derive the sampling bias of CBM and examine

it under different simulation settings. We propose the residual-based method and

discuss its simulation results in Section 4. We analyze the subsampling technique in

Section 5, examine the bandwidth overhead of the various methods in Section 6 and

present our measurement study of Gnutella in Section 7. Section 8 reviews prior work

and Section 9 concludes this chapter.

2 Formalizing Lifetime Sampling

2.1 Target Distribution

We start by defining the objective of our measurement process. Assume that each user

spends a random amount of time in the system, where the lifetime L of joining users

is drawn from some distribution FL(x). This is similar to the heterogeneous churn

model proposed in [65]. Then, the goal of the sampling process is to estimate with

as much accuracy as possible function FL(x), which we assume is continuous almost
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everywhere3 in the interval (0,∞). As shown in [65], distribution FL(x) represents

the lifetimes of arriving rather than existing peers in the system. The latter metric is

known in renewal process theory as the spread of user lifetimes and can be obtained

from FL(x) using simple integration.

The measurement process is assumed to have periodic access to the information

about which users are currently present in the system. This process allows the sam-

pler to test whether a given user i is still alive as well as discover the entire population

of the system at any time t. However, due to bandwidth and connection-delay con-

straints on obtaining this information, the sampling process cannot query the system

for longer than T or more frequently than once per ∆ time units, where ∆ usually

varies from several minutes to several hours depending on the speed of the crawler

and network size.

Given the above requirements, notice that reconstructing the entire FL(x) from

discrete samples is simply impossible. There are three biases arising from discrete

sampling: 1) the measuring process cannot observe any lifetimes larger than T ; 2) all

samples are rounded to a multiple of ∆; 3) an empirical distribution based on a finite

sample size will not necessarily match the theoretical one. We are not concerned with

the last issue since all methods require an infinitely large sample size to converge to

the desired distribution FL(x). Instead, we are interested in the bias arising from

finite T and non-zero ∆.

We start with the following definition that formalizes samples obtained during

periodic measurements.

Definition 1. A non-negative random variable X∆ for some ∆ > 0 is called lattice

3The set of points in which FL(x) is discontinuous must have measure 0.
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if:
∞∑

j=1

P (X∆ = j∆) = 1, (2)

where ∆ is called the periodicity of X∆ and points xj = j∆ are called the support of

X∆.

For all lattice distributions, we assume that P (X∆ ≤ 0) = FL(0) = 0 and that

the probability mass of X∆ starts from the point x1 = ∆.

We are now ready to define a sampling process.

Definition 2. A (∆, T )-sampling process is a lattice random variable M∆ with peri-

odicity ∆ and P (∆ ≤ M∆ ≤ T ) = 1.

Note that the above defines a sampling process using the limiting distribution

of the values it measures (i.e., assuming an infinite population size). The reason

for doing so is to understand whether a method can provide accurate results given

a sufficiently large sampling size. As we show below, some methods always exhibit

bias, no matter how long they measure the system.

Definition 3. For a random variable X, function E(x) is called an estimator of X

in some interval [a, b] if it is the CDF of some random variable Y that approximates

X in [a, b].

Note that Y can be arbitrarily dissimilar to X, in which case the estimator will

be biased. We next explain what makes an estimator unbiased.

Definition 4. A (∆, T )-sampling process with estimator E(x) is unbiased with respect

to a target continuous random variable X if it can correctly reproduce the distribution

of X in all discrete points xj in the interval [∆, T ] for any ∆ > 0:

E(xj) = P (X ≤ xj) (3)
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for xj = j∆ and j = 1, 2, . . . , T/∆.

Since one may measure different aspects of the system, we finally classify sam-

pling methods based on whether they measures the target random variable or some

other related distribution.

Definition 5. A (∆, T )-sampling process of a random variable X is called direct, if

it measures quantities whose distribution is the same as that of X. It is called indirect

otherwise.

For example, direct lifetime sampling must measure session lengths of all arriving

users, while indirect sampling may record the lifetimes of peers alive in the system at

some time t. Given an established relationship between the two metrics, an estimator

can then be used to reconstruct lifetimes L from indirect samples. In another example,

direct sampling of network size must count the number of users present in the system

at different times t, while indirect sampling may measure the arrival process of peers

into the system. Properly selected indirect sampling may be more accurate and/or

may require lower overhead than direct sampling. We demonstrate one such example

later in this chapter.

3 Direct Sampling

In this section, we first examine the source of bias in direct sampling and study

the problem of constructing an unbiased estimator for measuring lifetimes. We then

derive a model for the distribution obtained by Create-Based Method (CBM) and

demonstrate examples of its bias.
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Fig. 3. Round-off inconsistencies in direct sampling.

3.1 General Results

In direct sampling, the measured random variable M∆ is the lifetime of individual

users conditioned on them being smaller than T and being present in the crawl:

P (M∆ ≤ x) = P (L ≤ x|L ≤ T, not missed), (4)

where missed samples arise when a user joins and departs between consequent crawls.

Note, however, that not all users with lifetimes smaller than ∆ are missed and that

some of them are actually taken into account in the distribution of M∆. Another

issue that we discover in this work is that some lifetime samples are rounded up and

others rounded down during the measurement, which together with missed users gives

rise to the bias we derive below. We next formalize round-off errors and explain how

they affect direct sampling.

Definition 6. For a continuous random variable X, a (∆, T ) sampling process is

consistent if measured samples are all rounded up to the nearest multiple of ∆.

Since a crawler in direct sampling never knows the exact arrival time of users it

observes, there is an ambiguity in how to round-off the lifetimes of measured peers.

Consider the example in Figure 3, where sample L1 = 0.5∆ is indistinguishable from



9

sample L2 = 1.8∆ from the perspective of the crawler. This causes both of these

lifetimes to be rounded off to ∆, which using our terminology makes L1 consistent

and L2 inconsistent. Also observe in the figure that samples L3 = 0.4∆ and L4 = 0.6∆

are completely missed by the crawler, even though sample L1 is captured. This case

can also be treated as inconsistent round-off as we define below.

Let

Qj =





1 inconsistently rounded down to xj

0 otherwise

to be an indicator variable of the event that a user’s lifetime xj ≤ L < xj+1 is

inconsistently rounded down to xj by the sampling process, where rounding down to

x0 = 0 represents missing the entire sample. For simplicity of notation, we define

ρj = P (Qj = 1) and obtain the probability of inconsistent round-off in the interval

[xj, xj+1) in the next theorem.

Theorem 1. In direct sampling, the probability that lifetime samples are inconsis-

tently rounded down to xj = j∆ (j = 0, 1, ..., T/∆) is:

ρj =
1

∆

∫ xj+1

xj

FL(x)dx− FL(xj), (5)

where FL(x) is the CDF of the lifetime distribution of samples.

Proof. Without loss of generality, shift the time axis such that a given user arrives at

time 0 ≤ t < ∆ into the system and its lifetime is xj < L ≤ xj+1. Then, the user is

sampled inconsistently with probability:

g(t) = P (xj < L ≤ xj+1 − t) = FL(xj+1 − t)− FL(xj). (6)
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Since arrival point t can be any uniformly random point in [0, ∆], we have:

ρj =

∫ ∆

0

g(t)
1

∆
dt, (7)

which leads to the desired result.

Equipped with (5), we next derive an unbiased estimator for the continuous

random variable L.

Theorem 2. For direct lifetime sampling, the following is an unbiased estimator of

L:

E(xj) = P (M∆ ≤ xj)P (L ≤ T |Q0 = 0)(1− ρ0) + ρ0 − ρj, (8)

where ρj is given in (5).

Proof. Note that for a measured lifetime sample M∆ ≤ xj, either the actual lifetime

L ≤ xj holds, or xj < L < xj+1 but is inconsistently rounded down to xj, i.e., Qj = 1.

Therefore, (4) becomes:

P (M∆ ≤ xj) = P (L ≤ xj ∪Qj = 1|L ≤ T, Q0 = 0). (9)

Denoting by B the event (L ≤ xj∪Qj = 1) and expanding the conditional probability

on the right side of (9), we get:

P (M∆ ≤ xj) =
P (B,L ≤ T, Q0 = 0)

P (L ≤ T, Q0 = 0)
=

P (B, Q0 = 0)

P (L ≤ T, Q0 = 0)
, (10)

where the second equality is from the fact that B implies L ≤ T . Next, we derive the

numerator and denominator of the right-hand side of (10) separately.

Rewrite the numerator of (10) as follows:

P (B, Q0 = 0) = P (B)− P (B, Q0 = 1), (11)



11

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

j

ρ j

 

 

Simulations
Model

(a) ∆ = 3 min

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

j

ρ j

 

 

Simulations
Model

(b) ∆ = 15 min

Fig. 4. Comparison of ρj computed from (5) to simulations.

where P (B) can be expanded by:

P (B) = P (L ≤ xj) + P (Qj = 1) = P (L ≤ xj) + ρj. (12)

Since Q0 = 1 implies L ≤ xj, we have:

P (B, Q0 = 1) = P (Q0 = 1) = ρ0. (13)

Substituting (12)-(13) into (11), we obtain:

P (B, Q0 = 0) = P (L ≤ xj) + ρj − ρ0. (14)

Expanding the denominator of (10) establishes that:

P (L ≤ T,Q0 = 0) = P (L ≤ T |Q0 = 0)P (Q0 = 0)

= P (L ≤ T |Q0 = 0)(1− ρ0). (15)
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Substituting (14)-(15) into (10) gives:

P (M∆ ≤ xj) =
P (L ≤ xj) + ρj − ρ0

P (L ≤ T |Q0 = 0)(1− ρ0)
, (16)

Considering that an unbiased estimator E(xj) should equal P (L ≤ xj), (8) follows

from (16).

We next verify (5) and (8) in simulations using the example of a Pareto distri-

bution commonly used to model user lifetimes [34], [65]:

FL(x) = 1− (1 + x/β)−α, α > 1, x ≥ 0, (17)

with E[L] = β/(α − 1). We use α = 1.1, β = 0.05, T = 24 hours, and E[L] = 0.5

hours. We count the number of inconsistent round-offs for each j = 0, 1, ..., T/∆ and

plot the corresponding empirical probability ρj in Figure 4, which shows that (5)

predicts reality very well. Furthermore, we compute the empirical values of P (M∆ ≤
xj) and supplement the measured data with the knowledge of ρj to obtain E(xj)

according to (8). Figure 5 plots the values of E(xj) obtained both from model (8)

and the actual distribution (17), which indicates a perfect match.

From the result of Theorem 2, it becomes clear that unbiased measurement

requires access to the distribution of observed samples (i.e., variable M∆), the fraction

of observed lifetimes that are no larger than T (i.e., P (L ≤ T |Q0 = 0)), and all

individual ρj. While the first two metrics are easily measurable in practice, recovery

from inconsistent round-offs requires the exact join time of each sampled user and the

number of missed users. Unfortunately, within the constraints of our problem (i.e.,

crawling of alive users with a period no less than ∆), the effect of round-off errors is

impossible to overcome no matter what manipulation is applied to M∆.
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Fig. 5. Verifying estimator (8) in simulations.

3.2 Create-Based Method (CBM)

We next study how inconsistent round-offs exhibit themselves in a widely used [3], [52],

[56] direct sampling algorithm called Create-Based Method (CBM), first introduced

by [51] in the context of operating systems. Recall from [51] that CBM uses an

observation window of size 2T , which is split into small intervals of size ∆. Within

the observation window [0, 2T ], the algorithm takes a snapshot of the system at the

beginning of each interval. To avoid sampling bias, [51] suggests dividing the window

into two halves and only including samples that appear during the first half of the

window, disappear somewhere within the window, and stay in the system no longer

than T time units. Figure 6 shows an example of create-based sampling with three

valid, four invalid, and two missed lifetime samples. The invalid cases include users

who join the system before the observation window or in its second half, a peer that

survives beyond time 2T , and a user whose lifetime is larger than T .

Assume that N is the number of users that arrive into the system in the first half

of the window [0, T ] and N(x) is the number of such users with lifetimes less than or
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Fig. 6. Illustration of sampling in CBM.

equal to x. Observe that N(T ) is the number of valid samples collected by CBM and

limN→∞ N(T )/N is the simply metric P (L ≤ T |Q0 = 0) defined earlier. One possible

way to estimate FL(x) is to take the ratio of N(xj) to N(T ) as the estimator of the

probability P (L ≤ xj), which leads to our first CBM estimator [51]:

EA(xj) = lim
N→∞

N(xj)

N(T )
= P (M∆ ≤ xj). (18)

Recent work in [3], [52], [56] normalizes EA by the percentage of samples no

larger than T (i.e., N(T )/N) and defines the following modified estimator:

EB(xj) = lim
N→∞

N(xj)

N
. (19)

With the result in (8), we can express both CBM estimators as functions of the

actual distribution FL(xj) = P (L ≤ xj).

Theorem 3. Both CBM estimators (18)-(19) are generally biased when any ρj > 0

and produce the following distributions:

EA(xj) =
FL(xj)− ρ0 + ρj

FL(T )− ρ0

, EB(xj) =
FL(xj)− ρ0 + ρj

1− ρ0

. (20)
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Fig. 7. Estimator EA with Pareto lifetimes (n = 106 users, T = 24 hours, α = 1.1,

β = 0.05, and E[L] = 0.5 hours).

Proof. Expanding EA(xj) using (8), we have:

EA(xj) =
FL(xj)− ρ0 + ρj

P (L ≤ T |Q = 0)(1− ρ0)
. (21)

We now use the following reasoning. Observe that P (L ≤ T |Q = 0)P (Q = 0) =

P (L ≤ T, Q = 0), which can be rewritten as follows:

P (L ≤ T, Q = 0) = P (L ≤ T )− P (L ≤ T, Q = 1)

= P (L ≤ T )− ρ0. (22)

The second equality in (22) is from the fact that Q = 1 implies L ≤ T . The result of

EB(xj) is a direct consequence of (8).

The result in (20) shows that EB is closer to FL(x) than EA since its accuracy

is not affected by the value of T . Next, we explore in more detail the effect of (∆, T )

on the fidelity of these estimators using model (20) and simulations.
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3.3 Effect of Bias on CBM

We first explain how T and ∆ skew the shape of estimator EA. To simplify the

discussion below, define Ē(x) = 1 − E(x) to be the tail distribution of any CDF

function E(x). It then follows from (20) that:

ĒA(xj) =
F̄L(xj)− F̄L(T )− ρj

FL(T )− ρ0

, (23)

which shows that the measured tail distribution is a shifted and scaled version of the

true tail. The influence of the shift/scale factors on the right side of (23) could be

illustrated through simulations. We use CBM with T = 24 hours in a hypothetical

network with n = 1 million users that join and depart using the churn model of [65].

Even though FL(T ) = 99.8% of users have lifetimes smaller than T , Figure 7 shows

that EA suffers from significant bias that increases as ∆ becomes larger. Not only

does the measured distribution EA produce incorrect estimates α ≈ 2.4, β ≈ 0.5 of

Pareto parameters when fitted with the corresponding curve, but the shape of the

tail in Figure 7 does not even resemble that of F̄L(x), which may lead to erroneous

conclusions about the family of distributions FL(x) belongs to.

We now study how ρj affects the shape of EB. It follows from (20) that for

j = 0, 1, 2, ..., T/∆:

ĒB(xj) =
F̄L(xj)− ρj

1− ρ0

, (24)

which is the true tail shifted by ρj and then scaled by 1 − ρ0. For small ρj ≈ 0,

this transformation on log scale preserves the Pareto shape parameter α as seen in

Figure 8, but makes scale parameter β inaccurate (i.e., α ≈ 1.14, β ≈ 0.15 for ∆ = 15

minutes). For cases of non-negligible ρj that arise when ∆ is very large or when

distribution FL(x) does not admit shape invariance during scaling (e.g., Gaussian,

uniform), estimator EB may produce significantly misleading results.
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Fig. 8. Estimator EB with Pareto lifetimes (n = 106 users, T = 24 hours, α = 1.1,

β = 0.05, and E[L] = 0.5 hours).

3.4 Limitations of CBM

From now on, we refer to EB when mentioning CBM since EB exhibits less bias than

EA as shown by model (20) and Figure 7-8. We next investigate whether there exists

a lifetime distribution such that ĒB(xj) = F̄L(xj). Notice from (24) that there are

two ways for CBM to be unbiased, either ρ0 = ρj = 0 or ρj = ρ0F̄L(xj). The next

two theorems shows that only special lifetime distributions satisfy these conditions.

Theorem 4. The only lifetime distribution that allows CBM to avoid all round-off

errors (i.e., ρj = 0, j = 0, 1, 2, ...T/∆ − 1) is a step function with support m∆ for

some integer m ≥ 1.

Proof. It follows from (5) that for ρj = 0 (j ≥ 1) to hold, we must have:

FL(x) =





0 0 ≤ x < ∆

FL(xj) xj ≤ x < xj + ∆

, (25)

which specifies a step function with support m∆, where m = 1, 2, . . .
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Note that in real-life systems, the assumption that the lifetime distribution fol-

lows a step function with periodicity equal to crawl delay ∆ is too restrictive. There-

fore, we next seek non-step functions that satisfy the second condition of CBM being

unbiased.

Theorem 5. The only lifetime distribution that allows CBM to be unbiased simulta-

neously for all ∆ > 0 is exponential.

Proof. We prove the theorem by first verifying that the exponential function satisfies

ĒB(xj) = F̄L(xj) and show its uniqueness. Substituting FL(x) = 1 − e−x/µ into (5),

we obtain ρj for exponential distributions:

ρj = e−xj/µ
(
1− µ

∆
(1− e∆/µ)

)
= F̄L(xj)ρ0. (26)

Substituting (26) into (24) establishes ĒB(xj) = F̄L(xj).

We next show that if ĒB(xj) = F̄L(xj), then FL(x) must be an exponential

function. Assuming ĒB(xj) = F̄L(xj), we can reduce (24) to:

ρj = F̄L(xj)ρ0. (27)

Expanding ρj and ρ0 in (27) using (5), we get:

∫ ∆

0

(FL(x + xj)− FL(xj))dx =

∫ ∆

0

F̄L(xj)FL(x)dx. (28)

For (28) to hold for all ∆ > 0, we must have for all x > 0:

FL(x + xj)− FL(xj) = F̄L(xj)FL(x), (29)

which can be simplified to:

F̄L(x + xj) = F̄L(x)F̄L(xj). (30)
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Note that the only solution to F̄L(x+y) = F̄L(x)F̄L(y) is given by the exponential

function F̄L(x) = e−x/µ, which establishes the desired result.

Given that the observed lifetimes in peer-to-peer systems [3], [56] are heavy-

tailed, we next explore a different method that works without any assumptions on

FL(x).

4 Indirect Sampling

In this section, we seek a solution to the problem of achieving both high accuracy and

low overhead using indirect sampling. It has been suggested [1], [34], [65] that users

in peer-to-peer systems can be modeled as alternating between available (ON) and

unavailable (OFF) states. Inspired by these efforts, we now propose our measurement

algorithm, called ResIDual-based Estimator (RIDE), that exploits renewal theory [49]

to reconstruct FL(x) from sampled residual lifetimes.

4.1 Churn Model

Consider a P2P system with n participating users, where each user i is either alive

(i.e., present in the system) at time t or dead (i.e., logged off). This behavior can be

modeled by an ON/OFF process {Zi(t)} for each user i = 1, 2, ..., n:

Zi(t) =





1 user i is alive at time t

0 otherwise

. (31)

This framework is illustrated in Figure 20, where Xi and Yi are i.i.d. durations

of user i’s ON (life) and OFF (death) periods, respectively, and R(t) is the remaining

lifetime of user i at time t. Assume that variables Xi are drawn from a user-specific

distribution Fi(x) = P (Xi < x) and denote by li = E[Xi] the expected lifetime and
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Fig. 9. Process Zi(t) depicting user i’s ON/OFF behavior.

by di = E[Yi] the expected offtime of user i. Further define bi to be the arrival rate

of user i normalized by the total arrival rate into the system [65]:

bi =
1/(li + di)∑n

k=1 1/(lk + dk)
. (32)

Then, it has been proven in [65] that the aggregate lifetime of all users seen by

the system is drawn from a weighted distribution:

FL(x) =
n∑

i=1

biFi(x). (33)

As before, L is the random lifetime of peers visiting the system and the goal

of our and other measurement studies is not to sample each of Fi(x), but rather to

measure the users’ aggregate behavior FL(x) = P (L < x). In order to accomplish

this task, define R(t) be the residual lifetime of a random alive user at time t and

denote by H(x) its limiting distribution:

H(x) = lim
t→∞

P (R(t) ≤ x). (34)

Then, FL(x) can be inferred from H(x) using the following relationship estab-

lished in [65]:

H(x) =
1

µ

∫ x

0

(1− FL(u))du, (35)
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Fig. 10. Sampling residuals in RIDE.

where µ = E[L] is the expected lifetime of a joining peer and FL(x) is given by (33).

4.2 RIDE

We first define the sampling algorithm in RIDE and then discuss its estimator ER(x).

At time t0, RIDE takes a snapshot of the whole system and records in set S0 all users

found to be alive. For all subsequent intervals j (j = 1, 2, ..., T/∆) of ∆ time units,

the algorithm keeps probing peers in set S0 either until they die or T expires. After

the observation window is over, the algorithm obtains the distribution of residual

lifetime M∆ of the users in set S0.

Two important properties about residual sampling can be drawn from its defini-

tion: 1) no valid samples can be missed since only users who are alive at time t = t0

are valid measurements; 2) no samples can be inconsistently rounded off since all

valid residual lifetimes start from the time of the first crawl. Figure 10 illustrates an

example of five valid samples captured in the first crawl and five irrelevant lifetimes

that are safely ignored by the algorithm.

