On Sample-Path Staleness in Lazy Data Replication

Xiaoyong Li, Daren B.H. Cline and Dmitri Loguinov

Internet Research Lab
Department of Computer Science and Engineering
Texas A&M University

April 29, 2015

- Introduction
- Staleness Formulation
- Staleness Cost
- Optimality
- Applications
- Conclusion

Introduction

- Highly-dynamic content
 - News
 - Weather
 - Road conditions
- An increasing number of applications need to maintain local copies of remote data sources
 - Search engines
 - Mash-up applications
 - Distributed caching
- Copies need to be synchronized constantly
 - To provide reliable services

Introduction

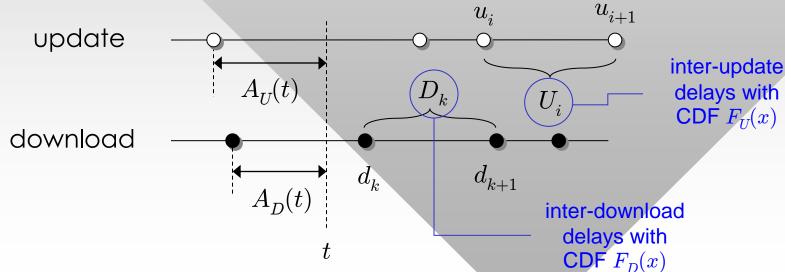
- Push-based policy
 - Sources send the update information to replicas
 - Requires the cooperation of sources
 - Hard to scale
- Pull-based policy
 - Replica retrievals the content explicitly
 - Scalable and less costly
 - Leads to staleness
- Need models and mechanisms for analyzing and controlling staleness
 - Previous works mainly consider Poisson updates

- Introduction
- Staleness Formulation
- Staleness Cost
- Optimality
- Applications
- Conclusion

Staleness Formulation

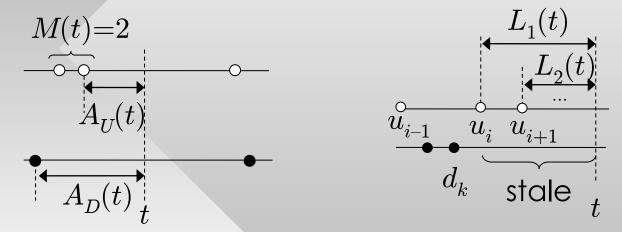
Information requests indicated by arrows:

- Model
 - Source experiences random updates via process $N_{\!U}$
 - Replica periodically downloads the content via process ${\cal N}_{D}$



Metrics

- M(t): the number of updates missing from the replica
 - E[M(t)]: the expected number of missing update



Backward delays to each unseen update

$$L_1(t) > L_2(t) > ... > L_{M(t)}(t)$$

- Apply weight function w(x) to each lag
 - Maps staleness lags to actual cost

Metrics

Two different cost metrics:

$$\eta(t) = \begin{cases} w(L_1(t)) & M(t) > 0 \\ 0 & \text{otherwise} \end{cases} \quad \rho(t) = \begin{cases} \sum_{i=1}^{M(t)} w(L_i(t)) & M(t) > 0 \\ 0 & \text{otherwise} \end{cases}$$
 Both $\rho(t)$ and $\eta(t)$ generalize metrics in previous work

- - $\eta(t)$ becomes staleness and age [Cho 2000] with w(x)=1 and w(x) = x
 - $\rho(t)$ with w(x)=1 and w(x)=x lead to blur [Denev 2009] and addictive age [Ling 2004]
- Both $\rho(t)$ and $\eta(t)$ are random variables
 - Using expectation requires multiple sample-paths
 - One single sequence available in practice (sample-path)

$$\bar{\eta} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \eta(t) dt$$
 and $\bar{\rho} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \rho(t) dt$.

Staleness Cost

- Phase-lock problem prevents us from getting the solution of the above two metrics
 - Constant update interval with interval 1
 - Constant download interval with interval 2
 - The staleness metrics depends on their initial states
- To avoid phase-lock cases, we propose age independence assumption:
 - Random query time of consumers Q_T : uniform in [0,T]
 - Two points processes N_U and N_U are called age-independent if $\forall x,y>0$

$$\lim_{T \to \infty} P(A_D(Q_T) < x | A_U(Q_T) = y) = G_D(x)$$

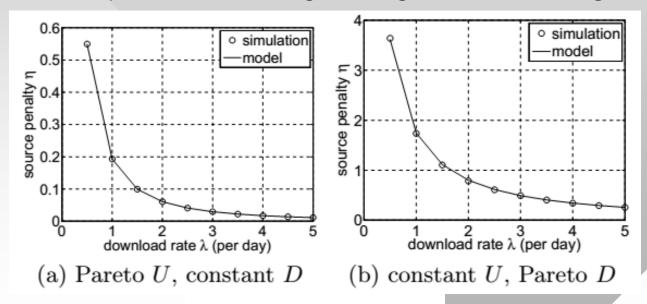
sample path equilibrium distribution of ${\cal A}_{\cal D}$

Staleness Cost

Theorem 1: Source penalty: update rate

$$\bar{\eta} = \lambda \mu \int_0^\infty \bar{F}_U(y) \int_0^\infty w(x) \bar{F}_D(x+y) dx dy$$

- Matches previous results with exponential update
- When $\lambda = \mu$, left scenario gives age 1.5 hours; right 19 hours



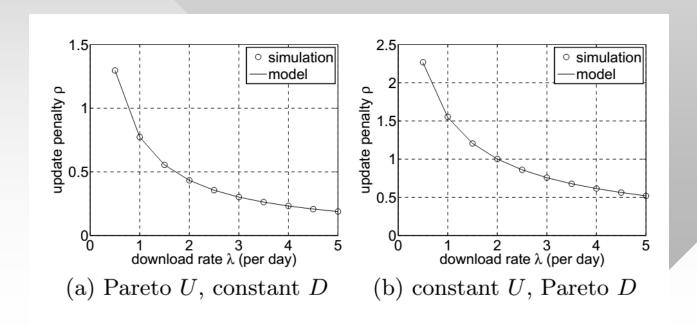
$$w(x) = x, \mu = 2$$

Staleness Cost

Theorem 2: Update penalty