Define EH(xj) to be an estimator of the residual distribution H(x) using users
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in set S0 and assuming the system is in equilibrium:

EH(xj) = lim
|S0|→∞

N(xj)

|S0| , (36)

where N(x) denotes the number of users in S0 whose lifetimes are shorter than or

equal to x. Since RIDE does not miss or incorrectly round off samples, its estimation

of residual lifetimes is unbiased, which leads to EH(xj) = H(xj). Combining with

(35), we establish the next theorem.

Theorem 6. For residual lifetime sampling, the following is an unbiased estimator

of L:

ER(xj) = 1− h(xj)

h(0)
, (37)

where xj = j∆ and h(x) = H ′(x) is the PDF of R(t). Furthermore, the expected user

lifetime is E[L] = 1/h(0).

Proof. Differentiating both sides of (35), we get h(x) = (1−FL(x))/µ. Setting x = 0,

it follows that h(0) = 1/µ. Solving for FL(x), we get (37).

Since H(x) is computed without bias, it is now possible to numerically compute

its derivative h(x) using Taylor expansion with error bounded by O(H(k)(x)∆k/k!),

where k = T/∆ is the number of samples in the curve. For any analytic func-

tion H(x), the convergence of the error to zero is guaranteed as k becomes large.

For ∆ = 3 minutes and T = 24 hours commonly used in our experiments, the re-

sulting error for Pareto lifetimes with α = 1.1 and β = 0.1 is upper bounded by

H(480)(0)∆480/480! ≈ 10−624, which for all practical purposes can be considered zero.

In simulations, however, we find that using only 3 points is often sufficient for achiev-

ing good estimation accuracy (see below).
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5 Subsampling

In this section, we examine under what conditions CBM and RIDE allow reduction

of measurement overhead through some type of user subsampling. We then discuss

the algorithm used in RIDE and show its performance.

5.1 Preliminaries

Assume that the target P2P system is fully distributed and supports the operation

of building a list S of currently alive peers. We assume that it takes ∆ time units

to create S and that this process requires bandwidth overhead proportional to the

number of alive users, i.e., C|S| bytes where C is some fixed bandwidth needed to

find an alive user and download its parameters (e.g., IP address and port number).

Note that we do not require that the P2P system provide any other mechanisms

that aid our measurement process (e.g., notifications about user arrival, departure,

or dynamic link changes).

Once S is built, we assume that each alive user can be monitored using a mech-

anism independent of the P2P network to detect its departure (e.g., using TCP con-

nection requests). This monitoring also incurs overhead C units per user and can be

done no more often than once per ∆ time units per peer in order to keep the process

non-intrusive and scalable to large n. Decoupling lifetime probing from the initial

collection of alive users, we allow for a range of subsampling techniques where only a

subset of alive users is monitored at any given time. With such algorithms, the goal

is to simultaneously reduce the total overhead in the observation window [0, T ] and

preserve estimation accuracy.

Our earlier description of CBM required repeated crawls of the system to refresh

set S, detect new arrivals, and measure their lifetimes. With certain additional re-
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strictions (see below), there are two possible mechanisms for subsampling in CBM.

The first method, which we call direct, obtains the initial snapshot S0 of the system

at time t0 and then selects each user with an independent probability ε into a smaller

subset S ′0. The measurement process then monitors the ON/OFF behavior of each

user v ∈ S ′0 for T time units and estimates FL(x) based on the collected lifetimes

(ignoring the first ON cycle of each user since it contains a residual rather than a

lifetime). The second method, which we call indirect, monitors the neighbors of users

in S ′0 to detect new arrivals and uses their lifetimes for estimating the distribution of

L.

RIDE subsampling is similar to the first CBM technique in the sense that only

residuals of users in S ′0 are monitored and used in estimation.

5.2 Direct CBM Sampling

We start our analysis with direct subsampling. There are several restrictions that

this method imposes: 1) users between sessions must appear with the same (IP, port)

combination; 2) OFF durations are small in comparison to T ; and 3) the distribution

of lifetimes for users in S ′0 is indeed FL(x). In many current P2P networks, the user is

likely to use a new IP address assigned by its DHCP/PPP server [56] or choose a new

port for each join into the system [20], which makes detection of its return into the

system and monitoring of its ON/OFF cycles impossible without periodic re-crawls of

the system. The second assumption depends on user behavior and may significantly

impact CBM subsampling if users do not return into the system within T time units,

which has been observed in BitTorrent networks [56]. Even if both conditions 1) and

2) are satisfied, our next result shows that even with ∆ = 0 direct CBM subsampling

is biased in general networks and does not converge to FL(x).

Assume that S0 is a random variable representing the set of currently alive users,
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N(x, T ) is the average number of lifetimes less than x collected by CBM from users

in S0 during [0, T ], and N(T ) is the average number of samples observed by CBM in

the same interval. Then, define a new CBM estimator that measures the lifetime of

users in S0:

EBS(x) = lim
T→∞

N(x, T )

N(T )
. (38)

Theorem 7. For ∆ = 0, the distribution of user lifetimes in S0 is:

EBS(x) =
n∑

i=1

li/(li + di)
2

∑n
k=1 lk/(lk + dk)2

Fi(x). (39)

Proof. Denote by Ω(T ) the set of all lifetime samples obtained from monitoring users

in S0 in the interval [0, T ]. We use average-case analysis where each user is included

into S0 with probability li/(li + di), i.e., with probability that it is alive at time t0. It

then follows that the expected fraction of samples from user i in Ω(T ) as T → ∞ is

[65]:

pi =
li/(li + di)

2

∑n
k=1 lk/(lk + dk)2

. (40)

Therefore, the probability that a randomly selected lifetime in an infinite set

limT→∞ Ω(T ) is from user i and less than x is piP (Li < x), which leads to:

EBS(x) =
n∑

i=1

piP (Li < x), (41)

and thus establishes (39).

Since uniformly random subsampling of S0 produces users with the same bias as

in the original set, we immediately obtain the next result.

Corollary 1. For sufficiently large ε|S0|, direct CBM subsampling estimates distri-

bution (39).

Due to limited space, we omit simulations showing the accuracy of (39) and
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Fig. 11. Original and subsampled estimator ER with Pareto lifetimes (|S0| = 106

users, T = 24 hours, ∆ = 15 minutes, α = 1.1, β = 0.05, and E[L] = 0.5 hours).

Both examples use 3-point derivatives.

the extent of its deviation from FL(x) in (33). Theorem 7 shows that, compared

to peers arriving into the system, set S0 is more heavily skewed towards users with

significant online presence. The key difference between CBM and RIDE is that the

former requires observation of new arrivals into the system, while the latter needs to

monitor users currently in the system. Therefore, RIDE naturally expects bias among

users in S0, which it overcomes using a reconstruction technique in (37). CBM has

no such mechanism.

Our final observation regarding direct CBM subsampling is that it can be used

only in systems consisting of homogeneous peers (i.e., all users exhibit identical char-

acteristics with Fi(x) = FL(x)). However, since measurement studies [56] show that

P2P users are often heterogeneous, this assumption is of limited practical use.
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Fig. 12. Inverse averaging applied to ER for Pareto lifetimes (|S0| = 106 users, T = 24

hours, ∆ = 15 minutes, α = 1.1, β = 0.05, and E[L] = 0.5 hours). Both examples

use 3-point derivatives.

5.3 Indirect CBM Sampling

Indirect sampling imposes the following restrictions: 1) neighbors of alive users can

be monitored using some P2P protocol; 2) arrivals into a certain neighbor set only

include new users (i.e., peers do not dynamically switch links); 3) neighbors of peers

in set S ′0 have unbiased lifetimes; 4) set S ′0 is popular enough to attract a sufficient

number of new neighbors in [0, T ]; and 5) users in S ′0 depart from the system slower

than new users become their neighbors.

The first restriction is relatively easy to satisfy in certain systems (e.g., Gnutella),

but may be more problematic in cases when the current population S is known to

some server-like entity (e.g., BitTorrent tracker) in the form of a list, but individual

peer-to-peer links are unknown. The second restriction does not hold even in Gnutella

since users frequently migrate from one ultrapeer to another. These migrating users

then arrive into existing neighbor sets with non-zero age, which creates bias in all
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Fig. 13. Comparing CBM and RIDE for Pareto lifetimes (T = 24 hrs, ∆ = 3 min,

α = 1.1, and E[L] = 30 min, 3-point derivatives).
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cases except exponential L.

The third constraint depends on the neighbor selection algorithm and may intro-

duce bias in lifetimes of observed arrivals if users make neighbor selection based on

the characteristics of their future neighbors. Since set S0 is already biased from the

perspective of CBM, arriving neighbors may also exhibit bias if links are formed based

on some similarity between Fi(x) of new users and Fj(x) of existing peers. Without a

specific graph-construction algorithm, further analysis of this bias is impossible. The

last two restrictions also depend on how P2P graphs are constructed and may become

a problem when new users for whatever reason do not choose peers in S ′0 as neighbors

or when |S ′0| shrinks to zero before enough new arrivals have been detected.

5.4 RIDE Subsampling

The accuracy of RIDE’s subsampling algorithm can be inferred from the fact that

users in S ′0 have the same distribution of residuals as those in S0.

Corollary 2. For sufficiently large ε|S0|, RIDE subsampling produces an unbiased

estimate of H(x).

Compared to CBM, RIDE allows subsampling under the most general conditions

and requires only two main assumptions introduced in the beginning of this section

(i.e., ability to construct S0 and monitor alive users until they die). RIDE subsampling

does not impose any restrictions on link structure, user migration, lifetime homogene-

ity, user appearance in subsequent sessions, OFF durations, or neighbor selection. As

a result, for the most general case assumed throughout this chapter, CBM must per-

form full crawls to build its estimates of FL(x), while RIDE can monitor residuals in

S ′0.

It is worthwhile mentioning that residual sampling acquires all valid samples
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during the very first crawl. Therefore, given that |S0| is sufficiently large, Corol-

lary 2 shows that it is possible to randomly subsample the initial set of users and

track the residuals of only ε percent of the entire user population. This significantly

reduces traffic requirements and allows RIDE to achieve orders of magnitude lower

bandwidth overhead in practice compared to CBM. We leave the overhead analysis

of subsampling to the next section and now show in Figure 11 one example of using

this technique, where a system of 1 million users in the same setup as in Figure 8(b)

is subsampled by a factor of 100. First notice in Figure 11(a) that RIDE recovers

FL(x) with much higher accuracy than EB and obtains α = 1.1002 and β = 0.049.

Second, observe in Figure 11(b) that RIDE achieves reasonable estimation accuracy

(α = 1.115, β = 0.083) even with just 10, 000 users; however, the tail of the subsam-

pled distribution is highly variable, which potentially makes it difficult to understand

the distribution’s qualitative behavior. We next deal with this issue.

5.5 Inverse Averaging

To overcome the tail noise arising when |S0| is heavily subsampled, we next present

an algorithm for reducing the variance in the measured distribution ER(x). Notice

that ER(x) is a mapping between two discrete sets, i.e., from set X = {j∆} to set

Y = {j/|S0|} for j = 1, 2, . . . , T/∆. For each y ∈ Y , we find all xi ∈ X such that

ER(xi) = y and calculate the corresponding average x̂(y):

x̂(y) =

∑
i xi1ER(xi)=y∑
k 1ER(xi)=y

, (42)

where 1A is the indicator function of event A. Denote by X̂ the set of all possible

x̂(y) from (42), i.e., X̂ = {x̂(y)|y ∈ Y} and define inverse averaging to be a relation

(x̂(y), y) for all y ∈ Y . By smoothing out the tail, inverse averaging improves the

shape of the distribution and allows better accuracy in estimation.
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Next, we examine two cases of inverse averaging using the example in Figure

11(a) subsampled with ε = 0.1 and ε = 0.01. The resulting distributions are shown in

Figure 12, which demonstrates much better preservation of the Pareto shape in the

tail and less oscillations than without the use of inverse averaging. For ε|S0| = 105 in

Figure 12(a), curve fitting produces α = 1.11, β = 0.065, and for ε|S0| = 104 in Figure

12(b), we obtain α = 1.09, β = 0.077. This shows that even when ∆ is comparable to

the average lifetime E[L] and with very few samples, RIDE is capable of reasonably

accurate estimation.

5.6 Evaluation

In this section, we provide comparison results between subsamplied RIDE and orig-

inal CBM that cover various parameter settings and lifetime distributions. We start

with defining a statistical metric that characterizes the extent of difference between

two distribution functions. The metric that we use in this section is the Weighted

Mean Relative Difference (WMRD), which is often used for comparing heavy-tailed

distributions [11]. Denote by FL(x) the actual CDF function and by E(x) its estima-

tor. Define δ to be the WMRD distance between E(x) and FL(x), which is computed

as:

δ =

∑
j |E(xj)− FL(xj)|∑

j(E(xj) + FL(xj))/2
, (43)

where xj = j∆. Note that the asymptotic value of δ in CBM (i.e., for N →∞) can be

computed from (20) given any lifetime distribution and sampling parameters. It can

also be inferred from (20) that CBM’s limiting δ is generally non-zero for non-lattice,

non-exponential lifetimes. On the other hand, with ε|S0| → ∞, RIDE’s δ converges

to zero.
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Fig. 14. Comparing CBM and RIDE for uniform and Weibull lifetimes (3-point

derivatives).

Setting asymptotics aside, we next examine CBM and RIDE using δ in simula-

tions with finite systems. Figure 13 plots the values of δ obtained from simulations

with Pareto lifetimes. In the figure, we vary each of the four parameters while fixing

the others according to the basic setting of T = 24 hrs, ∆ = 3 min, α = 1.1, and

E[L] = 30 min. For each scenario, we simulate a measurement process that captures

107 samples, estimates the lifetime distribution using CBM and RIDE, and computes

the resulting difference δ between the estimated and actual distributions. The figure

shows that RIDE even using 1% sub-sampling (ε = 0.01) exhibits smaller errors than

the original CBM in all parameter configurations. Figure 14 also compares CBM and

RIDE with lifetimes drawn from the uniform distribution in (µ − 0.5, µ + 0.5) and

the Weibull distribution with shape α = 0.6 and scale β = 0.66µ, where µ is the

expected lifetime. The figure indicates that RIDE achieves similar and even better

performance than CBM in all studied cases.
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6 Overhead

This section formalizes the overhead of the various studied sampling methods and

compares the bandwidth requirement of RIDE to that of CBM.

6.1 Models

For general P2P networks where CBM subsampling is impossible, we assume that

the algorithm performs full crawls of the system every ∆ time units in the interval

[t0, t0 + T ] and then keeps probing peers that were present in the system at time

t = t0 + T until they die or their observed lifetime exceeds T time units. Based on

these rules, we formulate in the next theorem the overhead for CBM.

Theorem 8. Total bandwidth overhead of (∆, T )-sampling using CBM is given by:

bCBM =
C|S0|

∆

(
T +

∫ T

0

[H(T )−H(x)]dx

)
, (44)

where |S0| is the number of alive users in the system, C is the cost of probing or

crawling a user, and H(x) is the CDF of residual lifetimes.

Proof. Denote by b1, b2 the overhead of CBM in intervals [t0, t0+T ] and [t0+T, t0+2T ],

respectively. For all T/∆ points in the first interval, each snapshot will capture |S0|
users and thus the overhead is simply b1 = C|S0|T/∆.

Now, we examine the overhead in the second interval. Consider the snapshot

that captures |S0| users at time t0 + T , i.e., the last snapshot in the first interval.

Denote by Z the remaining sampling duration of a random user alive at t0 +T . Then,

the expected overhead b2 incurred by probing in [t0 + T, t0 + 2T ] is given by:

b2 =
C|S0|E[Z]

∆
. (45)

Next, we focus on deriving E[Z]. Denote by A the age of a user at time t0 + T .
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From time t0 + T , we only need to track peers whose age A is less than T , since

E[Z|A ≥ T ] = 0. Thus, E[Z] can be rewritten as follows:

E[Z] =

∫ ∞

0

E[Z|A = x]fA(x)dx =

∫ T

0

E[Z|A = x]fA(x)dx, (46)

where E[Z|A = x] is the expected sampling duration of a user given that its age is

x < T . Denote by R(x) the residual lifetime of a randomly selected user given that

its age A = x. Note that from time t0 + T , we keep probing a user with age x < T

until either it dies, i.e., for R(x) time units, or the remaining observation duration

T − x expires, whichever happens first. Thus, it follows that:

E[Z|A = x] = E[min(R(x), T − x)]

=

∫ ∞

0

P (min(R(x), T − x) > y)dy

=

∫ T−x

0

P (R(x) > y)dy. (47)

Note that P (R(x) > y) can be expressed in terms of FL(x):

P (R(x) > y) =
P (L > x + y)

P (L > x)
=

1− FL(x + y)

1− FL(x)
,

which together with (46), (47) gives:

E[Z] =

∫ T

0

∫ T−x

0

1− FL(x + y)

1− FL(x)
dyfA(x)dx

= E[L]

∫ T

0

H(T )−H(x)

1− FL(x)
fA(x)dx. (48)

The second equality in (48) comes from the fact that H(x) = 1/E[L]
∫ x

0
(1−FL(u))du.

Substituting fA(x) = (1− FL(x))/E[L] into (48) establishes:

E[Z] =

∫ T

0

[H(T )−H(x)]dx,

from which we obtain b2. Summing up b1, b2 gives (44).
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Next, we examine the overhead of RIDE sampling. Note that RIDE only probes

users that are captured in the first crawl until they die or T expires. Taking into

account ε-subsampling, we have the following theorem.

Theorem 9. Total bandwidth overhead of (∆, T )-sampling using RIDE is given by:

bRIDE =
C|S0|

∆

(
∆ + ε

∫ T

0

[1−H(x)]dx

)
, (49)

where ε is the fraction of peers retained in the initial set S0.

Proof. In RIDE, we have one full crawl and then each user is sampled until it dies or

T expires. The average duration a user survives in the system is E[min(R, T )] given

by:

E[min(R, T )] =

∫ T

0

P (min(R, T ) > x)dx (50)

where for x ≤ T :

P (min(R, T ) > x) = P (R > x) = 1−H(x).

With subsampling, we have one full crawl of cost C|S0| and then repeated crawls

over systems of size ε|S0|, which gives us

bRIDE = C|S0|
[
1 +

εE[min(R, T )]

∆

]
, (51)

which together with (50) leads to (49).

6.2 Simulations and Discussion

We first verify models (44) and (49) in simulations and compare RIDE to CBM in

terms of overhead. We set C = 1 KB and ∆ = 6 minutes in (44), (49). When

simulating RIDE, we do not use subsampling and set ε = 1. Users have lifetimes
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Fig. 15. Verification of models (44), (49) against simulations.
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Table I. Comparison of overhead using E[L] = 1 hour, ∆ = 3 minutes

α T q(0.1) q(0.01) α T q(0.1) q(0.01)

1.1 24 hrs 16 125 2 24 hrs 71 319

48 hrs 17 151 48 hrs 116 573

72 hrs 18 164 72 hrs 157 811
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Fig. 16. Effect of ε on the accuracy and overhead of RIDE subsampling in simulations

(40-point derivatives).

drawn from a power-law distribution and each departure event triggers a new arrival.

Additional simulations show that this simplified treatment of departure times does

not affect the result.

We plot in Figure 15 the overhead of CBM and RIDE obtained from both simu-

lations and models (44), (49) by fixing three parameters from the set α = 3, E[L] = 2

hours, |S0| = 104, T = 24 hours and varying the fourth. The figure shows that

both models track simulation results pretty accurately for all studied cases and that

RIDE (even without subsampling) exhibits significantly less overhead than CBM. The
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curves in Figure 15(a)-(b) are almost horizontal, predicting that neither method is

very sensitive to the changes in E[L] or α. Figure 15(c)-(d) display linear increasing

curves for both methods, but CBM’s slope is significantly more aggressive.

Next, define q(ε) to be the ratio bCBM/bRIDE for the same |S0|. Assuming Pareto

lifetimes with shape α, Table I shows the exact savings gained by using residual

subsampling. The table shows that RIDE can reduce traffic overhead by a factor of

16−800 compared to CBM depending on the tail weight of FL(x), sampling duration

T , and subsampling factor ε.

As long as ε|S0| is sufficiently large, RIDE has the same accuracy as its original

(non-subsampled) version, but at significantly smaller overhead. In practice, one

can choose ε based on the size of the initial set S0 such that ε|S0| is fixed at some

pre-determined value, which can be computed using standard methods of statistical

inference for any given accuracy requirement specified in terms of confidence intervals

[4]. Given this dynamic selection of ε, it becomes clear that RIDE can scale to

arbitrarily large systems since it requires monitoring only a fixed number of users

that does not depend on system size |S0|.
We finish this section with illustrating how ε|S0| affects the accuracy and over-

head of RIDE. We use different values of ε in simulations with a fixed set of param-

eters: C = 1 KB, ∆ = 3 minutes, α = 1.1, E[L] = 1 hour, |S0| = 1010, and T = 24

hours. Figure 16 plots the resulting metrics δ and q(ε). The figure shows that as ε|S0|
increases, RIDE’s δ tends to zero. By tuning ε, the measurement application can

decide how the solve the tradeoff between accuracy and overhead. For the specific

example in Figure 16, RIDE with ε = 0.01 reduces overhead by two orders of magni-

tude compared to CBM while keeping the corresponding WMRD at 10% of CBM’s.

These observations suggest that RIDE is indeed more suitable for large systems and

long measurements than CBM.
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Fig. 17. Statistics of a 3-minute crawl on July 22, 2006 (single-core, dual-CPU Xeon

computer @ 3GHz).
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7 Experiments

In what follows in this section, we apply the residual-based algorithm to crawl the

Gnutella network and estimate the distributions of peer/link lifetimes.

7.1 Gnutella Crawler

Recent Gnutella networks are implemented in a two-tier structure that contains ultra-

peers and leaves. Ultrapeers are responsible for forwarding search requests between

each other, while leaves stay at the “edge” of the network and connect to several

ultrapeers that provide them with search capabilities. A recent extension to the

Gnutella protocol provides a crawler-friendly mechanism: upon receiving a crawl re-

quest (i.e., a handshake message with the “Crawler” field), a Gnutella client replies

with a complete list of the identities of its neighboring peers.

To sample lifetimes of real Internet users using RIDE, we designed and built a

scalable Gnutella crawler called GnuSpider that can operate in networks with millions

of hosts and maintain reasonably small values of sampling period ∆. As most other

crawlers, GnuSpider starts the crawl using a default seed file of ultrapeers and then

contact them to obtain their neighbor lists, which are then used in a BFS search to

discover all currently alive ultrapeers in the system. Neighbor lists in Gnutella include

other ultrapeers with whom a connection is currently active, suggested ultrapeers who

may or may not be online, and leaf peers currently attached as children. The crawler

records leaf peers for statistical purposes, but only contacts nodes found in the other

two lists.

Our GnuSpider implementation is a single-threaded Windows process that uses

asynchronous completion ports (IOCP) to manage up to 60, 000 simultaneous connec-

tions to other hosts. To reduce the effect of timeouts and allow scalability, GnuSpider
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limits all TCP connection timeouts to 9 seconds, includes a low-overhead manage-

ment of the BFS queue, and avoids socket re-binding between connections. Figures

17(a)-(b) show bandwidth consumption in one crawling example and the number of

connections per second generated by the crawler. As seen in the figure, the crawler

downloads data at sustained rates of 30 mb/s and attempts on average 400, 000 con-

nections per minute. Since a certain percentage of SYN requests encounter dead or

firewalled peers, the number of successful ultrapeer contacts lingers at 216, 000/min.

Experiments with GnuSpider show that we can cover the entire Gnutella network

in 3 minutes and typically discover close to 6.4 million users in the process (1.2 million

of which are the ultrapeers that we attempt to contact and 5.2 million are leaf nodes).

During the first 120 seconds of the crawl, the discovery rate of new leaves shown

in Figure 17(c) varies between 40, 000/second and 10, 000/second and that of new

ultrapeers stays on average at 3, 000/second. It can also be seen from the figures that

the last 60 seconds of the crawl usually produce a very small number of new peers

since most of these connections experience a timeout. As illustrated in Figure 17(d),

90% of ultrapeers (i.e., 1.1 million) and leaf nodes (i.e., 4.5 million) can be discovered

in just 100 seconds.

Comparison of GnuSpider to crawlers in prior experimental P2P work is shown

in Table II, which provides the sampling period ∆, window duration T , the number

of peers periodically probed with SYN packets or discovered during an actual crawl,

and the crawling speed in terms of contacted hosts per minute. Observe in the table

that GnuSpider is not only 18 times faster than the fastest crawler in prior literature

[56], but it also discovers almost 5 times more concurrent users than any other study.
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7.2 Peer Lifetimes

Users arriving into Gnutella immediately attempt to establish several neighboring

connections to other peers currently in the system to increase their own resilience and

enable themselves to route requests into the network. However, since leaves and users

behind firewalls do not generally accept connection requests, selection of neighbors is

often limited to non-firewalled, or as we call them responsive, ultrapeers.4 Therefore,

measurement of responsive ultrapeers provides the most useful information about the

lifetime of future neighbors acquired by arriving users and allows parameter selection

for existing P2P models based on lifetime distributions [29], [34], [65]. Thus, our

experiments below focus only on lifetimes of ultrapeers that respond to our connection

requests and the links associated with them.

To measure peer lifetimes for the plots shown below, we first obtained using

GnuSpider the initial set S0 of about 468 thousand responsive ultrapeers and sub-

sampled it using ε = 0.213. Then, GnuSpider probed ε|S0| = 100, 000 users for T = 72

hours checking if each peer was alive every 3 minutes. It should be noted that we

found that in our experiments that a certain amount of peers exhibited erratic behav-

ior, i.e., they would respond to one request, then become silent for several subsequent

requests, and eventually become responsive again. This phenomenon appeared when

a peer either was too busy to reply or implemented a certain rate-limiting strategy.

To filter out the effect of this behavior, we set a threshold u for how many times a

peer must appear unresponsive before we declare that user dead. In the crawls below,

we use u = 3.

After the observation window in GnuSpider had expired, an off-line program

4The Gnutella protocol suggest that peers behind firewalls should not become an
ultrapeer. But in our measurement, about 5% of users behind firewalls act as an
ultrapeer.
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Fig. 18. Inverse-averaged estimator ER(x) for responsive peers and links in Gnutella.

Both cases use 3-point derivatives.

read the GnuSpider logs and applied RIDE to reconstruct FL(x). Figure 18(a) shows

the resulting inverse-averaged tail distribution 1 − ER(x) for the set of responsive

ultrapeers. The figure matches well with a Pareto distribution with α = 1.09 and

β = 0.83, where the shape parameter is very close to the 1.06 observed in [3]. Denote

by r the expected residual lifetime conditioned on the fact that R(t) is within the

observation window T , i.e., r = E[R(t)|R(t) ≤ 72]. Crawl results show that r = 10.5

hours, but 5% of the peers in S0 leave the system in just 8 minutes.

We next proceed to compare the associated link lifetime distribution with that

of peers in terms of α and r.

7.3 Link Lifetimes

It is straightforward to apply the residual-based algorithm to measure the link lifetime

distribution in Gnutella networks. In the experiment of section 7.2, GnuCrawler kept

track of the links of responsive ultrapeers found in S0 and updated their status (i.e.,

connected or broken) in subsequent crawls. Using this information, we applied the
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same processing program to extract link residuals from GnuSpider logs and perform

the proposed recovery technique to obtain ER(x). Figure 18(b) shows that the result-

ing distribution of all link lifetimes is also power-law, but this time with α = 1.79,

which is much larger than that in the peer lifetime distribution. This observation

establishes that the lifetime of a link is probabilistically smaller than that of a peer

and one may expect more frequent changes in neighboring relationships. We also find

that r is 3.8 hours and 16.4% of links disappear within 8 minutes.

Next, we treat the links between ultrapeers and leaves separately from those

among ultrapeers and plot the corresponding distributions in Figure 19. Interestingly,

the figure shows that the ultra-leaf links are slightly more stable (i.e., exhibit a heavier

tail) than ultra-ultra links: the former has α = 1.73 and the latter has α = 1.82;

the conditional expected lifetimes r of the two types of links are 3.9 and 3.5 hours,

respectively. This can be plausibly explained by the fact that a leaf is usually inactive

in collecting information about alternate ultrapeers and is thus less likely to switch

its attachment point.

7.4 Discussion

With the experimental results of this section, we are now able to study resilience

properties of Gnutella networks by applying models from [34], which use the average

residual link lifetime and average node degree d as input parameters. Given d = 28.5

neighbors observed in our experiments and a 1-minute failed-neighbor replacement

delay, we obtain that the probability for the network to disconnect at the ultrapeer

level is below 10−64. However, leaves may be isolated with a non-negligible probability,

because they only have one or two attachment points, i.e., d ≤ 2, which we plan to

explicitly study in future work.
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Fig. 19. Inverse-averaged estimator ER(x) for different types of links in Gnutella.

Both cases use 3-point derivatives.

8 Related Work

Some of the first P2P sampling studies date to 2001 [50], [52] and the first use of CBM

can be traced to Saroiu et al. [52] who sampled 17, 000 Gnutella peers every 7 minutes

using TCP SYN packets over a period of 60 hours. In a follow-up effort in [6], Chu

et al. used a similar method, but probed 5, 000 peers every 7 minutes for 10 weeks.

Bhagwan et al. [1] improved over [6], [52] by implementing the Overnet protocol and

probing a randomly chosen subset of peers in the system to measure their availability

(i.e., the portion of time they were present online). Their experiment selected 2, 400

out of around 90, 000 peers and kept probing them every 20 minutes for 7 days. Liang

et al. [36] measured lifetime distributions of links in the KaZaa network, but these

experiments were limited to the connections passing through the authors’ monitoring

hosts.

More related work can be found in [3] and [56]. Bustamante et al. [3] im-

plemented a Gnutella sampler using 17 monitoring clients that periodically probed
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500, 000 peers in the network every 21 minutes for 7 days. In more recent work,

Stutzbach et al. [56] developed a much faster crawler that in 2004 was able to cover

the entire Gnutella network of 158, 000 ultrapeers within 7 minutes. The closest

approach to understanding sampling bias is another recent paper by Stutzbach et

al. [57], which focused on capturing unbiased snapshots of joint properties of users

currently alive in P2P systems using random walks.

9 Discussion

In this chapter, we showed that direct lifetime sampling suffered from estimation bias

and did not admit any fundamental improvement besides reducing probing interval ∆.

To overcome this limitation, we proposed and analyzed a novel residual-based lifetime

sampling algorithm RIDE, which measured lifetime distributions with high accuracy.

Our simulations and Internet experiments showed that RIDE required several orders

of magnitude less bandwidth than the prior approaches. However, RIDE assumes

systems with stationary arrivals and therefore could be not accurate in those that

violate this assumption. We next overcome this limitation by developing a novel

algorithm called U-RIDE.
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CHAPTER III

UNIFORM-RIDE (U-RIDE)

1 Introduction

The problem of measuring temporal and topological characteristics of large-scale peer-

to-peer networks such as Gnutella [20] and KaZaA [27] has recently received consider-

able attention [1], [3], [6], [36], [52], [56], [62]. One of the central elements in capturing

the dynamics of P2P systems is the lifetime distribution of participants, which can

provide valuable input to throughput models [19], [46], resilience analysis [34], [65],

[66], and system design [21], [35], [52].

Previous efforts in sampling lifetimes can be categorized into two classes: direct

sampling [3], [52], [56], which performs periodic crawls of the system to detect new

peer arrival and measures their lifetimes, and indirect sampling [62], which scans

the entire system only once and monitors all discovered peers until they depart to

obtain their residual session lengths. While the latter estimator is unbiased after

proper conversion of residuals to lifetimes and requires several orders of magnitude

less bandwidth than the former [62], it relies on one crucial assumption – stationarity

of the arrival process. It thus remains to be seen whether the same benefits can

be achieved in systems that exhibit diurnal arrival/departure patterns or any other

non-stationary dynamics. However, in order to study this question rigorously, one

requires a non-stationary model of user behavior and the corresponding analysis of

lifetime sampling. We focus on these issues next.
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1.1 Non-Stationary User Churn

Recall that traditional analytical P2P work either directly assumes stationary Pois-

son arrivals [29], [37], [45], [59] or models users with equilibrium ON/OFF renewal

processes [34], [62], [66], whose scaled superposition tends to a stationary Poisson

process for sufficiently large system size [65]. In our comparison with related work,

we only consider the approach of [65], which we call Stationary Renewal Churn Model

(SR-CM), since it includes all other models as special cases.

We start this chapter by designing a novel generic arrival model for Internet users

that can replicate first-order dynamics (i.e., mean arrival rate) of almost any non-

stationary churn process. In the proposed approach, which we call Non-Stationary

Periodic Churn Model (NS-PCM), each user alternates between ON (alive) and OFF

(dead) states. As before, the duration L of ON cycles is drawn from the distribution

of user lifetime FL(x), but OFF states are now split into two sub-states: REST

and WAIT. The former sub-state can be visualized as the delay between the user’s

departure and midnight of the day when he/she joins the system again. The latter

sub-state is the delay from midnight until the user’s arrival into the system within a

given day, which follows its own distribution FA(x). Unlike prior models, NS-PCM

allows OFF periods to be dependent on the time of day and the duration of the

previous ON cycle (i.e., user lifetime).

We derive that the average arrival rate λ(t) during the day is given by nτfA(t)/δ,

where n is the system size, τ is the period of the arrival process, δ is the average inter-

arrival delay of a user, and fA(t) = F ′
A(t) is the PDF of WAIT time. Thus, NS-PCM

can achieve any continuous non-stationary periodic arrival rate by adjusting density

fA(x) and includes SR-CM as a special case with fA(x) = 1/τ . We show examples

of using NS-PCM to model Gnutella and then analyze its impact on the existing
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sampling methods in distributed P2P systems.

1.2 Analysis of Existing Methods

Equipped with the new model, we examine two major existing paradigms for measur-

ing the lifetime distribution: Create-Based Method (CBM) [51] and ResIDual-based

Estimator (RIDE) [62]. The former takes snapshots of the system every ∆ time units

within some window W and builds a distribution of observed lifetimes as an estimate

of FL(x). The latter takes only one full snapshot of the system and probes discovered

users every ∆ units until they die or the observation window ends. The measured

residuals are used to infer the target distribution FL(x) using equilibrium renewal-

theory assumptions. While [62] analyzes both approaches for accuracy, it does so

assuming stationary arrivals into the system under SR-CM. We perform the same

task using the new model NS-PCM and obtain several interesting results.

First, we show that the bias in CBM is now affected not only by ∆ and the

lifetime distribution FL(x), but also by the arrival CDF FA(x). This makes removal

of the bias much harder as it requires knowing the arrival pattern of users. Second,

we derive the exact distribution produced by CBM and establish that it is unbiased

only when ∆ = 0 or FL(x) is exponential. Third, we find that RIDE’s estimator

under non-stationary churn does not converge and sometimes produces completely

invalid results (including CDF functions that are non-monotonic). To understand the

cause of sampling bias in RIDE, we investigate the distribution of residual lifetimes

in systems driven by NS-PCM. Define R(t) to be the remaining session duration

of a random online user at time t and H(x, t) = P (R(t) ≤ x) to be the CDF of

residuals of currently alive users. Our analysis shows that unlike in prior models

where limt→∞ H(x, t) = H(x) existed, NS-PCM does not admit a limiting distribution

of R(t), which explains why RIDE’s manipulation of non-existing metrics produces
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unpredictable results. Finally, we show that RIDE’s bias under NS-PCM cannot

be eliminated even with ∆ = 0 and that accurate estimation is possible only when

λ(t) = λ is a constant (i.e., stationary churn) or lifetimes FL(x) are exponential,

neither of which is a realistic assumption in practice [22], [52], [55], [60].

It therefore remains an open problem to design a low-overhead and robust lifetime

estimator for distributed systems commonly found in real life. We perform this task

next.

1.3 U-RIDE

To preserve the advantage of residual sampling in terms of overhead, we design a

novel sampling algorithm called Uniform ResIDual-based Estimator (U-RIDE), which

measures the system in uniformly random points in the observation window. The

naive approach would be to compute the expected residual distribution E[H(x, U)],

where U is a uniformly random sampling time within the period τ of the arrival

process; however, we show that this expectation does not allow reconstruction of user

lifetimes and is generally not related to FL(x) in closed-form. Instead, we derive

a different estimator using renewal-reward theory and show that it allows unbiased

estimation of FL(x) under the most general conditions of NS-PCM.

The first component of U-RIDE is a sample-scheduling algorithm, which decides

random time instances for residual sampling. We study one such algorithm that

we call Bernoulli Scheduling (BS), which leverages the BASTA principle (Bernoulli

Arrival See Time Average) [40] and allows accurate measurement even when the

network is small or the period τ of λ(t) is unknown. The second component of U-

RIDE is a residual processing algorithm, which aggregates residual samples obtained

by the first component and outputs a statistical quantity that can be used to estimate

FL(x). We show that our aggregation algorithm can be efficiently implemented in
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large systems and that it admits a subsampling technique similar to the one in [62].

Simulation results demonstrate that U-RIDE is able to accurately estimate the actual

lifetime distribution FL(x) in a variety of non-stationary systems driven by NS-PCM.

1.4 Experiments

We finish this chapter with deploying U-RIDE in the Gnutella network [20], a large

P2P file sharing system of roughly 6 million concurrent users. We evaluate U-RIDE

using over 260M peer lifetime samples and show that RIDE [62] indeed exhibits non-

trivial error compared to CBM whose bias we neglect given the small ∆ ≈ 0 used in

the experiments. On the other hand, the proposed algorithm U-RIDE produces very

accurate estimation and tracks CBM distributions precisely, but at the same time

reduces overhead by two orders of magnitude. Since U-RIDE is a generic sampling

method that does not assume anything specific to Gnutella, it is suitable for many

large, non-stationary distributed systems found in today’s Internet.

The remainder of this chapter is organized as follows. We introduce a new user

churn model in Section 2 and examine the existing sampling algorithms in Section 3.

We propose our new method in Section 4 and evaluate it in Gnutella experiments in

Section 5. Section 6 reviews prior work and Section 7 concludes this chapter.

2 Non-Stationary User Churn

In this section, we cover basic definitions, briefly discuss prior arrival models, present

our simple approach for generating non-stationary churn, and examine its ability to

replicate arrival rates in Gnutella [20].
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2.1 Basics

Two important metrics of interest in any churn model are the arrival process and its

rate. Let Mi(t) be the number of arrivals from user i into the system in [0, t] and

assume λi(t) is the corresponding arrival rate (whose existence we prove below under

certain assumptions):

λi(t) = lim
h→0

E[Mi(t + h)−Mi(t)]

h
. (52)

The aggregate arrival process of the system is then M(t) =
∑n

i=1 Mi(t) and its

rate is λ(t) =
∑n

i=1 λi(t), where n is the total number of participating users. Our

interest in stationarity of a process is solely related to its rate as defined next.

Definition 7. Arrival process M(t) is called rate-stationary if λ(t) = λ is simply a

constant and non-stationary otherwise.

To understand the properties of non-stationary processes, define:

τ = inf{τ : λ(t + τ) = λ(t),∀t ≥ 0}

to be the period of arrival rate λ(t). Note that τ = 0 implies a stationary process

and τ > 0 non-stationary. The latter type can be further classified as follows.

Definition 8. Non-stationary process M(t) is called rate-periodic if 0 < τ < ∞ and

rate-aperiodic if τ = ∞.

Note that most real-life churn falls under the category of rate-periodic. We are

now ready to examine prior churn models and overcome their limitations.
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Fig. 20. User process Zi(t) under SR-CM.

2.2 Stationary Renewal Churn Model (SR-CM)

Recall that [65] models each user in P2P systems using an alternating ON/OFF

renewal process:

Zi(t) =





1 user i is alive at t (ON)

0 otherwise (OFF)

, (53)

which is illustrated in Figure 20, where {Li,k}∞k=1 are random ON durations, {Di,k}∞k=1

are random OFF durations, and {Ti,k}∞k=1 are arrival times of user i.

Note that the renewal nature of this process implies that all ON/OFF durations

are independent of each other, which makes each Zi(t) stationary as t → ∞. As

a result, superposition of n such arrival processes converges to a stationary point

process with constant rate λ(t) = λ. Since this stationarity does not match churn

characteristics observed in Gnutella and other P2P systems [22], [52], [55], [60], one

requires a much more general approach, which we offer next.

2.3 Non-Stationary Periodic Churn Model (NS-PCM)

As before, assume that each user i is modeled by an alternating ON/OFF point

process Zi(t) in (53); however, it is no longer renewal as we allow OFF cycles {Di,k}
to depend on both lifetimes {Li,k} and the time when the current OFF cycle starts.

Specifically, assume 0 ≤ τ < ∞ is the period of the system that we aim to model
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Fig. 21. User process Zi(t) under NS-PCM, where dashed vertical lines represent bin

boundaries.

(e.g., for common human activity, τ = 24 hours) and partition time t into bins of

τ units each. For any point t ∈ [0,∞), define b(t) = τbt/τc to be the start of the

corresponding bin, e(t) = τdt/τe to be its end, and t? = t− b(t) to be the offset of t

within its bin. Further denote by Si,k = b(Ti,k) the beginning of the bin where user

i arrives for the k-th time and assume each arrival occurs only once per bin (a user

arriving m times in a given bin can be represented by m different users with arrivals

scattered throughout the day).

As shown in Figure 21, the OFF period in the current bin [Si,k, Si,k+τ ] starts with

a WAIT duration Ai,k, which models the habits of users and their arrival preferences

during the day. After process Zi(t) transitions to the ON state, the user stays logged

in for a random lifetime Li,k and then departs from the system. Afterwards, the

user stays in the REST state until time Si,k+1 (i.e., the beginning of the bin when

i decides to return into the system), from which point the process repeats. Note

that the combination of REST and WAIT sub-states comprises the OFF state of

(53) and that each REST duration may include a random number of full bins Yi,k,

which represent long-term absence cycles of the user from the Internet. Furthermore,

observe in the figure that OFF durations are clearly dependent not only on user

lifetimes in the same cycle, but also on the time of departure.
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We next make two assumptions that allow this system to be tractable in closed-

form.

Assumption 1. Sequence {Li,k}∞k=1 consists of i.i.d. variables with CDF FL(x),

{Ai,k}∞k=1 is i.i.d. with differentiable CDF FA(x), and {Yi,k}∞k=1 is i.i.d. with CDF

FY (x). Furthermore, these sequences are pair-wise independent.

Given this assumption, we can replace each user i’s lifetimes with a random

variable L ∼ FL(x) such that 0 < E[L] < ∞, its WAIT durations with A ∼ FA(x)

where FA(τ) = 1, and its absence times with Y ∼ FY (x). Pair-wise independence

means that the lattice process defined on points {Si,k}∞k=1 for each user i is renewal

(formally established below), even though Zi(t) is not. Additionally, notice that

inter-arrival delays {Ti,k+1 − Ti,k}∞k=1 are i.i.d. and do not depend on user i.

Our second assumption prevents synchronization between different users and

ensures sufficient variety of samples collected from crawling the system.

Assumption 2. Processes {Zi(t)}n
i=1 are mutually independent.

We call the system defined by the above rules and assumptions Non-Stationary

Periodic Churn Model (NS-PCM). The following lemma reveals an important prop-

erty of the point process formed by {Si,k}, i.e., bin boundaries before each arrival (see

Figure 21).

Lemma 1. Point process {Si,k}∞k=1 is lattice and renewal.

Proof. Notice that Si,k+1 − Si,k can be expressed as:

Si,k+1 − Si,k = e(Ai,k + Li,k) + Yi,k,

where e(t) = τdt/τe is the end of the bin that contains t. From Assumption 1,

it follows that interval {Si,k+1 − Si,k}∞k=1 is i.i.d. and lattice, which establishes the

desired result.
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Next, we use Lemma 1 to show that arrival rate λ(t) under NS-PCM is a simple

periodic function determined by FA(x).

Lemma 2. Suppose that time t is sufficiently large. Then, arrival rate λ(t) of an

NS-PCM system with n users exists and is a periodic function given by:

λ(t) =
nτfA(t?)

δ
, (54)

where t? ∈ [0, τ) is the offset of t within the bin, δ = E[Ti,k+1 − Ti,k] is the average

inter-arrival delay of a user, and fA(x) = F ′
A(x) is the PDF of arrival time A.

Proof. First of all, denote by Ii(t, t + h) a random variable indicating whether user

i has an arrival within interval [t, t + h), where h > 0 is small enough so that t and

t+h are in the same bin. Then, we rewrite arrival rate λ(t) defined in (52) as follows:

λ(t) = lim
h→0

E[M(t + h)−M(t)]

h

= lim
h→0

E[
∑n

i=1 Ii(t, t + h)]

h

= lim
h→0

∑n
i=1 P (Ii(t, t + h) = 1)

h
. (55)

Next, we derive P (Ii(t, t + h) = 1), which is the probability for a user i to have

an arrival in interval [t, t + h). Notice that Ii(t, t + h) is equivalent to the event that

there exists an integer k such that arrival time Ti,k ∈ [t, t + h):

P (Ii(t, t + h) = 1) = P (Ti,k ∈ [t, t + h)). (56)

Further notice that Ti,k = Si,k + Ai,k by definition, where Si,k and Ai,k are the start

and offset of the bin containing Ti,k. Thus, Ti,k ∈ [t, t + h) is equivalent to the event

that Ti,k is contained by the same bin as t and the offset of Ti,k is included by interval

[t?, t? + h]:

Ti,k ∈ [t, t + h) ⇔ (Si,k = b(t)) ∩ (Ai,k ∈ [t?, t? + h]). (57)
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Since Si,k and Ai,k are independent by Assumption 1, it thus follows from (56)-

(57) that:

P (Ii(t, t + h) = 1) = P (Si,k = b(t))

× P (Ai,k ∈ [t?, t? + h)). (58)

For P (Ai,k ∈ [t?, t? + h)), we simply have that:

P (Ai,k ∈ [t?, t? + h)) = FA(t? + h)− FA(t?). (59)

It remains to derive the probability P (Si,k = b(t)). Notice that Si,k = b(t) for any k

is equivalent to the event that t hits the first bin of the k-th cycle. Note that point

process {Si,k} is proved in Lemma 1 to be a lattice renewal process. Using renewal

theory, we obtain that time t hits the first bin with probability 1/η, where η is the

expected number of bins in cycle [Si,k, Si,k+1). Further note that η = δ/τ , where δ is

the expected length of cycle [Si,k, Si,k+1):

δ = E[Si,k+1 − Si,k] = E[Ti,k+1 − Ti,k], (60)

where the second equality comes from the fact that E[Ai,k] = E[Ai,k+1] by Assumption

1. It thus follows that:

P (P (Si,k = b(t))) = 1/η = τ/δ. (61)

Substituting (59) and (61) into (58) establishes that:

P (Ii(t, t + h) = 1) =
τ(FA(t? + h)− FA(t?))

δ
. (62)

Further utilizing (62) and considering that n users are homogeneous, we reduce (55)
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(b) NS-PCM simulations

Fig. 22. User arrival rate: a) observed in Gnutella during June 14-20, 2007; b)

obtained from NS-PCM simulations.

into:

λ(t) = lim
h→0

nτ(FA(t? + h)− FA(t?))

δh
=

nτfA(t?)

δ
, (63)

where the second equality is guaranteed by the assumption that FA(x) is differentiable

every in [0, τ). The desired result follows immediately.

Using (54), one can approximate first-order dynamics of a wide class of systems

with both stationary and non-stationary arrivals. For example, setting fA(x) = 1/τ ,

we obtain λ(t) = n/δ = λ, which is identical to SR-CM. To illustrate a more interest-

ing example, we first collect arrival rates from a 7-day measurements of the Gnutella

network (see Section 5 for details) and plot them in Figure 22(a), which indicates a

clear pattern of diurnal churn. Then, we average the empirical arrival rate λ(t) over

the observed 7 days to obtain the parameters of NS-PCM. Specifically, integrating
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(54), we get for x ∈ [0, τ):

fA(x) =
λ(x)∫ τ

0
λ(t)dt

, δ =
nτ∫ τ

0
λ(t)dt

. (64)

Finally, we generate a system of n = 100, 000 users with A drawn from fA(x) and

plot the resulting instantaneous arrival rates in Figure 22(b), which shows a random

arrival pattern very similar to that of Gnutella.

3 Analysis of Existing Methods

In this section, we characterize the accuracy of existing measurement methods under

NS-PCM. Discussion of the associated overhead is presented in Section 4.

3.1 Basics

Suppose that the target P2P system is fully decentralized and the sampling process

has recurring access to the information about which users are currently present in the

system. This process allows us to test whether a given user i is still alive as well as

discover the entire population of the network at any time t (e.g., using crawls). The

goal of the sampling process is to estimate with as much accuracy as possible function

FL(x), which we assume is continuous everywhere in the interval (0,∞). However,

due to bandwidth and connection-delay constraints on obtaining this information,

the sampling process cannot query the system for longer than W time units or more

frequently than once per ∆ interval, where ∆ usually varies from several minutes to

several hours depending on the speed of the measurement facility and network size.

These constraints lead to the following two properties: 1) all lifetime samples are

discrete and rounded to a multiple of ∆; and 2) all samples are no larger than W .

Denote by A the sampling algorithm of interests and by VA its sample set after an
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infinite measurement. Further define EA(x) to be the estimator function computed

from set VA for approximating the value of FL(x) = P (L ≤ x). Note that EA(x) is

discrete and can be arbitrarily different from target distribution FL(x).

Definition 9 ([62]). Estimator EA(x) of algorithm A is unbiased with respect to a

target continuous random variable L if it matches the distribution of L at all discrete

points xj = j∆, j = 1, 2, . . . , W/∆ in the interval [∆,W ] for any ∆ > 0:

EA(xj) = P (L ≤ xj). (65)

Notice that empirical distributions based on a finite set VA will not generally

match the target distribution FL(x), which is not a source of bias but rather a lim-

itation of the finite measurement process. Definition 9 instead refers to errors that

cannot be eliminated by sampling the system indefinitely.

3.2 Create-Based Method (CBM)

CBM was first introduced by [51] in the context of operating systems and later ap-

plied to peer-to-peer networks by [3], [52], [56]. Recall from [51] that CBM uses an

observation window of size 2W , which is split into small intervals of size ∆. Within

the observation window [0, 2W ], the algorithm takes snapshots of the system at points

xj = j∆, i.e., at the beginning of each interval. To avoid sampling bias, [51] suggests

dividing the window into two halves and only including in sample set VC lifetimes

that appear during the first half of the window. Based on VC , define EC(xj) to be

the CBM estimator of the lifetime distribution FL(x):

EC(xj) = lim
NC→∞

NC(xj)

NC

, (66)
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where NC = |VC | is the size of the sample set and NC(x) is the number of seen users

with lifetimes no larger than x.

As formalized by [62], there are two possible causes of bias in CBM sampling: 1)

missed peers that join and depart between consequent crawls; 2) random direction of

round-offs (i.e., some samples rounded up and others down). We say a user’s lifetime

L such that xj ≤ L < xj+1 is inconsistently sampled if it is rounded down to xj

and consistently sampled otherwise (i.e., rounded up to xj+1). Define ρj to be the

probability of inconsistent round-offs for lifetimes in the interval [xj, xj+1), where ρ0

refers to the probability of missing a user. The next theorem indicates that the bias

in CBM under NS-PCM is determined not only by ∆ and lifetime distribution FL(x),

but also by the arrival distribution FA(x).

Theorem 10. Under NS-PCM, CBM estimator (66) produces the following distri-

bution:

EC(xj) =
FL(xj)− ρ0 + ρj

1− ρ0

, (67)

where ρj is given by:

ρj =

W/∆−1∑
v=0

∫ xv+1

xv

(FL(xv+j+1 − y)− FL(xj))fA(y?)dy∫ W

0
fA(u?)du

, (68)

FL(x) is the CDF of the lifetime distribution, and fA(x) is the PDF of arrivals.

Proof. Note that (67) can be proved using exactly the same reasoning as in [62,

Theorem 3]. In what follows, we thus focus on deriving the result of ρj in (68), the

probability of inconsistent round-offs for lifetimes in the interval [xj, xj+1).

Without loss of generality, we shift the time origin to the start time t0, i.e., t0 = 0

so that the first half of the window is given by [0,W ]. Suppose that a user arrives at

time X ∈ [0,W ], where X is relative to t0, and its lifetime is xj < L ≤ xj+1, where

xj = j∆. Further assume that arrives time X ∈ [xv, xv+1]. Denote by d = X − xv
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∆ d

Fig. 23. Illustration of inconsistent round-off in CBM, where arrival time X ∈
[xv, xv+1] and lifetime L ∈ (xj, xj+1]. Vertical dotted lines stand for CBM sampling

points with interval ∆. Gray area represents the region of inconsistent sampling, that

is, if the user departs within the gray area, its lifetime could be inconsistently rounded

to xj. The gap between xv+j and the beginning of the gray area is given by d.

the gap between X and xv. Then, we establish that the user lifetime is inconsistently

rounded off to xj if and only if departure time X + L is within [xv+j + d, xv+j+1),

which is illustrated in Figure 23 as gray area.

Denote by gv(X) the probability of inconsistent sampling given that X ∈ [xv, xv+1].

Then, we express gv(X) as:

gv(X) = P (xv+j + d < X + L ≤ xv+j+1|X ∈ [xv, xv+1])

= P (xj < L ≤ xv+j+1 −X|X ∈ [xv, xv+1])

= FL(xv+j+1 −X)− FL(xj). (69)

Next, we relax the condition on X to obtain roundoff-error probability ρj. Denote

by fX(x) the PDF of arrival time X. Thus, we have:

ρj =

W/∆−1∑
v=0

∫ xv+1

xv

gv(y)fX(y)dy. (70)

It remains to derive the distribution fX(x) of arrival time X. Notice that X could

be anywhere within [0,W ]. We first consider the probability of a user arriving before
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time x in the first half of the window, i.e., FX(x) = P (X ≤ x). In fact, P (X ≤ x) is

given by the ratio of the number of users arriving before x over the total number of

users that appear in the first half of the window. Utilizing the result of λ(t) in (54),

we obtain that:

FX(x) =

∫ x

0
λ(t)dt∫ W

0
λ(u)du

=

∫ x

0
fA(t?)dt∫ W

0
fA(u?)du

. (71)

The last step is to differentiate FX(x), which gives:

fX(x) =
fA(x?)∫ W

0
fA(u?)du

. (72)

The desired result immediately follows from substituting (69) and (72) into (70).

Note that Theorem 10 generalizes the result developed in [62] to non-stationary

systems. It is easy to verify that for stationary arrivals, i.e., fA(x) = 1/τ for x ∈ [0, τ),

the result in (68) becomes:

ρj =
1

∆

∫ xj+1

xj

FL(x)dx− FL(xj), (73)

which together with (67) gives the same expression for the CBM estimator as in [62].

We next investigate whether there exist cases that make CBM unbiased under the

new churn model.

Corollary 3. Under NS-PCM, the only lifetime distribution that allows CBM to

be unbiased simultaneously for all ∆ > 0 is exponential. Furthermore, as ∆ → 0,

probability ρj → 0 and EC(xj) → FL(xj), i.e., CBM becomes unbiased for any FL(x)

and FA(x).

Proof. We can prove the first statement by a) deriving the necessary and sufficient

condition for CBM to be unbiased simultaneously for all ∆ > 0 and b) showing that

the exponential distribution is the only one that satisfies the condition.
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For a), we substitute EC(xj) = FL(xj) into (67) to establish that the necessary

and sufficient condition is given by:

ρj = F̄L(xj)ρ0, (74)

where F̄L(xj) = 1− FL(xj) is the complementary CDF of lifetimes.

For b), it is easy to verify that any exponential distribution satisfies (74). With

FL(x) = 1− e−x/µ, inconsistency probability ρj becomes that:

ρj =

W/∆−1∑
v=0

∫ xv+1

xv

(
e−xj/µ − e−xv+j+1+y

)
fA(y?)dy

= e−xj/µ

W/∆−1∑
v=0

∫ xv+1

xv

(
1− e−xv+1+y

)
fA(y?)dy

= F̄L(xj)ρ0. (75)

Now, we prove that the only lifetime distribution satisfying (74) is exponential.

Substituting (68) into (74) establishes:

W/∆−1∑
v=0

∫ xv+1

xv

(FL(xj + xv+1 − y)− FL(xj)) fA(y?)dy

= F̄L(xj)

W/∆−1∑
v=0

∫ xv+1

xv

FL(xv+1 − y)fA(y?)dy

=

W/∆−1∑
v=0

∫ xv+1

xv

F̄L(xj)FL(xv+1 − y)fA(y?)dy. (76)

For (76) to hold for all ∆ > 0, we need to have:

FL(u + v)− FL(u) = F̄L(u)FL(v), (77)

for any u > 0 and v > 0. Note that (77) simplifies to F̄L(u + v) = F̄L(u)F̄L(v), to

which the only solution is F̄L(x) = e−x/µ. The first statement of this corollary thus

follows immediately.
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The second statement of this corollary can be easily proved by showing that ρj

tends to zero as ∆ → 0. From Taylor expansion, we have that:

FL(xv+j+1 − y)− FL(xj) = fL(xj)(xv+1 − y) + Θ(∆2)

≤ fL(xj)∆ + Θ(∆2), (78)

and

FA(x?
v+1)− FA(x?

v) = fA(x?
j)∆ + Θ(∆2). (79)

Thus, ρj can be upper bounded as follows:

ρj ≤
W/∆−1∑

v=0

(fL(xj)∆ + Θ(∆2))(fA(x?
j)∆ + Θ(∆2))∫ W

0
fA(u?)du

=
∆WfL(xj)fA(x?

j) + Θ(∆2)∫ W

0
fA(u?)du

, (80)

which indicates that ρj → 0 as ∆ → 0.

Interestingly, CBM’s conditions for removing bias did not change from those

under stationary churn (and are still impossible to satisfy in practice), despite the

fact that its bias in all other cases became a much more complex function of both

FL(x) and FA(x). We next examine how RIDE is impacted by NS-PCM.

3.3 ResIDual-based Estimator (RIDE)

Wang et al. [62] proposed RIDE to address potential problems of overhead and bias

in CBM. At time t0, RIDE takes a snapshot of the whole system and records in set

VR all users found to be alive. For all subsequent intervals j (j = 1, 2, ..., W/∆) of

∆ time units, the algorithm keeps probing peers in set VR either until they die or W

expires. After the observation window W is over, the algorithm collects the residual
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lifetimes of users in VR. Define EH(xj) to be the empirical residual distribution based

on sample set VR:

EH(xj, t0) = lim
NR→∞

NR(xj)

NR

, (81)

where NR = |VR| is the number of acquired samples and NR(x) is the number of them

no larger than x. Denote by ER(xj, t0) the RIDE estimator of FL(x) obtained using

a single crawl at time t0:

ER(xj, t0) = 1− h(xj, t0)

h(0, t0)
, (82)

where h(x, t0) is the numerical derivative of EH(xj, t0).

To quantify the accuracy of (82), we must first determine how its companion

EH(xj, t0) relates to FL(x). Notice that EH(xj, t0) measures the residual lifetime

distribution of users alive at t0. Specifically, denote by R(t) the actual remaining

lifetime of a random user alive at time t and by H(x, t) = P (R(t) ≤ x) its CDF.

Then, we immediately have the following result.

Lemma 3. Under NS-PCM, EH(xj, t0) is an unbiased estimator of H(x, t0), i.e.,

EH(xj, t0) = H(xj, t0) for j = 1, . . . ,W/∆.

Proof. Notice that if a user is found to be alive at time t0, its residual lifetime accord-

ing to the definition is the time from t0 till it dies. This observation is consistent with

the sampling rule of RIDE as described above. Therefore, sample set VR contains

instances of residuals R(t0) and estimator EH(xj, t0) computed from set VR gives the

empirical distribution of R(t0). It follows that when the sample size |VR| → ∞, em-

pirical distribution EH(xj, t0) converges to the actual distribution P (R(t0) ≤ xj).

Then, the problem of analyzing RIDE’s accuracy reduces to deriving the residual

distribution H(x, t0), which can be obtained by applying the lattice version of the
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Renewal-Reward Theorem [63, page 60] to point process {Si,k}.

Theorem 11. Under NS-PCM, residual lifetime distribution H(x, t0) is a periodic

function of time t0 for sufficiently large t0:

H(x, t0) = 1−
∫∞

x
ω(z − x, t?0)dFL(z)∫∞
0

ω(z, t?0)dFL(z)
, (83)

where ω(x, u) for u ∈ [0, τ) is given by:

ω(x, u) = FA(u)− FA(max(u− x?, 0)) + 1

− FA(1 + min(u− x?, 0)) + b(x)/τ. (84)

Proof. See Appendix A.

Now, we are ready to derive what values RIDE’s estimator ER(xj) produces.

Differentiating (83) and substituting the result into (82), we immediately establish

the next corollary.

Corollary 4. Under NS-PCM, RIDE estimator ER(x, t0) is a periodic function of

time t0 for sufficiently large t0:

ER(xj, t0) = 1−
∫∞

xj
ω(z − xj, t

?
0)dfL(z)∫∞

0
ω(z, t?0)dfL(z)

, (85)

where ω(.) is given in (84) and fL(x) = F ′
L(x) is the PDF of user lifetimes.

Proof. Differentiating both sides of (83), we obtain:

h(x, t0) = H ′(x, t0) =

∫∞
x

ω(z − x, t?0)dfL(z)∫∞
0

ω(z, t?0)dFL(z)
,

which combining with (82) establishes the desired result.

Note from (85) that the RIDE estimator ER(x, t0) is a complex function of FL(x),

arrival pattern FA(x), and initial sample time t0. To make estimation possible out of
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this result, one requires either exponential lifetimes or stationary arrivals as shown

next.

Corollary 5. Under NS-PCM, RIDE is unbiased for all lifetime distributions iff

the arrival pattern is uniform, i.e., fA(x) = 1/τ for x ∈ [0, τ). Similarly, RIDE is

unbiased for all arrival patterns iff FL(x) is exponential.

Interestingly, sampling interval ∆ has no impact on the bias in (85), which means

that no matter how fast RIDE samples the system, the bias cannot be eliminated

(unlike in CBM, where it is actually possible).

3.4 Simulations

We now examine CBM and RIDE in simulations to show examples of their bias.

In all simulations, we use τ = 24 hours and the arrival pattern FA(x) observed

in the Gnutella network. We consider two lifetime distributions: 1) Pareto with

FL(x) = 1− (1 + x/β)−α, where shape α = 2 and scale β such that E[L] = 3 hours;

2) periodic L = J1 + J2, where J1 is uniformly discrete among {0, τ, 2τ, 3τ} and

J2 ∈ [0, τ) is a truncated exponential random variable with mean 2 hours. The former

case models users with heavy-tailed lifetimes, which is fairly standard in evaluating

churn models [34], [65]. The latter case covers peers that leave their computers logged

in for J1 full days and then spend a random amount of time J2 browsing the system

on the last day before finally departing.

Using sampling interval ∆ = 3 hours and n = 106 users, we apply CBM and

RIDE to obtain the corresponding estimates of target distribution FL(x). We observe

from simulations that both (67) and (85) are very accurate in predicting the errors

of these methods. Due to limited space, we omit this discussion and instead focus

on the actual bias. Figure 24 shows that CBM’s estimates clearly deviate from both
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Fig. 24. CBM estimator (66) under NS-PCM.

target distributions. Even though smaller intervals (i.e., ∆ ¿ E[L]) can oftentimes

reduce the bias in CBM to negligible levels, this improvement comes at the expense

of a sharp increase in overhead.

RIDE results for the Pareto case are shown in Figure 25(a), whose deviation

distance from FL(x) resembles that of CBM in Figure 24(a). However, the periodic

case in Figure 25(b) produces completely different results. Not only is the shape of

the estimated distribution completely different from that of FL(x), but the estimated

values do not even represent a valid CDF function (i.e., ER(xj, t0) is non-monotonic

in variable xj). Increasing overhead (i.e., lowering ∆) in this case has no impact and

RIDE remains biased regardless of manipulations to the sampling process.

3.5 Discussion

In summary, all existing methods suffer from bias under NS-PCM and, to be complete

accurate, require either high overhead (i.e., ∆ ≈ 0) or unrealistic assumptions (i.e.,

exponential lifetimes, stationary arrivals), which cannot be satisfied in practice. In
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Fig. 25. RIDE estimator (82) under NS-PCM.

what follows, we seek a better solution by adapting residual sampling to remain robust

under general non-stationary arrivals while preserving its advantage over CBM in

terms of overhead.

4 U-RIDE

This section generalizes RIDE by varying its sample point t0 uniformly within the

period of the arrival process λ(t). The main issue is to decide the location of sam-

pling points without knowing period τ and build a provably unbiased estimator from

collected samples. In what follows, we first develop a general framework that can pro-

duce an unbiased estimator for FL(x) and then present an algorithm to implement

it. Toward the end of this section, we validate the proposed algorithm in simulations

and compare its traffic overhead to that of prior methods.
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4.1 General Framework

Instead of just one snapshot at time t0, assume that we can crawl the entire system

at multiple time points t1, t2, . . . , tM , where M is the number of snapshots permitted

by the overhead-accuracy tradeoff. For each snapshot m, we identify all live users

and independently track their residuals using recurring probing every ∆ time units.

We call set TM = {t1, t2, . . . , tM} a sampling schedule and set OM = {t?1, t?2, . . . , t?M}
an offset schedule. We further assume that all tm are within some snapshot window

WS ≤ W , i.e., tm ∈ [t1, t1 + WS] for all m.

Definition 10. Schedule TM is called uniform if its offset schedule OM forms a

realization of a uniform random variable in [0, τ) as M →∞.

Given a uniform schedule TM , we present a sampling algorithm that can construct

an unbiased estimator of target distribution FL(x).

Algorithm 1. Assuming schedule TM is uniform, obtain a snapshot of the entire

system at each time tm ∈ TM . For snapshot m, record the number of alive users

NR(tm) and the number of them NR(x, tm) with residual lifetimes no larger than x.

Then, output the following ratio for each xj:

r(M, xj) =

∑M
m=1 NR(xj, tm)∑M

m=1 NR(tm)
. (86)

We make two comments on Algorithm 1. First, notice that at each time tm, the

sampling process does not know the exact number of discovered users that have resid-

ual lifetime R(tm) no greater than x. Therefore, values NR(x, tm) remain unknown

until the end of the measurement, at which time they are updated simultaneously for

all m ∈ [1,M ]. Second, it can be shown that if a user is alive during two snapshots at

times tm and tj, it must be sampled at both instances as if these were two indepen-

dent users. Doing otherwise leads to incorrect estimation and bias in the result. For
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brevity, we omit additional discussion of this issue and the corresponding simulations.

The next theorem indicates that Algorithm 1 can be used to infer target distri-

bution FL(x).

Theorem 12. The output of Algorithm 1 under NS-PCM converges as following:

E∗
H(xj) := lim

M→∞
r(M,xj) =

1

E[L]

∫ xj

0

(1− FL(t))dt. (87)

Proof. As before, we first reduce E∗
H(x) to reward functions Wi,k(θ) and Ri,k(x, θ)

and then derive their formulas.

Notice from Algorithm 1 that NR(tm) records the number of alive users at time

tm and can be expressed using Zi(tm):

NR(tm) =
n∑

i=1

Zi(tm), (88)

which leads to:

M∑
m=1

NR(tm) =
M∑

m=1

n∑
i=1

Zi(tm). (89)

Dividing both sides of (89) by product nM , it thus follows that:

lim
M→∞

M∑
m=1

NR(tm)

nM
= lim

M→∞

n∑
i=1

M∑
m=1

Zi(tm)

nM

=
n∑

i=1

lim
M→∞

M∑
m=1

Zi(tm)

nM

=
n∑

i=1

E[Zi(t1 + Θ)]

n
. (90)

The third equality of (90) comes from the fact that the offset schedule of {tm}M
m=1

forms a realization of a uniform random variable in [0, τ). From Assumptions 1-2, n
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users in the system are homogeneous, which leads to:

lim
M→∞

M∑
m=1

NR(tm)

nM
= E[Zi(t1 + Θ)]. (91)

Now, we let t1 →∞ and rewrite E[Zi(t1 + Θ)] using conditional expectation:

lim
M→∞

M∑
m=1

NR(tm)

nM
= lim

t1→∞
E[E[Zi(t1 + Θ)]|Θ]. (92)

Applying the Dominated Convergence Theorem to (92) establishes that:

lim
M→∞

M∑
m=1

NR(tm)

nM
= E[ lim

t1→∞
E[Zi(t1 + Θ)]|Θ]

= E[ lim
t1→∞

P (Zi(t1 + Θ) = 1)|Θ]. (93)

We apply (182) to P (Zi(t1 + Θ) = 1) and replace it with E[Wi,k(Θ)]/E[ηi,k] in (93).

Since E[ηi,k] does not depend on Θ, it thus follows that (93) can be reduced to:

lim
M→∞

M∑
m=1

NR(tm)

nM
=

E[E[Wi,k(Θ)]|Θ]

E[ηi,k]
. (94)

Notice from conditional expectation that for given Θ:

E[Wi,k(Θ)] =

∫ ∞

0

ω(z, Θ)dFL(z), (95)

where function ω(.) is given in (84). It follows that:

lim
M→∞

M∑
m=1

NR(tm)

nM
=

1

E[ηi,k]

∫ ∞

0

E[ω(z, Θ)]dFL(z). (96)

Note that Θ is uniformly distributed in [0, τ), i.e., P (Θ ≤ θ) = x/τ for θ ∈ [0, τ).

It thus follows from (84) that:

E[ω(z, Θ)] = z, (97)
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which leads to:

lim
M→∞

M∑
m=1

NR(tm)

nM
=

E[L]

E[ηi,k]
. (98)

Similarly, we have:

lim
M→∞

M∑
m=1

NR(x, tm)

nM
=

1

E[ηi,k]

∫ ∞

0

E[ϕ(x, z, Θ)]dFL(z), (99)

where function ϕ(.) is given in (192). It follows from (192) that for uniform Θ:

E[ϕ(x, z, Θ)] = min(x, z), (100)

which establishes:

lim
M→∞

M∑
m=1

NR(x, tm)

nM
=

1

E[ηi,k]

∫ x

0

(1− FL(z))dz, (101)

Combining (98) and (101), we obtain:

lim
M→∞

r(M,x) =
1

E[L]

∫ x

0

(1− FL(z))dz, (102)

which is the desired result.

Taking the derivative of E∗
H(x) in (87), we immediately obtain the desired result.

Corollary 6. For all ∆ ≥ 0, the following is an unbiased estimator of FL(x):

E∗
R(xj) = 1− h∗(xj)

h∗(0)
, (103)

where h∗(x) is the numerical derivative of E∗
H(x).

We call Algorithm 1 in combination with (103) Uniform ResIDual-based Estima-

tor (U-RIDE) and examine how to implement it below. In the meantime, it is worth

mentioning that performing RIDE sampling at uniformly randomized time points

U ∈ [0, τ) and then taking the expectation of the resulting CDF, i.e., E[H(x, U)], does
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not produce the same result as E∗
H(x) in (87). According to our analysis, E[H(x, U)]

is heavily dependent on the arrival pattern FA(x) and thus cannot be used to recon-

struct FL(x). This observation distinguishes the new method from simply applying

RIDE a number of times and averaging the result.

4.2 Scheduling

The last piece of our algorithm is to find a uniform schedule TM for Algorithm 1.

We use a simple approach that we call Bernoulli Scheduling (BS). Suppose that the

algorithm starts at time t1 and the smallest sampling interval is ∆ as before. Then

BS generates sequence TM using:

tm+1 = tm + vm∆ + um, m ≥ 1,

where vm is drawn from a geometric distribution with success probability p and um

is drawn from a uniform distribution within [0, ∆). From the property of BASTA

(Bernoulli Arrival See Time Average) [40], it is straightforward to show that the BS
algorithm produces uniform schedules.

Corollary 7. Sampling schedule TM generated by BS is uniform for any period τ .

Notice that the expected duration of a BS schedule is given by M∆/p. Therefore,

p can achieve both dense (i.e., large p) and sparse (i.e., small p) sampling. The former

allows the sampling process to complete in a short time, while the latter spreads traffic

overhead over time and thus avoids overloading network resources. In addition, while

our analysis earlier in the section implicitly assumed that period τ was known, BS
does not require this knowledge and thus can be used in a wide variety of periodic

systems without any additional input.

Next, we examine U-RIDE under NS-PCM using the same parameters as in
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Fig. 26. U-RIDE estimator (103) with BS under NS-PCM.

Figure 25. We set p = 0.05 and M = 24 in BS scheduling. Figure 26 plots the lifetime

distributions estimated from the output of Algorithm 1 along with the actual FL(x),

indicating a very accurate match between the two. Other simulations with Weibull,

discrete, uniform, and exponential lifetimes, as well as various arrival patterns FA(x),

indicate that U-RIDE is extremely accurate. We omit them for brevity.

4.3 Overhead

We next study the question of how U-RIDE in its current shape compares to the other

two methods in terms of overhead. To address this issue, we first derive a formula to

show how U-RIDE compares to RIDE. We assume unit cost for contacting a Gnutella

peer, which makes traffic overhead directly equal to the number of users contacted

during the sampling process. Denote by cj the number contacts made at the j-th step

of the sampling process for j = 1, 2, . . . , W/∆. Then, define BA to be the sampling

overhead of an algorithm A:

BA =

W/∆∑
j=1

cj. (104)
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We use BC to represent the overhead of CBM, BU that of U-RIDE, and BR that

of RIDE. Define qxy = Bx/By to be one of the overhead ratios of interest, where

x, y ∈ {C, U,R}.

Theorem 13. Assume BS scheduling with p and M and that U-RIDE starts at

midnight. Then, overhead ratio qUR is given by:

qUR = 1 +
τ

E[L]

M∑
m=2

∫ ym

ym−1

fA(t?)(1− FL(ym − t))dt, (105)

where ym = m∆(1− p)/p, τ is the period of the arrival process, E[L] is the expected

user lifetime, fA(x) is the PDF of arrivals, and FL(x) is the CDF of lifetimes.

Proof. Note that both RIDE and U-RIDE use residual sampling, which keeps probing

each discovered alive user until it dies or window T expires. Denote by Vx the probing

set obtained by residual sampling algorithm x, where x ∈ {RIDE, U-RIDE}. Then,

the overhead Bx of residual sampling x is proportional to the product of the probing

set size and the expected residual lifetime, Bx = |Vx|E[R]. Since expected residual

lifetime E[R] is the same for RIDE and U-RIDE, we only need to compare the probing

set size |Vx| of these two methods.

Notice that probing set size |VR| of RIDE equals to the size of the first snapshot

made by U-RIDE at time t1:

|VR| = nE[L]

δ
, (106)

where δ is the expected inter-arrival delay. Note that (106) is simply the average

number of alive users in steady-state. Therefore, we only need to count the number

of new residual samples discovered by U-RIDE at time points t2, . . . , tM .

Denote by N∗
m the number of new residual samples found at time tm for m =

2, . . . , M . Further note that we do not make multiple probes of the same user when

it has multiple residual samples according to our algorithm. It thus follows that N∗
m
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is the number of users that arrive during interval [tm−1, tm) and live through time tm:

N∗
m =

∫ tm

tm−1

λ(t?)(1− FL(tm − t))dt

=
nτ

δ

∫ tm

tm−1

fA(t?)(1− FL(tm − t))dt. (107)

Then, we obtain the probing set size |VU | of U-RIDE:

|VU | = nE[L]

δ
+

M∑
m=2

N∗
m

=
nE[L]

δ
+

nτ

δ

M∑
m=2

∫ tm

tm−1

fA(t?)(1− FL(tm − t))dt. (108)

Notice from the definition of BS that tm can be modeled by Y ∆, where Y is a

negative binomial random variable NegBin(m, p). We thus approximate tm with its

expectation ym ≡ E[tm] = m∆(1 − p)/p in (108). It follows from (106) and (108)

that overhead ratio qUR is given by:

qUR =
BU

BR

=
|VU |
|VR|

= 1 +
τ

E[L]

M∑
m=2

∫ ym

ym−1

fA(t?)(1− FL(ym − t))dt, (109)

which is exactly (105).

The result in (105) shows that qUR is a function of M , ∆, and p. Under uniform

arrivals, (105) becomes:

qUR = 1 + (M − 1)H(∆/p), (110)

where H(x) = 1
E[L]

∫ x

0
(1 − FL(u))du is the CDF of residual lifetimes in stationary

systems. Notice that overhead ratio qUR is an increasing function of M for constant

∆ > 0 and p and tends to M as p → 0 or ∆ →∞. This observation motivates us to

seek a more efficient way to execute U-RIDE.



80

Table III. Overhead ratio qCU using uniform arrivals, Pareto lifetimes with shape α,

E[L] = 1 hour, ∆ = 3 minutes, and U-RIDE with M = 8 and p = 1/60

α W qCU

εU = 0.1 εU = 0.01 εU = 0.001

1.1 48 hrs 5.7 50 213

72 hrs 6 54 274

96 hrs 6.2 57 322

2 48 hrs 19 92 151

72 hrs 25 130 222

96 hrs 31 166 292

4.4 Subsampling

Next, we propose a subsampling technique aimed at reducing the overhead of U-

RIDE. In Algorithm 1, we apply ε-subsampling as follows: for each discovered user,

toss an unfair coin with success probability ε to decide whether the sample should be

kept (i.e., added to both NR(tm) and NR(x, tm)) or discarded. This approach reduces

measurement traffic by approximately a factor of 1/ε. Using simple renewal-process

arguments, it can be shown that subsampling does not affect the properties of users

collected by U-RIDE and has no effect on its ability to avoid bias.

In order to select ε, notice that U-RIDE (as described above) obtains many more

residual samples than RIDE, most of which are not necessary for accurate estimation.

As long as the total number of samples
∑M

i=1 NR(tm) is above some threshold, U-RIDE

will converge by the law of large numbers. Therefore, keeping the same number of

snapshots M , but reducing the size of each snapshot, U-RIDE can match the overhead

of RIDE without sacrificing accuracy. Denote by VR and VU the original sample sets of
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RIDE and U-RIDE, respectively. Further, define εR and εU to be the corresponding

subsampling factors. The following theorem ensures that U-RIDE with can be as

efficient as RIDE.

Theorem 14. Assuming εR|VR| = εU |VU |, the overhead of U-RIDE is upper bounded

by that of RIDE for all ∆, i.e., qUR ≤ 1.

Proof. It is easy to prove the statement of this theorem by the fact that both RIDE

and U-RIDE use residual sampling. Note that after discovering an alive user, residual

sampling keep probing the user until it dies or window T expires. Therefore, the

overhead of U-RIDE is the same as that of RIDE as long as the number of residual

samples discovered by them are the same, which is guaranteed by εR|VR| = εU |VU |.
Note that U-RIDE might have several samples from the same user. It thus follows

that U-RIDE might have less overhead than RIDE given the condition εR|VR| =

εU |VU |.

As network size n →∞, one can always choose εU(n) ∼ 1/n such that εU(n)|VU |
remains constant at some predetermined threshold needed to invoke the law of large

numbers. With this modification, U-RIDE retains the overhead advantages of RIDE

compared to CBM and better scales to larger systems as shown in Table III for small

εU .

5 Experiments

In this section, we compare U-RIDE with RIDE based on Gnutella measurements. In

what follows, we first introduce our data collection process, then discuss comparison

methodology, and finally present our results.
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Fig. 27. Estimated lifetime distribution of all observed peers using CBM and RIDE.

5.1 Dataset

Gnutella [20] is a popular peer-to-peer file sharing network that organizes users into

a two-tier overlay structure. Each peer is identified by its (IP address, port) pair and

can serve in one of two roles: ultrapeer or leaf. The former type of users connect

to other ultrapeers to form the Gnutella overlay and route search messages between

each other to find content. The latter type of users attach to a handful of ultrapeers

and do not provide any routing services to other members of the system. Note that

Gnutella has no central administration and its global structure at any given time is

hidden from the user.

Leveraging the crawl option supported in Gnutella/0.6, our crawler requests

neighbors of each visited ultrapeer and runs a BFS-like algorithm to capture snap-

shots of the entire system at different times tm. In a continuous experiment that lasted

W = 7 days during June 14-20, 2007, we performed repeated crawls of Gnutella every

∆ = 3 minutes, which approximated the behavior of CBM and provided enough data

to emulate both U-RIDE and RIDE using offline processing. The dataset recorded
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over 250M user instances (36.9M ultrapeers and 219.1M leaves) from 50.5M unique

IPs. Due to the dynamic nature of ports and IPs, we were unable to determine the

total number of unique peers that participated in the system; however, the average

number of concurrent users during this period has stayed close to 6.5M.

We also split the dataset based on two criteria: geographic location and service

provider. Table IV lists the numbers of samples and their percentages along with

unique IPs of the top-10 subsets in both categories. We observe from the table that

while the collected samples concentrate in a few countries with almost 50% from US,

the distribution of users among service providers is much more even with all ISPs

receiving less than 10% of the samples.

5.2 Comparison Methodology

To compare U-RIDE with RIDE, we first need to obtain FL(x) as ground-truth.

While this task is impossible with absolute accuracy, our earlier results (see Corollary

3) have shown that CBM has a diminishing bias under NS-PCM as ∆ → 0. In

particular, this condition can often be assumed to hold when ∆ ¿ E[L] (simulations

omitted for brevity), which is satisfied in our crawls given E[L] ≈ 2 hours.

We processed the dataset with all observed peers using CBM after discarding

30.4M invalid samples, but RIDE uses the original dataset. Figure 27(a) plots the

resulting distribution on a log-log scale along with a power-law fit, which indicates

that lifetimes of Gnutella users follow a power-law distribution with shape α = 1.15

and β = 0.69, which is consistent with the result in [3] and other prior papers. With

the data collected from CBM sampling, we are now ready to compare the other two

methods.
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5.3 U-RIDE vs. RIDE

We apply the two residual sampling algorithms to the collected dataset. For RIDE,

we use residual samples from a single snapshot taken at time t0 (i.e., 5 AM on June

14th, 2007) and estimate the corresponding lifetime distributions. Figure 27(b) plots

the 1-CDF of RIDE’s estimator along with that of CBM. The figure shows that

RIDE exhibits a non-trivial deviation from CBM and again violates the monotonicity

requirement of a valid distribution function. While in general the two curves have a

similar trend, significant variance near the tail compromises estimation accuracy. We

also discover from experiments that the gap between RIDE and CBM is consistently

non-trivial for different values of t0. It should be noted that under different arrival

conditions FA(x) and/or distributions FL(x), the bias in RIDE can be much more

drastic as shown in Figure 25(b).

For U-RIDE, we use p = 1/20 and collect 24 full snapshots (approximately one

for each hour) during the first sampling day (i.e., WS = τ and W = 7 days). We

then apply the corresponding estimator to the original dataset of all peers and plot in

Figure 28(a) the curve computed by U-RIDE along with that of CBM. Observe in the

figure that U-RIDE exhibits an almost identical match to CBM. Figure 28(b) shows

a similar match of U-RIDE in the datasets containing only ultrapeers and leaves.

We also examine U-RIDE with four subsets of samples selected from Table IV.

For the geographic location, we use US and UK peers to show the difference in their

FL(x); and for the service provider, we select a US ISP SBC Internet Services (SBC)

and a Brazilian company Telecomunicacoes de Santa Catarina SA (TELESC). Figure

28(c)-(d) indicate that U-RIDE is accurate in measuring the lifetime distribution for

all studied subsets. Our additional experiments (omitted) with other subsets based

on criteria such as time zone, protocol version, and software vendor of Gnutella peers
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also confirm the accuracy of U-RIDE.

5.4 Balancing Accuracy and Overhead

Note that Gnutella experiments above took M = 24 system snapshots in one day and

used U-RIDE without subsampling (i.e., εU = 1). Figure 29(a) shows that U-RIDE

with other choices of M and εU can also produce accurate estimation of the lifetime

distribution. In what follows, we explore the parameter space of M and εU to strike a

balance between accuracy and overhead (WS is kept constant at one day). To assess

accuracy, we employ Weighted Mean Relative Difference (WMRD), which is often

used for comparing distribution functions [11], [30]. Given estimator function E(x)

and target function FL(x), the distance is defined as:

WMRD =

∑W/∆
j=1 |E(xj)− FL(xj)|∑W/∆

j=1 (E(xj) + FL(xj))/2
, (111)

where xj = j∆. Small WMRD distances imply that estimator E(x) is close to the

target distribution. For comparison, RIDE exhibits WMRD = 0.2 and overhead ratio

qCR = 9.8 in Figure 27(b), while U-RIDE achieves WMRD = 0.048 and qCU = 4.6 in

Figure 29(a), where both methods use their most inefficient versions with εU = εR = 1.

Next, we illustrate a more interesting example that solves the tradeoff between

accuracy and overhead. We run U-RIDE with a set of 72 combinations of parameters

M (from 1 to 288) and εU (from 0.0001 to 1). To find the optimal choice for M and

εU , we admit only such pairs that keep WMRD < 0.1 and simultaneously qCU >

100. Among the 5 candidates that pass this criteria, we select the pair with the

smallest WMRD. The resulting choice is M = 8 and εU = 0.005, which reduces the

overhead of U-RIDE by a factor of 126 compared to CBM, while achieving a very

decent WMRD = 0.055. Figure 29(b) plots the estimated results using the optimized
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Fig. 29. Comparison of U-RIDE with CBM.

parameters, indicating a very good match despite the heavy subsampling. Since CBM

does not admit similar reduction in overhead through subsampling (see [61, theorem

7]), U-RIDE emerges as the most viable solution for estimating lifetime distributions

in large, non-stationary distributed systems.

6 Related Work

The Create-Based Method (CBM) for lifetime sampling was first proposed by Roselli

et al. [51] to characterize lifetime distributions of data blocks in file systems and later

introduced by Saroiu et al. [52] to peer-to-peer networks in order to measure session

length distributions. More studies following [52] were presented by Bustamante et

al. [3], Chu et al. [6], and Stutzbach et al. [56]. Wang et al. [62] proposed residual

sampling as a way of overcoming potential inaccuracy and high overhead of CBM.
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7 Discussion

This chapter studied the tradeoff between accuracy and overhead in sampling user

lifetimes in distributed systems with non-stationary arrivals. We first proposed a

novel non-stationary churn model NS-PCM, which was then used to show that existing

methods could not simultaneously achieve high accuracy and low overhead given non-

stationary user arrivals. To overcome this problem, we introduced a simple sampling

algorithm U-RIDE that achieves unbiased estimation of the lifetime distribution and

offers considerable reduction in bandwidth compared to the traditional approaches.
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CHAPTER IV

DISCRETE RIDE (D-RIDE)

1 Introduction

Recent growth of the Internet in both scale and complexity has imposed a number

of challenges on network management, operation, and traffic monitoring. The main

problem in this line of work is to scale measurement algorithms to achieve certain

objectives (e.g., accuracy) while satisfying real-time resource constraints (e.g., fixed

memory consumption and per-packet processing delay) of high-speed Internet routers.

This is commonly accomplished (e.g., [9], [10], [11], [12], [13], [15], [16], [24], [25], [28],

[33], [30], [31], [32], [38], [43], [64]) by reducing the number of information a router has

to store in its internal tables, which comes at the expense deploying special estimation

techniques that can recover metrics of interest from the collected samples.

In this chapter, we focus on two problems in the general area of measuring flow

sizes – determining the number of packets transmitted by “elephant” flows [16], [25],

[28], [33], [32], [38] and building the distribution of flow sizes seen by the router in

some time window [11], [30], [64] – coupled in a single measurement technique. The

former problem often arises in usage-based accounting and traffic engineering [10],

[16], [17], [18], [44], while the latter has a number of security applications such as

anomaly and intrusion detection [2], [39], [26].

Our interest falls within the family of residual sampling, which selects a random

point A within each flow and then samples the remainder R of that flow until it ends.

Denoting by L the size (in packets) of a random flow, sampled residuals R are simply

L−A. Stochastically larger A results in fewer flows being sampled and leads to lower



91

overhead in terms of both CPU and RAM consumption. Besides reduced overhead

arising from omission of many small-size flows from counter tables, residual sampling

guarantees to capture large flows with probability 1− o(1) as their size L →∞. This

allows ISPs to determine “heavy-hitters” and charge the corresponding customers for

generated traffic.

While in P2P networks residual sampling distributes the initial point A uniformly

within user lifetimes [62], flow-based estimation [16], [28] usually employs geometric A

since it can be easily implemented with a sequence of independent Bernoulli variables.

We call the resulting approach residual-geometric sampling and note that it has re-

ceived some limited analytical attention in [16], [28]; however, unbiased estimation of

individual flow sizes, analysis of the resulting error as a function of L, asymptotically

accurate recovery of flow-size distribution P (L = i) and the number of original flows

n from sampled residuals R, and analysis of space-CPU requirements (i.e., memory

and lookup overhead in steady-state) have not been explored. We overcome these

issues below.

1.1 Single-Flow Usage

We start with the problem of obtaining sizes of individual flows for accounting pur-

poses. Since residual sampling requires an estimator to convert residuals into the

metrics of interest, our first task is to define proper notation and desired proper-

ties for the estimation algorithm. Assume that for a flow of size L the sampling

algorithm produces residual RL, where both L and RL are random variables. We

call an estimator e(RL) unbiased if its expectation produces the correct flow size,

i.e., E[e(RL)|L = l] = E[e(Rl)] = l. Unbiased estimation allows one to average the

estimated size of several flows of a given size l and accurately estimate their total con-

tribution. We further call an estimator elephant-accurate if ratio e(Rl)/l converges to
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1 in mean-square as l → ∞. Elephant-accuracy ensures that the variance of e(Rl)/l

tends to zero as l →∞, which means that the amount of relative error between e(Rl)

and l decays to zero as l →∞.

Prior work on residual-geometric sampling [16], [28] has suggested the following

estimator:

e(RL) = RL − 1 + 1/p, (112)

where 0 < p ≤ 1 is the parameter of variable A. To understand the performance

of (112), we first build a general probabilistic model for residual-geometric sampling

and derive the relationship between flow size L and its residual RL. Using this result,

we prove that:

E[e(Rl)] =
l

1− (1− p)l
, (113)

which indicates that (113) is generally biased and on average tends to overestimate

the original flow size by a factor of up to 1/p. To address this problem, we propose

a different estimator:

ê(RL) = RL − 1 + 1/p− (1− p)RL/p (114)

and prove that it is both unbiased and elephant-accurate. We also derive in closed-

form the mean-square error δl = E[(ê(Rl)/l − 1)2] for finite l, which can be used to

determine when (114) approximates the true flow size with accuracy sufficient for

billing purposes.

1.2 Flow-Size Distribution

Our second problem is estimation of the original flow-size PMF fi = P (L = i), i =

1, 2, . . . We call PMF estimator qi asymptotically unbiased if it converges in probability

to fi for all i as the number of sampled flows M →∞. One may be at first tempted
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to define:

qi = P (e(RL) = i), q̂i = P (ê(RL) = i) (115)

using the estimates produced by (112) or (114); however, we show that (115) almost

always differs from the original distribution fi and the bias persists as sample size

M →∞. The reason for this discrepancy is that e(.) and ê(.) both estimate the sizes

of flows that have been sampled by the algorithm, which are not representative of the

entire population passing through the router. Since longer flows are more likely to

be selected by residual sampling, (115) severely overestimates their fraction and thus

skews the PMF towards the tail.

Denote by Mi the number of sampled flows with RL = i and define a new

estimator:

q̃i =
Mi − (1− p)Mi+1

Mp + (1− p)M1

. (116)

Using the general model of residual-geometric sampling derived earlier in the

chapter, we prove that q̃i tends to fi in probability as M =
∑

i Mi → ∞ and derive

the amount of error |q̃i − fi| for finite M . We also provide asymptotically unbiased

estimators for the total number of flows n:

ñ = M + (1− p)M1/p (117)

and the number of flows ni with exactly i packets:

ñi = (Mi − (1− p)Mi+1)/p, (118)

where we prove that ñ/n → 1 and ñi/ni → 1, both in probability, as M → ∞. We

call the resulting combination (114), (116)-(118) Discrete ResIDual-based Estimators

(D-RIDE).
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1.3 Implementation and Evaluation

We finish the chapter by discussing an efficient implementation of the above algo-

rithms and evaluating their accuracy/performance using several Internet traces. Prior

work has not discussed how residual sampling should be implemented or its overhead

in steady-state, which prompts a fairly detailed exposition below.

We assume D-RIDE uses a chain-linked hash table of size K, which keeps in-

dividual flow counters. Each linked list is sorted according to the flow ID and is

traversed linearly until a match is found or an ID larger than the one being sought is

encountered. Keeping the list sorted (as opposed to FIFO) reduces the lookup delay

by half for flows not already in the table. To reduce RAM overhead, we remove flows

from the table if they have completed (i.e., FIN, RST packets detected) or if no pack-

ets from these flows arrive within some timeout τ . To keep the overhead manageable,

the removal process is run over the entire table on the timescale of seconds or even

minutes.

As before, assume that the router sees a total of n flows in window [0, T ]. Then,

denote by N(t) the number of active flows at time t and by M(t) the number of them

sampled by the router. It then follows that the average memory consumption at time

t is W (t) = K + E[M(t)] and the average lookup delay is D(t) = 1 + E[M(t)]/2K

operations. Under certain stationarity assumptions, we obtain a simple result on

E[M(t)] and show that even as the total number of flows n →∞, both RAM usage

and overhead remain constant for any p > 0 as long as flow density ρ = n/T is

bounded.

We then explore how to satisfy the tradeoff between three design objectives –

memory consumption, processing speed, and accuracy – using parameters K and p.

Given upper bounds on memory usage W0 and per-packet processing delay D0, we
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propose a technique for deciding K based on the above analysis such that W ≤ W0

and D ≤ D0 are satisfied, while maximizing p at the same time (i.e., achieving the

best accuracy within the constraints).

We finish this chapter by evaluating D-RIDE with real Internet traces obtained

from NLANR [41] and CAIDA [7]. Our experiments reveal that the proposed al-

gorithm produces very accurate estimation of flow metrics and thus allows one to

perform more aggressive sampling (i.e., smaller probability p) of the monitored traf-

fic. With p = 0.01, we find that E[M(t)] is 40−4000 times smaller than n and 3−100

times smaller than M , where most lookups require 1-2 operations with K = E[M(t)].

We also discover in the experiments with small traces that D-RIDE does not degrade

significantly in terms of accuracy even for moderate sample sizes, which makes it

suitable for monitoring individual customer networks and certain protocols.

The remainder of the chapter is organized as follows. We review prior work on

traffic monitoring in Section 2. We then develop a probabilistic model for residual-

geometric sampling in Section 3, analyze previous methods in Section 4, and propose

two new estimators in Section 5. We explore the implementation of the suggested

framework in Section 6, evaluate its performance in Section 7, and conclude the

chapter in Section 8.

2 Related Work

In this section, we review several sampling algorithms in the area of traffic monitoring.

In particular, we classify existing work into two categories: packet sampling and flow

sampling, where the former makes per-packet and the latter per-flow decisions to

sample incoming traffic.
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2.1 Packet Sampling

Sampled NetFlow (SNF) [43] is a widely used technique in which incoming packets

are sampled with a fixed probability p. The general goal of SNF is to obtain the

PMF of flow sizes; however, [24] shows that it is impossible to accurately recover

the original flow-size distribution from sampled SNF data. Estan et al. [15] propose

Adaptive NetFlow (ANF), which adjusts the sampling probability p according to the

size of the flow table; however, ANF’s bias in the sampled data is equivalent to that

in SNF and is similarly difficult to overcome in practice.

Instead of using one uniform probability for all flows as in [15], [43], another

direction in packet sampling is to compute pi(c) for each flow i based on its currently

observed size c. This approach has been studied by two independent papers, Sketch-

Guided Sampling (SGS) [32] and Adaptive Non-Linear Sampling (ANLS) [25]. A

common feature of these two methods is to sample a new flow with probability 1

and then monotonically decrease pi(c) as c grows. Both methods must maintain a

counter for each flow present in the network and are difficult to scale due to the high

RAM/CPU usage.

2.2 Flow Sampling

In flow thinning [24], each flow is sampled independently with probability p and then

all packets in sampled flows are counted. Hohn et al. [24] show that flow thinning is

able to accurately estimate the flow size distribution; however, this method typically

misses 1− p percent of elephant flows and thus does not support applications such as

usage-based accounting and traffic engineering [10], [16], [17], [18], [44]. For highly

skewed distributions with a few extremely large flows and many short ones (which is

typical for Internet links), this method may also take a long time to converge.
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To address these problem of flow thinning, Estan et. al. [16] introduce a size-

dependent flow sampling algorithm called Sample-and-Hold (S&H), which is proposed

to identify elephant flows. For each packet from a new flow, the algorithm creates a

flow counter with probability p; once a flow is sampled, all of its subsequent packets

are then counted. It is easy to verify that S&H samples a flow with size L with

probability 1− (1− p)L, which quickly approaches 1 as L grows.

Another direction of size-dependent flow sampling has been explored by Duffield

et al. in [9], [10], [12], which present another size-dependent flow measurement method

called Smart Sampling. Their approach selects each flow of size L with probability

p(L) = min(1, L/z), where z is some constant. Since this method requires flow size

L before deciding whether to sample it or not, it can only be applied off-line.

Kompella et. al. [28] examine a method called Flow Slicing (FS), which combines

SNF and S&H with a variant of smart sampling. Other non-sampling methods include

exact counting [42], [47], [54], [67] and lossy counting [30], [38], which are orthogonal

to our work.

3 Underlying Model

In this section, we build a general probabilistic model of residual-geometric sampling

and establish the necessary analytical foundation for this work.

3.1 Definitions

Consider a sequence of packets traversing a router and assume that residual-geometric

sampling checks each packet’s flow identifier x in some RAM table. If x is found in

the table, the corresponding counter is incremented by 1; otherwise, with probability

p a new entry for x is created in the table (with counter value 1) and with probability
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Fig. 30. Residual-geometric sampling of a flow with size L.

1− p the packet is ignored.

To model this process, we first need several definitions. Assume that flow sizes

are i.i.d. random variables and define geometric age AL to be the number of packets

discarded from the front of a flow with size L before it is sampled (see Figure 30).

Let G be a shifted geometric random variable with success probability p, i.e., P (G =

j) = (1− p)jp. It thus follows that AL is simply:

AL = min(G,L). (119)

Now define geometric residual RL to be the final counter value of a flow of size

L conditioned on the fact that it has been sampled (i.e., AL < L):

RL = L− AL, (120)

which is also illustrated in Figure 30. From the perspective of traffic monitoring in

this chapter, geometric residual RL is the only quantity collected during measurement

and available to an estimation algorithm. We study its distribution next.

3.2 Geometric Residual

Assume that L has a PMF fi = P (L = i), where i = 1, 2, . . ., and denote by ps =

P (AL < L) the probability that a random flow is sampled. Then, we have the

following result.
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Lemma 4. The probability ps that a flow is selected by residual-geometric sampling

is given by:

ps = E[1− (1− p)L] = 1−
∞∑
i=1

fi(1− p)i. (121)

Proof. Observe that for a fixed flow size L = l, we have P (Al < l) = 1 − (1 − p)l.

Unconditioning L, we immediately get (121).

Next, let hi = P (RL = i) be the PMF of geometric residual RL. The following

lemma expresses hi in terms of fi.

Lemma 5. The PMF of geometric residual RL is:

hi =
p
∑∞

j=i fj(1− p)j−i

ps

, (122)

where ps is given by (121).

Proof. Using (120), we have:

hi = P (RL = i) = P (L− AL = i|AL < L)

=
P (L− AL = i ∩ AL < L)

ps

, (123)

where ps = P (AL < L). Substituting (119) into (123), we get:

hi =
P (L−G = i ∩G < L)

ps

. (124)

Since L−G = i ≥ 1, (124) becomes:

hi =
P (L−G = i)

ps

=

∑∞
j=0 P (G = j − i)fj

ps

, (125)

which gives the desired result in (122) by substituting the PMF of G into (125).

The result of Lemma 5 is fundamental as most of the results of this chapter are

conveniently derived from (122).
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3.3 Fixed Flow Size

We next analyze a special case of residual sampling where the original flow size is

fixed at L = l. Note that residuals are now Rl instead of RL since the original flow

size is no longer a random variable. Recall that the goal of single-flow size estimation

is to obtain l from Rl for each sampled flow. The next corollary follows from (122)

and gives the distribution and expectation of geometric residual Rl.

Corollary 8. Given flow size L = l, the PMF of Rl is given by:

P (Rl = i) =
(1− p)l−ip

1− (1− p)l
, (126)

and its expectation is:

E[Rl] =
l

1− (1− p)l
+ 1− 1/p. (127)

Proof. For L = l, we have fl = 1 and fi = 0 for all i 6= l. Writing ps = 1 − (1 − p)l,

we get from (122):

P (Rl = i) =

∑∞
j=i fj(1− p)j−ip

1− (1− p)l
=

(1− p)l−ip

1− (1− p)l
, (128)

which is exactly (126).

We next derive expectation E[Rl], which can be expanded into:

E[Rl] = E[l − Al|Al < l] = l − E[G|G < l]. (129)

Recall that for any non-negative discrete random variable Y taking values over

the integer set {0, 1, . . .}, its expectation is given by E[Y ] =
∑∞

y=0 P (Y > y). It thus
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follows that (129) reduces to:

E[Rl] = l −
l−1∑
j=0

P (G > j|G < l)

=
l−1∑
j=0

P (G ≤ j|G < l) =

∑l−1
j=0 P (G ≤ j)

P (G < l)
. (130)

Substituting P (G ≤ j) = 1− (1− p)j+1 into (130), we have:

E[Rl] =

∑l−1
j=0[1− (1− p)j+1]

1− (1− p)l

=
l − (1− p)(1− (1− p)l)/p

1− (1− p)l
, (131)

which can be simplified to (127).

Next, we apply the results derived in this section to analyze existing estimation

methods that have been proposed for residual-geometric sampling.

4 Analysis of Existing Methods

In this section, we examine prior approaches [16], [28] to estimating single-flow usage

and whether their results can be generalized to recover the PMF of L.

4.1 Single-Flow Usage

To evaluate single-flow estimators, we use the following definition that is commonly

used in statistics [4].

Definition 11. Estimator e(Rl) is called unbiased if E[e(Rl)] = l for all l ≥ 1.

Unbiased estimation is a key property of an estimator as it allows accurate es-

timation of the total contribution from a sufficiently large pool of flows (e.g., one

customer network). However, since large flows are typically rare, one commonly faces
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Fig. 31. Expectation of estimator (132) in simulations and its model (133).

an additional requirement to estimate their size with just a single sample e(Rl), which

is formalized in the next definition.

Definition 12. Estimator e(Rl) is called elephant-accurate if e(Rl)/l → 1 in mean-

square as l →∞.

Elephant-accuracy guarantees that the amount of relative error between e(Rl)

and l decays to zero as l → ∞. As before, suppose that a flow of size L produces a

counter with value RL. Recall that [16], [28] suggest the following estimator:

e(RL) = RL + 1/p− 1, (132)

where p is the probability of residual-geometric sampling. The next result directly

follows from (127).

Theorem 15. Expectation E[e(Rl)] is given by:

E[e(Rl)] =
l

1− (1− p)l
. (133)

Note that (133) indicates that (132) is generally biased, especially when lp is
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small. Indeed, for lp ≈ 0, we have 1− (1− p)l ≈ lp and E[e(Rl)] ≈ 1/p regardless of

l, which shows that in such cases E[e(Rl)] carries no information about the original

flow size. However, as l → ∞, it is straightforward to verify that the bias in e(Rl)

vanishes exponentially, which is consistent with the analysis in [28], which has only

considered the case of l →∞.

To see the extent of bias in (132) and verify (133), we apply residual-geometric

sampling to flows of size l ranging from 1 to 106, feed the measured sizes to (132),

and average the result after 1000 iterations for each l. Figure 31 plots the obtained

E[e(Rl)] along with model (133). The figure indicates that (133) indeed captures the

bias and that (132) tends to over-estimate the size of short flows even in expectation,

where smaller sampling probability p leads to more error.

To quantify the error of individual values e(Rl) in estimating flow size l and to

understand elephant-accuracy, denote by Yl = e(Rl)/l and define the Relative Root

Mean Square Error (RRMSE) to be:

δl =
√

E[(Yl − 1)2]. (134)

Note that δl → 0 indicates that Yl → 1 in mean-square and thus implies elephant-

accurate estimation. The next result derives δl in closed form. We omit the derivations

due to limited space.

Theorem 16. The RRMSE of (132) is given by:

δl =

√
1− p− l(l − 1)p2(1− p)l − (1− p)l+1

l2p2(1− (1− p)l)
. (135)

Observe from (135) that for flows with size l = 1, the relative error is
√

1− p/p,

but as l → ∞, δl → 0 and the estimator is elephant-accurate. Figure 32 plots (135)

against simulations, indicating a close match. The figure also shows that the RRMSE
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Fig. 32. RRMSE of (132) in simulations and its model (135).

starts from 1/p and decreases towards zero as Θ(1/l) as l →∞.

4.2 Flow-Size Distribution

We now investigate whether e(RL) defined in (132) can be used to estimate the actual

flow-size distribution {fi}∞i=1. Denote by qi = P (e(RL) = i) the PMF of estimated

sizes among the sampled flows. To understand our objectives with approximating the

PMF of L, the following definition is in order.

Definition 13. An estimator {qi}∞i=1 of PMF {fi}∞i=1 is called asymptotically un-

biased if qi converges in probability to fi for all i as the number of sampled flows

M →∞.

The next theorem follows directly from (122).

Theorem 17. The PMF of flow sizes estimated from (132) is given by:

qi =

∑∞
j=y(i) fj(1− p)j−y(i)p

ps

, (136)

where y(i) = di + 1− 1/pe and ps is in (121).
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Fig. 33. Distribution {qi} in simulations and its model (136).

The result in (136) indicates that each qi is different from fi regardless of the

sampling duration and thus cannot be used to approximate the flow-size distribution.

We verify (136) with a simulated packet stream with 5M flows, where flow sizes follow

a power-law distribution P (L ≤ i) = 1 − i−α for i = 1, 2, . . . and α = 1.1. Figure

33 plots the CCDF of random variable e(RL) obtained from simulations as well as

model (136), both in comparison to the tail of the actual distribution. The figure

shows that (136) accurately predicts the values obtained from simulations and that

PMF {qi} is indeed quite different from {fi}.
So far, our study of existing methods in residual-geometric sampling has shown

that they are not only generally biased, but also unable to recover the flow-size dis-

tribution from residuals RL. This motivates us to seek better estimation approaches,

which we perform next.
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5 D-RIDE

This section proposes a family of algorithms called Discrete ResIDual-based Estima-

tors (D-RIDE), proves their accuracy, and verifies them in simulations.

5.1 Single-Flow Usage

For estimating individual flow sizes, we first consider an estimator directly implied

by the result in (127). Notice that solving (127) for l and expressing flow size l in

terms of E[Rl], we get:

l = u− 1

log(1− p)
W

(
u(1− p)u log(1− p)

)
, (137)

where u = E[Rl] + 1/p − 1 and W (z) is Lambert’s function (i.e., a multi-valued

solution to WeW = z) [8]. Thus, a possible estimator can be computed from (137)

with E[Rl] replaced by the measured value of geometric residual Rl. However, there

are two reasons that (137) is a bad estimator of flow sizes. First, Lambert’s function

W (z) has no closed form solution and has to be numerically solved using tools such

as Matlab. Second, it can be verified (not shown here for brevity) that (137) is not

an unbiased estimator. Instead, we define a new estimator:

ê(Rl) = Rl + 1/p− 1− (1− p)Rl/p. (138)

and next show that it is unbiased.

Lemma 6. Estimator ê(Rl) in (138) is unbiased, i.e.,

E[ê(Rl)] = l. (139)

Proof. We prove (139) by deriving such function ê(.) that satisfies E[ê(Rl)] = l. First,
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Fig. 34. Expectation of estimator (138) in simulations.

it follows from (126) that expectation E[ê(Rl)] can be rewritten as:

E[ê(Rl)] =

∑l
j=1 ê(j)(1− p)l−jp

1− (1− p)l
. (140)

For E[ê(Rl)] = l to hold, we must have:

l∑
j=1

ê(j)(1− p)−j =
l
(
1− (1− p)l

)

p(1− p)l
. (141)

Writing (141) twice for l and l− 1 and subtracting the two equations from each

other, we get:

ê(l)(1− p)−l =
1 + p(l − 1)− (1− p)l

p(1− p)l
. (142)

Simplifying (142) and replacing l with Rl immediately gives (138).

We plot in Figure 34 simulation results obtained from (138). The figure indicates

that ê(Rl) accurately estimates actual sizes for all flows in both cases of p. Next, we

derive the RRMSE of D-RIDE.
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Fig. 35. RRMSE of (138) in simulations and model (143).

Theorem 18. The RRMSE of (138) is given by:

δ̂l =

√
1− p + lp(p− 2)(1− p)l − (1− p)2l+1

l2p2(1− (1− p)l)
. (143)

It is easy to verify from (143) that D-RIDE has zero RRMSE for l = 1 or l →∞,

confirming its elephant-accuracy. We plot δ̂l obtained from simulations along with

the model in Figure 35, which shows that (143) accurately tracks the actual relative

error. From Figures 34-35, it is clear that ê(Rl) significantly improves the accuracy

of estimating small flow sizes compared to e(Rl). In practice, (143) can be used to

determine threshold l0, which leads to desired bounds on error for all l ≥ l0 and allows

ISPs to use e(Rl) instead of l.

5.2 Flow-Size Distribution

It is worth mentioning that while (138) produces unbiased estimation of flow sizes,

ê(RL) is not suitable for producing the flow-size distribution as we show below. Denote

by q̂i = P (ê(RL) = i) the PMF of ê(RL). Then, we have the following result.
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Lemma 7. PMF of ê(RL) is given by:

q̂i =
1

ps

∞∑

j=y(i)

(1− p)j−y(i)fjp, (144)

where ps is in (121), function y(i) is:

y(i) = di + 1− 1/p− ωe, (145)

and ω = W
(−(1− p)i+1−1/p log(1− p)

)
.

Proof. We first solve

RL + 1/p− 1− (1− p)RL/p = i, (146)

for RL and express it in terms of i, i.e., RL = y(i), where y(i) is given by (145),

ignoring approximate round-offs to the nearest integer. Combining with (122), we

have:

q̂i = P (RL = y(i)) = hy(i), (147)

where hi is in (122). This directly leads to (144).

Notice from (144)-(145) that distribution q̂i does not even remotely approximate

the original PMF fi. This problem is fundamental since residual sampling exhibits

bias towards larger flows and even if we could record L from RL exactly, the distribu-

tion of sampled flow sizes would not accurately approximate that of all flows passing

through the router.

We thus explore another technique for estimating the flow-size distribution. Be-

fore doing that, we need the next lemma.

Lemma 8. The flow size distribution fi can be expressed using the PMF of geometric
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residuals {hi} given by (122) as following:

fi =
hi − (1− p)hi+1

p + (1− p)h1

. (148)

Proof. We first rewrite (122) as:

hi =
p

ps(1− p)i

∞∑
j=i

fj(1− p)j, (149)

and then subtract (1− p)hi+1 from both sides of (149):

hi − (1− p)hi+1 =
p

ps

fi. (150)

It immediately follows that fi is given by:

fi =
ps(hi − (1− p)hi+1)

p
, (151)

Notice that ps in (121) is a function of fi’s, which are unknown from the mea-

surement perspective. The last step of the proof is to express ps in terms of known

quantities {hi}, which can be accomplished by applying the normalization condition
∑∞

i=1 fi = 1. It is easy to verify that:

∞∑
i=1

hi = 1,
∞∑
i=1

hi+1 = 1− h1, (152)

Then, summing up both sides of (151) for i from 1 to infinity gives us:

ps =
p

p + (1− p)h1

. (153)

Substituting (153) into (151) establishes the desired result in (148).

The result in (148) leads a new estimator for the flow-size distribution:

q̃i =
Mi − (1− p)Mi+1

Mp + (1− p)M1

, (154)
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Fig. 36. Estimator (154) in simulations.

where M is the total number of sampled flows and Mi is the number of them with

geometric residual equal to i. Since Mi/M → hi in probability as M →∞ (from the

weak law of large numbers), we immediately get the following result.

Corollary 9. The estimator in (154) is asymptotically unbiased.

We next verify the accuracy of q̃i in simulations with 5M flows in the same setting

as in the previous section. We plot in Figure 36 the CCDF estimated from (154) along

with the actual distribution. The figure shows that q̃i accurately follows the actual

distribution for both cases of p.

5.3 Convergence Speed

We next examine the effect of sample size M on the convergence of estimator q̃i. To

illustrate the problems arising from small M , we study (154) with p = 10−4 and 10−5

in simulations with the same 5M flows. The estimator obtained M = 3, 090 flows

for p = 10−4 and just M = 337 for p = 10−5. Figure 37 indicates that while the

estimated curves under both choices of p still approximate the trend of the original
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Fig. 37. Estimator (154) in simulations with very small p.

distribution, they exhibit different levels of noise. As the next result indicates, small

p leads to a small sample size M and thus more noise in the estimated values.

Corollary 10. Suppose that M flows are selected by residual-geometric sampling from

a total of n flows. Then, the expected value of M is given by:

E[M ] = nps = nE[1− (1− p)L]. (155)

To shed light on the choice of proper p for residual-geometric sampling, we show

how to determine the minimum M that would guarantee a certain level of accuracy

in q̃i. Define h̃i = Mi/M to be an estimate of hi = P (RL = i). The next lemma

follows from Lemma 8 and Corollary 9 and indicates that the accuracy of q̃i directly

depends on whether h̃i approximates hi accurately.

Lemma 9. Suppose that |h̃j − hj| ≤ ηhj holds with probability 1− ξ for j ∈ [1, i + 1]

and small constants η and ξ. Then, there exists a constant ζ:

ζ =
η(p + 2η(1− p)h1)

p + (1− p)(1− η)h1

(156)
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such that ζ → 0 as η → 0 and P (|q̃i − fi| ≤ ζfi) = 1− ξ.

Proof. We prove the result by deriving ζ that satisfies |q̃i − fi| ≤ ζfi given that

|h̃j − hj| ≤ ηhj. From (148) and (154), we have:

|q̃i − fi| = |a1|
a2

, (157)

where

a1 = p(h̃i − hi) + p(1− p)(h̃i+1 − hi+1) + (1− p)×

(h1h̃i − h̃1hi) + (1− p)2(h1h̃i+1 − h̃1hi+1), (158)

and

a2 = (p + (1− p)h1)(p + (1− p)h̃1). (159)

From the condition |h̃j − hj| ≤ ηhj, we bound |a1| and a2 as follows:

|a1| ≤ ηphi + 2η(1− p)h1hi + ηp(1− p)hi+1

+ 2η(1− p)2h1hi+1

= η(hi + (1− p)hi+1)(p + 2η(1− p)h1), (160)

and

a2 ≥ (p + (1− p)h1)(p + (1− p)(1− η)h1). (161)

It thus follows from (148) and (160)-(161) that |q̃i − fi| ≤ ζfi, where constant ζ

is given by:

ζ =
η(p + 2η(1− p)h1)

p + (1− p)(1− η)h1

, (162)

and that ζ → 0 as η → 0.
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Next, we obtain a bound on M from the requirement that h̃i be bounded in

probability within a given range [hi(1− η), hi(1 + η)].

Theorem 19. For small constants η and ξ, |h̃i−hi| ≤ ηhi holds with probability 1−ξ

if sample size M is no less than:

M ≥ (1− hi)

hiη2

(
Φ−1 (1− ξ/2)

)2
, (163)

where Φ(x) is the CDF of the standard Gaussian distribution N (0, 1).

Proof. Notice that h̃i can be approximated by a Gaussian random variable with mean

µi = hi and variance σ2
i = hi(1− hi)/M . Define

Z =
h̃i − µi

σi

. (164)

Notice that Z is a standard Gaussian random variable. It follows that:

P (|Z| ≤ z) = 2Φ(z)− 1, (165)

where Φ(.) is the CDF function of the standard Gaussian distribution N(0, 1). There-

fore, we establish that:

P (|h̃i − hi| ≤ zσi) = 2Φ(z)− 1. (166)

We can guarantee target accuracy by setting zσi = ηφi and 2Φ(z)− 1 = 1− ξ, which

gives the following equality:

ηhi

σi

= Φ−1 (1− ξ/2) . (167)

Substituting σi =
√

hi(1− hi)/M into the above equation and solving for M , we

obtain (163).

For example, to bound h̃i within 10% percent of hi (i.e., η = 0.1) with probability
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1− ξ = 95% for all hi ≥ 10−2, the following must hold:

M ≥ (1− 10−2)× 1.962

10−2 × 0.12
≈ 3.8× 104, (168)

which indicates that M = 38K flows must be sampled to achieve target accuracy. If

we reduce η to 1%, increase 1− ξ to 99%, and require the approximation to hold for

all hi ≥ 10−3, then M must be at least 66M flows. Converting η into ζ using (156),

one can establish similar bounds on the deviation of q̃i from fi.

5.4 Estimation of Other Flow Metrics

Besides flow sizes and the flow size distribution, D-RIDE also provides estimators for

the total number of flows and the number of them with size i. Before introducing

these estimators, we need the next lemma.

Lemma 10. The expected number of flows with sampled residuals RL = i is:

E[Mi] = E[M ]hi = nhips, (169)

where hi is the PMF of geometric residuals and ps is given by (121).

Based on (169), we next develop two estimators and prove their accuracy. Define

ñ to be an estimator of the total number of flows n observed in the measurement

window [0, T ]:

ñ = M + (1− p)M1/p. (170)

and ñi to be an estimator of the number of flows ni with size i:

ñi = (Mi − (1− p)Mi+1)/p. (171)

Then, the next result shows that both of these estimators are asymptotically

unbiased.
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Fig. 38. The D-RIDE framework.

Lemma 11. Ratios ñ/n and ñi/ni converge to 1 in probability as M →∞.

Note that [28] provided a similar estimator as (170) and proved E[ñ] = n using a

different approach from ours; however, our results are stronger as they show conver-

gence in probability and additionally address estimation of ni. Simulations verifying

the accuracy of (170)-(171) are omitted for brevity.

6 Implementation

In this section, we implement D-RIDE and examine its memory consumption and

processing speed.

6.1 General Structure

Figure 38 illustrates a framework that implements the various D-RIDE algorithms.

The framework contains three processes — flow classification, residual-geometric sam-

pling, and estimation — as well as one data structure containing the flow counter

table.
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Flow classification processes each incoming packet for flow ID and then forwards

it to residual-geometric sampling. For each flow ID x arriving from flow classification,

residual-geometric sampling first checks if the flow table has an existing entry for

x and increment the counter by 1; if an entry does not exist, it is created with

probability p and its counter is initialized to 1. The geometric estimation process

collects counter values from the flow table and then uses D-RIDE to estimate flow

statistics.

The flow table keeps a mapping between flow IDs and associated counters. The

table supports three operations: 1) lookup(x) to retrieve the record of flow x; 2)

add(x) to insert a new entry for flow x in the table with the initial counter value 1;

and 3) increment(x) to add 1 to the counter of flow x. We display in Figure 39 an

implementation of the counter table, which is based on a chained hash table. Assume

a hash function hash(x) that produces an integer value in [0, 1, . . . , K−1]. We assume

that the generated hash values are uniformly distributed within interval [0, K − 1]

and the implementation of function hash(.) is fast enough. Efficient hardware hash

functions can be found in [48].

We maintain an array A of size K and each entry A[k] points to a liked list

that keeps the set of flows whose IDs have the same hash value k. Each node in the
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list contains two fields: 1) flow data that keeps the flow ID, the packet counter, and

the timestamp of the last packet; and 2) a pointer to the next node. An important

element of our algorithm is to ensure that the table only keeps active flows, which

is accomplished by periodic sweeps through the table and removal of all flows that

have completed using FIN/RST packets or have been idle for longer than τ time

units. Removal means either saving flow information to disk (single-flow usage) or

aggregating statistics of departed flows into a PMF table. Operations add(x) and

increment(x) automatically modify the timestamps associated with each flow.

Notice that the flow table is accessed by residual-geometric sampling upon each

packet arrival. Therefore, the scalability of the measurement algorithm essentially

depends on the access speed to the table. In what follows, we analyze the design of

the flow table and quantify its two important properties: memory consumption and

processing speed.

6.2 Active Flows

To understand how much benefits removal of dead flows provides to memory consump-

tion, we next derive the expected number of active flows and their fraction sampled

by the algorithm. Assume a measurement window [0, T ] with some fixed flow density

ρ = n/T as T →∞. For each flow i, let inter-packet delays within the flow be given

by a random variable ∆i, which counts the number of packet arrivals from other flows

between adjacent packets of i. Denoting by ∆ = E[∆i], we have the following result.

Lemma 12. Assuming stationary flow arrivals in [0, T ], the expected number of active

flows N(t) at time t is given by:

E[N(t)] = ∆E[L]ρ, (172)
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Fig. 40. Verifying models (172) and (173).

where E[L] is the expected flow size.

Our baseline reduction in flow volume comes from geometric sampling in previous

sections and reduces the number of flows by a factor r1 = n/E[M ]. Now additionally

define r2 = n/E[N(t)] = T/∆E[L] and observe that longer observation windows (i.e.,

larger T ), smaller flow sizes (i.e., smaller E[L]), and denser arrivals (i.e., smaller ∆)

imply more savings of memory. In fact, T →∞ results in r2 →∞ as well assuming

the other parameters are fixed. More reduction is possible by geometric sampling.

Denote by M(t) the number of sampled flows that are still alive at t and consider the

next result.

Lemma 13. Assuming ∆i are constant and the flow arrival process is stationary in

[0, T ], the expected number of sampled active flows at time t is given by:

E[M(t)] = ρ∆

(
E[L]−

∞∑
i=1

(1− p)i(1− Fi)

)
, (173)

where Fi = P (L ≤ i) is the CDF of flow sizes.

Performing a self-check and comparing (172) to (173), observe that E[M(t)] ≤
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Table V. Comparing models (172) and (173) to simulation results

time t E[N(t)] E[M(t)]

simulation model (172) simulation model (173)

100 867.1 866.6 487.0 486.8

200 866.4 866.6 487.0 486.8

300 866.7 866.6 486.5 486.8

400 866.3 866.6 486.4 486.8

500 866.9 866.6 486.8 486.8

E[N(t)] and thus the former always results in more reduction in table size. Denote

by r3 = n/E[M(t)] and notice that it increases not only as T grows, but also when p

decreases. We evaluate models (172) and (173) in simulations with 1, 000 iterations

through window [0, T ] with randomly generated flows from the a distribution with

flow-size CDF Fi = 1−i−α, where α = 1.1 and p = 0.01. Figure 40 plots the evolution

of N(t) and M(t) along with the expected values computed from the models. Table V

compares the models with E[N(t)] and E[M(t)] computed in simulations, where each

value is averaged using 1, 000 iterations of the traffic stream. Figure 40 and Table V

indicating a close match even though the simulation does not follow the assumptions

on constant ∆i in Lemma 13.

6.3 Memory Consumption

The memory used by the flow table can be divided into two parts: one for the hash

table, which contains an array of pointers, and the other for flow records, which are

organized in a set of linked lists. Define wp to be the number of bytes used by each

memory pointer and wf to be that needed for flow counter, timestamp, and flow
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ID. Then, the following theorem gives the memory required for the measurement

algorithm.

Theorem 20. The average number of bytes required by D-RIDE in steady-state is:

E[W (t)] = Kwp + E[M(t)](wc + wf ), (174)

where E[M(t)] is the average number of sampled active flows at time t given by (173).

From (174), observe that for n original flows with a given distribution of L,

memory consumption E[W (t)] can be reduced by lowering either M(t) or K. As

discussed in the previous section, M(t) cannot be arbitrarily small as it would lead to

lower accuracy. At the same time, small K leads to more conflicts in the hash table,

longer linked lists, and thus may slow down the sampling process.

6.4 Processing Time

The time spent in processing each packet depends on how linked lists are built. We

examine an approach that sorts flow entries of each linked list based on flow IDs. In

this approach, function lookup(x) returns a pointer to the entry of flow x if it exists

in the table; otherwise, the function returns a pointer to where the new entry should

be inserted.

For each packet with flow ID x, we perform the following steps in sequential

order: 1) compute the k = hash(x); 2) retrieve the linked-list head pointer A[k] from

the hash table; 3) iterate through the linked list until a flow record is matched or a

flow with ID larger than x is reached; 4) if x is not found, a new entry for x is created

with probability p and inserted to the location returned by lookup(x).

Denote by th the time spent in computing a hash, by tp that of memory access,

and by tc that of each comparison of flow IDs. Define D(t) to be the processing time
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Table VI. Constants used in (174) and (175)

RAM constant value CPU constant value

wp 4B th 12ns

wf 17B tp 9ns

W0 1.65MB tc 3ns

T0 24ns

of incoming packets at t. Then, noticing that the expected list length is E[M(t)]/K

entries and on average traversal stops in the middle of a list, we have the next result.

Theorem 21. The expected per-packet processing time is:

E[D(t)] = th + tp + (tc + tp)
E[M(t)]

2K
. (175)

The result in (175) indicates that both large hash table size K and small sample

size M(t) can contribute to a faster sampling process. We next examine how to

properly select K and p to satisfy certain target constraints on E[W (t)] and E[D(t)].

6.5 Tradeoff Analysis

Now, we are ready to explore the design space of constants (K, p) to strike a balance

between accuracy and scalability. Suppose that a router requires that E[W (t)] ≤ W0

and E[D(t)] ≤ D0. Further assume that the number of sampled flows E[M(t)] is

known and fixed (i.e., fixed p, window T , and flow-size distribution). Define two

constants:

Kl =
(tc + tp)E[M(t)]

2(T0 − (th + tp))
, (176)
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Fig. 41. Tradeoff: (a) memory consumption and (b) processing time with E[M(t)] =

3.9× 104. Gray areas display the acceptable ranges of K.

and

Ku =
W0 − E[M(t)](wc + wf )

wp

. (177)

It thus follows from (174) and (175) that assuming Kl ≤ Ku, one can choose any

value K ∈ [Kl, Ku] to satisfy the constraints. We show below how by varying p, one

can always maximize accuracy while ensuring Kl ≤ Ku.

To understand this better, consider the following example. Assume that the

original traffic contains n = 106 flows with a power-law distribution P (L ≤ i) =

1 − i−1.1. With p = 0.01, residual-geometric sampling obtains E[M(t)] = 3.9 × 104

sampled flows. Table VI gives the constants we use to compute expected memory

consumption and processing time from (174) and (175). We also impose the following

constraints on memory and delay: W0 = 1.65MB and D0 = 24ns. The memory of

1.65MB can hold an array of about 105 flow records, each with a flow ID and a

counter. Per-packet processing time must be less than 24ns for OC-768 links with an

average packet size of 1 Kbit. Figure 41 illustrates the acceptable ranges of table size
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Fig. 42. Lower and upper bounds on table size K with varying probability p. Gray
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K derived from the models. The figure indicates that table size K can be any value

between Kl = 7.9 × 104 and Ku = 2.3 × 105 (obtained from (176)-(177)) to satisfy

the requirements of both memory and processing speed.

Notice that it is possible that for some values of E[M(t)], Kl is larger than Ku

and thus the constraints cannot be met. Therefore, we next vary p to see how the

choice of K will be affected. Figure 42 plots Ku and Kl as functions of p, where both

curves are obtained from the corresponding models. Notice from the figure that as

p increases, the interval [Kl, Ku] shrinks to one single point K0, which is achieved

when p = p0. As discussed in the previous section, larger p implies more accurate

estimation results since the router sees more flows M in the interval [0, T ] and thus

estimates hi more accurately. We therefore call pair (K0, p0) optimal since it allows

memory-delay constraints (W0, D0) to be satisfied, while simultaneously maximizing

the accuracy of estimation. In this example, we get p0 = 0.0165 and K0 = 1.2× 105.



125

T
ab

le
V

II
.
R

ed
u
ct

io
n

in
th

e
n
u
m

b
er

of
fl
ow

s
u
si

n
g

re
si

d
u
al

sa
m

p
li
n
g

w
it

h
p

=
0.

01
an

d
p
er

io
d
ic

re
m

ov
al

of
d
ea

d
fl
ow

s

so
u
rc

e
tr

ac
e

#
to

ta
l
fl
ow

s
n

#
to

ta
l
p
k
ts

n
E

[L
]

sa
m

p
li
n
g

on
ly

re
m

ov
al

on
ly

b
ot

h

M
r 1

E
[N

(t
)]

r 2
E

[M
(t

)]
r 3

N
L
A

N
R

F
R

G
1,

75
6,

70
2

13
1,

82
1,

68
5

11
7,

99
5

15
21

,6
45

81
2,

66
9

65
8

W
eb

23
9,

17
4

6,
49

7,
89

4
26

,0
51

9
9,

69
8

24
98

5
24

0

D
N

S
12

0,
44

6
29

2,
97

7
2,

07
3

44
60

0
15

2
19

4,
79

7

N
T

P
38

2,
48

9
72

0,
44

7
4,

08
6

54
3,

03
6

73
77

2,
88

7

C
A

ID
A

L
A

R
G

E
9,

65
3,

60
9

11
7,

25
0,

41
5

51
9,

14
4

19
26

2,
52

5
37

21
,5

90
44

7

M
E

D
IU

M
2,

31
7,

36
9

43
,8

37
,6

66
13

9,
31

6
17

28
1,

13
7

8
53

,9
03

43

S
M

A
L
L

20
0,

91
0

2,
17

9,
57

4
12

,8
62

16
44

,4
14

5
5,

94
8

34



126

T
ab

le
V

II
I.

P
er

fo
rm

an
ce

of
D

-R
ID

E
im

p
le

m
en

ta
ti

on
w

it
h

p
=

0.
00

1
an

d
K

=
E

[M
(t

)]

so
u
rc

e
tr

ac
e

E
[W

(t
)]

E
[D

(t
)]

#
fl
ow

s
#

si
ze

-o
n
e

fl
ow

s

ac
tu

al
es

ti
m

at
ed

er
ro

r
ac

tu
al

es
ti

m
at

ed
er

ro
r

N
L
A

N
R

F
R

G
31

K
B

24
.1

n
s

1,
75

6,
70

2
1,

73
6,

26
1

1.
16

%
76

8,
74

2
74

9,
95

8
2.

44
%

W
eb

10
K

B
21

.4
n
s

23
9,

17
4

25
3,

99
6

6.
2%

13
,6

86
13

,9
22

1.
72

%

D
N

S
25

7B
21

n
s

12
0,

44
6

12
4,

17
6

3.
1%

76
,6

07
78

,0
45

1.
88

%

N
T

P
75

2B
21

.1
n
s

38
2,

48
9

37
5,

32
6

1.
87

%
28

1,
37

0
27

9,
09

6
0.

8%

C
A

ID
A

L
A

R
G

E
13

2K
B

28
.1

n
s

9,
65

3,
60

9
9,

71
7,

31
5

0.
66

%
4,

53
5,

44
9

4,
63

0,
03

7
2.

09
%

M
E

D
IU

M
34

1K
B

23
.7

n
s

2,
31

7,
36

9
2,

27
8,

98
4

1.
66

%
1,

29
9,

34
3

1,
27

3,
98

9
1.

95
%

S
M

A
L
L

23
K

B
21

.2
n
s

20
0,

91
0

20
2,

60
4

0.
84

%
93

,5
75

95
,1

06
1.

64
%



127

7 Performance Evaluation

In this section, we evaluate our proposed method using several Internet traces in

Table VII from NLANR [41] and CAIDA [7]. Trace FRG was collected from a gigabit

link between UCSD and Abilene in 2006. We extracted from the NLANR FRG trace

additional traces with only Web, DNS, and NTP flows. We also use three traces from

CAIDA: LARGE – a one-hour trace from an OC48 link, MEDIUM – a one-minute

trace from a OC192 link, and SMALL – a 7-minute trace from a gigabit link.

As the table shows, D-RIDE typically sees a reasonably large number of flows

M over the entire interval [0, T ]; however, the number of active flows N(t) and those

constantly kept in memory M(t) is much smaller. For the FRG trace, for example,

M is 15 times smaller than n, while E[N(t)] is 81 and E[M(t)] a whopping 658 times

smaller. In general, NLANR traces benefit more from the removal of dead flows than

CAIDA data. This can be explained by the fact that NLANR traces are collected

from two consecutive days and thus have a larger observation window T , which leads

to larger ratios r2 and r3. The same reasoning also explains the fact that the LARGE

trace exhibits much larger benefit from removing dead flows than MEDIUM and

SMALL traces.

7.1 Memory and Speed

We use the settings of Table VI to compute the amount of memory consumed by D-

RIDE according to (174). As shown in the third column of Table VIII for p = 0.001

and K = E[M(t)], the required memory size is small and rarely exceeds 40 KB. Even

for the LARGE trace that has the most flows in this comparison, D-RIDE only needs

132 KB of RAM, much smaller than roughly 120 MB required for keeping all flow

counters. We also compute per-packet processing time from (175) based on Table VI
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Fig. 43. Estimating single-flow usage in the FRG trace with p = 0.001.

and show in the fourth column of Table VIII that E[D(t)] ≤ 25 ns in the majority

of the studied cases, which can be explained by the ratio E[M(t)]/2K being fixed at

0.5 (i.e., 1.5 memory references and 0.5 comparisons per packet on average).

7.2 Estimation Accuracy

First, we examine the problem of estimating the total number of flows in [0, T ] and

size-one flows in this interval. The fifth and sixth columns of Table VIII list the

estimated values of n and n1 computed from (170) and (171), respectively. The table

indicates that these estimates are commonly within 2.5% of the correct value.

We next evaluate the performance of D-RIDE in estimating single-flow usage.

Figure 43 plots the estimated flow sizes (averaged over 100 iterations) along with

the actual values obtained from the FRG trace using p = 0.001. The figure shows

that the estimator e(Rl) from previous work tends to overestimate the sizes of small

flows, while D-RIDE’s estimator ê(Rl) accurately follows the actual values. We also

compare the relative errors of the two studied methods in Figure 44, which indicates
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Fig. 44. RRMSE of estimating single-flow usage in the FRG trace with p = 0.001.

that D-RIDE has bounded relative errors for all flows, while e(Rl) exhibits very large

δl for small and medium flows, which is an increasing function of 1/p.

For the flow-size distribution, we first examine three values of p to compare

its effect on the accuracy of D-RIDE in the FRG trace. Figure 45 indicates that

estimation for all three values of p are very consistent and all of them follow the actual

distribution accurately. In our experiments with p = 0.0001, D-RIDE recovered the

original PMF {fi} using only M = 7, 616 total flows out of n = 1.75M.

Finally, we apply D-RIDE with p = 0.001 to NLANR traces of different traffic

types and plot in Figure 46 the estimated distributions along with the actual ones.

As the figure shows, the flow statistics of different applications can be accurately

estimated by D-RIDE. We observe a similar match in our experiments with three

CAIDA traces as shown in Figure 47.
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Fig. 45. Estimating the flow size distribution using D-RIDE in the FRG trace.
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Fig. 46. Estimating the flow size distribution using D-RIDE in NLANR traces with

p = 0.001.
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Fig. 47. Estimating the flow size distribution using D-RIDE in CAIDA traces with

p = 0.001.
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8 Discussion

In this chapter, we proved that previous methods based on residual-geometric sam-

pling had certain bias in estimating single-flow usage and were unable to recover the

flow-size distribution from the sampled residuals. To overcome this limitation, we

proposed a novel set of estimation algorithms and implemented a scalable framework

called D-RIDE for residual-geometric sampling. We applied the proposed methods

to Internet traces and showed that these techniques were able to produce accurate

estimation of flow statistics, even in the presence of extremely small RAM tables and

highly efficient operation (i.e., 1-2 memory pointer references and comparisons per

packet).
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CHAPTER V

SUMMARY AND FUTURE WORK

1 Summary

This work studied residual sampling in the problem of making tradeoff between accu-

racy and scalability found in two important measurement efforts P2P measurement

and traffic monitoring. We developed three novel algorithms in the family of resid-

ual sampling — RIDE, U-RIDE, and D-RIDE. We first designed RIDE to measure

the user lifetime distribution in large-scale P2P networks, where the scalability issue

was from bandwidth consumption. We showed through analysis, simulations, and

experiments that RIDE with the ε-subsampling technique was able to achieve more

accurate estimation than previous method CBM while reducing traffic overhead by

several orders of magnitude. However, due to its assumption of stationary arrivals,

RIDE was limited to systems with a constant arrival rate. To make our results more

general, we then presented NS-PCM to describe any periodic non-stationary arrival

pattern and proved that RIDE could be arbitrarily biased under NS-PCM systems.

We thus developed a generic framework U-RIDE and showed that it was able to pro-

duce accurate estimation in non-stationary systems. Moreover, we illustrated using

simulations and experiments that U-RIDE also supported subsampling and could be

as scalable as RIDE. We finally applied our understanding of residual sampling to

traffic monitoring, where high-speed links presented the issues of scalability in terms

of memory and CPU. We hence devised an accurate and scalable mechanism called

D-RIDE and showed that it could precisely estimate flow statistics from the sam-

pled data while reducing the requirement of memory and CPU speed. These results
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showed that residual sampling indeed provided a viable way to address the tradeoff

between accuracy and scalability in network management.

2 Future Work

As showed by this work, residual sampling has a great potential in addressing the

problems in measuring many existing large-scale networks. Future work includes

several open directions as follows.

• Many existing efforts in P2P performance analysis assume stationary systems

and their correctness could be susceptible to this assumption. Therefore, we

need to apply NS-PCM to understand how it affects their results and suggest

methods to fix potential problems.

• Many previous performance models require the information of the arrival pro-

cess. However, the current implementation of U-RIDE does not provide a way

to measure the arrival process. We thus need to extend U-RIDE to characterize

the properties of user arrivals.

• While this work only examined Gnutella in experiments, U-RIDE is a generic

sampling method that does not assume anything specific to Gnutella. We plan

to apply U-RIDE to measure other distributed systems.

• Notice that the traffic volume in a router could vary over time, which requires

a dynamic mechanism that adjusts the sampling probability used by D-RIDE.

To do so, we need to design a special algorithm to recover flow statistics from

such adaptive sampling.
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APPENDIX A

PROOF OF THEOREM 11

To understand our next derivation for Theorem 11, several definitions and lem-

mas are in order. For lattice process {Si,k}∞k=1, define ηi,k to be the number bins in

interval [Si,k, Si,k+1):

ηi,k = (Si,k+1 − Si,k)/τ. (178)

We are interested of among these bins how many of them have certain special

properties, which are defined as follows. For any θ ∈ [0, τ), we define reward Wi,k(θ)

of the k-th interval [Si,k, Si,k+1) to be the number of bins in which process Zi(t) is

ON at offset θ:

Wi,k(θ) =

ηi,k−1∑
j=0

Zi(Si,k + jτ + θ). (179)

Denote by Ii(x, t) a process associated with Zi(t):

Ii(x, t) =





1 R(t) ≤ x, Zi(t) = 1

0 otherwise

. (180)

Similarly, we define reward Ri,k(x, θ) of the k-th interval [Si,k, Si,k+1) to be the number

of bins in which process Ii(x, t) equals 1 at offset θ:

Ri,k(x, θ) =

ηi,k−1∑
j=0

Ii(x, Si,k + jτ + θ). (181)

Figure 48 illustrates an example of process Zi(t) in a cycle of 4 bins and the

corresponding process Ii(x, t) with a given x. It is easy to verify that Wi,k(θ) = 3 and

Ri,k(x, θ) = 2 in the example of Figure 48.

To prove Theorem 11, we first expand residual distribution H(x, t) using rewards

Wi,k(t
?) and Ri,k(x, t?) and then derive these rewards functions. We first need the
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Li,kAi,k

θ

Si,k Si,k+1

(a) Zi(t)

x

Si,k Si,k+1

(b) Ii(x, t)

Fig. 48. An example of processes Zi(t) and Ii(x, t) in NS-PCM systems, where Ai,k =

0.3, Li,k = 3.1, θ = 0.6 and x = 2.1. Triangles represent points with offset θ and

squares are renewal points {Sk}. Vertical dashed lines stand for bin boundaries with

bin size τ .
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next lemma.

Lemma 14. For sufficiently large t0, probabilities P (Zi(t0)) and P (Ii(x, t0) = 1) are

periodic functions of time t0:

P (Zi(t0)) =
E[Wi,k(t

?
0)]

E[ηi,k]
,

P (Ii(x, t0)) =
E[Ri,k(x, t?0)]

E[ηi,k]
, (182)

where ηi,k is the number bins in interval [Si,k, Si,k+1), Wi,k(.) and Ri,k(.) are reward

functions.

Proof. We first convert the continuous-time ON/OFF process Zi(t0) into its discrete-

time equivalent Zθ
i (j), where Zθ

i (j) = Zi(jτ + θ). We make a similar conversion

for process Ii(x, t0) into Iθ
i (x, j), where Iθ

i (x, j) = Ii(x, jτ + θ). As shown in Figure

48, Zθ
i (j) samples marked with triangles are (1, 1, 1, 0) and Iθ

i (x, j) switches through

(0, 1, 1, 0).

We next examine reward functions Wi,k(θ) and Ri,k(x, θ), which also have their

corresponding discrete-time versions W θ
i,k and Rθ

i,k(x), respectively:

W θ
i,k =

ηi,k−1∑
m=0

Zθ
i (Sτ

i,k + m),

Rθ
i,k(x) =

ηi,k−1∑
m=0

Iθ
i (x, Sτ

i,k + m). (183)

We further convert process {Si,k}∞k=1 into an equivalent discrete point process

{Sτ
i,k}∞k=1, where Sτ

i,k = Si,k/τ . Since τ is a constant and the conversion from Si,kto

Sτ
i,k is linear, it follows from Lemma 1 that process {Sτ

i,k}∞k=1 is a renewal process on

discrete time. For any discrete time j ≥ 0, denote by discrete processes A(j) and B(j)
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the age and residual of the process {Sτ
i,k}∞k=1 when it is sampled at time j = 0, 1, . . .:

A(j) = j − Sτ
i,k + 1, B(j) = Sτ

i,k+1 − j, (184)

given that Sτ
i,k ≤ j < Sτ

i,k+1. It follows that (A(j), B(j)) is asymptotically stationary

as j →∞.

From stationarity of process (A(j), B(j)), we establish that the probability for

the k-th interval [Sτ
i,k, S

τ
i,k+1) to be hit by time j is proportional to the corresponding

interval length

Sτ
i,k+1 − Sτ

i,k = (Si,k+1 − Si,k)/τ = ηi,k.

Moreover, given that the k-th interval [Sτ
i,k, S

τ
i,k+1) is hit by time j, i.e., Sτ

i,k ≤ j <

Sτ
i,k+1, then j is uniformly distributed within the interval, hitting each discrete point

with probability 1/(Sτ
i,k+1 − Sτ

i,k).

Utilizing these results, we thus apply the Renewal-Reward Theorem [63] to pro-

cess {Sτ
i,k}∞k=1 and establish The next limiting probabilities:

lim
j→∞

P (Zθ
i (j) = 1) = lim

j→∞

j∑
m=0

Zθ
i (m)

j
=

E[W θ
i,k]

E[ηi,k]
,

lim
j→∞

P (Iθ
i (x, j) = 1) = lim

j→∞

j∑
m=0

Iθ
i (x, m)

j
=

E[Rθ
i,k(x)]

E[ηi,k]
. (185)

The desired result follows from combining Wi,k(θ) = W θ
i,k, Ri,k(x, θ) = Rθ

i,k(x),

along with θ = t?0 and j = bt0/τc.

Lemma 14 allows us to prove an important asymptotic result on residual distri-

bution H(x, t0) in the next lemma.

Lemma 15. For sufficiently large t0, residual distribution H(x, t0) can be expressed
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using a periodic function of time t0:

H(x, t0) =
E[Ri,k(x, t?0)]

E[Wi,k(t?0)]
. (186)

Proof. Notice from conditional probability that H(x, t0) can be rewritten as:

H(x, t0) =
P (Ii(x, t0) = 1)

P (Zi(t0) = 1)
. (187)

The result in (186) immediately follows from substituting (182) into (187).

Our analysis below indicates that reward functions Wi,k(θ) and Ri,k(x, θ) are

solely determined by the arrival time of user i and its lifetime in the k-th interval

[Si,k, Si,k+1). In the next lemma, we derive Wi,k(θ) and Ri,k(x, θ) by conditioning on

arrival offset Ai,k = A and lifetime Li,k = L.

Lemma 16. Assume that in the k-th interval [Si,k, Si,k+1), user i arrives at offset A

and its lifetime is L. Then, rewards Wi,k(θ) and Ri,k(x, θ) are given by:

Wi,k(θ) = κ(A,A + L, θ)

Ri,k(x, θ) = κ(A + max(L− x, 0), A + L, θ). (188)

where κ(u, v, θ) is defined for u < v:

κ(u, v, θ) =





1(u? ≤ θ, v? > θ) b(u) = b(v)

1(u? ≤ θ) + 1(v? > θ)

+ (b(v)− e(u))/τ b(u) < b(v)

, (189)

and 1(.) is an indicator function.

Proof. We first develop a general formula for counting rewards and then apply it

to reward functions Wi,k(θ) and Ri,k(x, θ). For any given time interval I ≡ [Si,k +

u, Si,k+v) ⊆ [Si,k, Si,k+1), we denote by κ(u, v, θ) the number of time points in interval
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I whose offsets are θ.

For b(u) = b(v), i.e., u and v are in the same bin, the only possible point with

offset θ is included in interval I if u? ≤ θ ≤ v?, which gives the first line in (189). For

b(u) < b(v), i.e., u and v are in different bins and interval I covers (b(v)− e(u))/τ +2

bins. In the first bin, we need to have u? ≤ θ for the point with offset θ to be included

by I; in the last bin, we need to have v? ≥ θ for the point with offset θ to be in I; the

rest of the bins yield (b(v) − e(u))/τ points with offset θ in interval I. The second

line in (189) follows from summing up these three parts.

According to definition, Wi,k(θ) is given by counting the points included by the

ON period (Si,k+A, Si,k+A+L), which gives the first line in (188). Similarly, Ri,k(x, θ)

can be computed by counting the ON points in interval (Si,k + A, Si,k + A + L) for

L ≤ x or (Si,k + A + L− x, Si,k + A + L) for L > x, since only those sampling points

make the residual lifetime less than x. Then, the second line in (188) follows.

Next, we simplify (188) by deriving conditional expectations of E[Wi,k(θ)] and

E[Ri,k(x, θ)]. Denote by ω(z, θ) and ϕ(x, z, θ) the conditional expectation of Wi,k(θ)

and Ri,k(x, θ), respectively, given L = z:

ω(z, θ) ≡ E[Wi,k(θ)|L = z],

ϕ(x, z, θ) ≡ E[Ri,k(x, θ)|L = z]. (190)

The next lemma follows from taking the conditional expectation of both sides of

(188) and expressing ω(z, θ) and ϕ(x, z, θ) in terms of arrival time distribution FA.

Lemma 17. Assume that the k-th ON duration is L = z. Then, the conditional



149

expectations of rewards Wi,k(θ) and Ri,k(x, θ) are given by:

ω(z, θ) = FA(θ)− FA(max(θ − z?, 0)) + 1

− FA(1 + min(θ − z?, 0)) + b(z)/τ, (191)

and

ϕ(x, z, θ) =





ω(z, θ) z ≤ x

ω(z, θ)− ω(z − x, θ) z > z

. (192)

Proof. Notice that conditioning on whether A ≤ 1−z or not, we can split E[Wi,k(θ)|L =

z] into the following two parts:

E[Wi,k(θ)|L = z] = wl + wg,

where

wl = E[Wi,k(θ)|L = z, A ≤ 1− z]P (A ≤ 1− z), (193)

and

wg = E[Wi,k(θ)|L = z, A > 1− z]P (A > 1− z). (194)

For A ≤ 1− z, it follows from (188) that:

wl = E[1(θ − z < A ≤ θ)|A ≤ 1− z]

× P (A ≤ 1− z)

= P (θ − z < A ≤ θ, A ≤ 1− z). (195)

Splitting (195) into two cases depending on whether z is larger than 1 or not, we

establish that:

wl =





FA(min(θ, 1− z))

− FA(max(θ − z, 0)) z ≤ 1

0 z > 1

. (196)
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For A > 1− z, we split wg into three parts, wg = wg1 + wg2 + wg3, where:

wg1 = E[1(A ≤ θ)|A > 1− z]P (A > 1− z),

wg2 = E[1(r(z + A) > θ)|A > 1− z]P (A > 1− z),

wg3 = E[bz + Ac − 1|A > 1− z]P (A > 1− z).

It is easy to verify that:

wg1 =





FA(θ)− FA(max(1− z, θ)) z ≤ 1

FA(θ) z > 1

, (197)

wg2 =





1− FA(min(1 + θ − z, 1)) z ≤ 1

1− FA(min(1 + θ − r(z), 1))

+ FA(1− r(z)) z > 1

− FA(max(θ − r(z), 0))

, (198)

and

wg3 =





0 z ≤ 1

b(z)/τ − FA(1− r(z)) z > 1

. (199)

Combining (196)-(199), we establish the result in (191).

Next, we derive ϕ(x, z, θ). For L ≤ x, Ri,k(x, θ) = Wi,k(θ) and thus ϕ(x, z, θ) =

ω(z, θ), which is the first line in (192). For L > x, we count the number of points

with offset θ in the interval [A,A+L−x] and then subtract it from Wi,k, from which

the second line in (192) follows.

Now, we are ready to prove Theorem 11 using the above results.
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Proof. Notice that from conditional expectation:

E[Wi,k(θ)] =

∫ ∞

0

E[Wi,k(θ)|L = z]dFL(z)

=

∫ ∞

0

ω(z, θ)dFL(z), (200)

and

E[Ri,k(x, θ)] =

∫ ∞

0

E[Ri,k(x, θ)|L = z]dFL(z)

=

∫ ∞

0

ϕ(x, z, θ)dFL(z). (201)

Substituting (200)-(201) into (186), it follows that for sufficiently large t0, residual

distribution H(x, t0) is given by:

H(x, t0) =

∫∞
0

ϕ(x, z, t?0)dFL(z)∫∞
0

ω(z, t?0)dFL(z)
. (202)

Further substituting (191)-(192) into (202) yields the desired result.
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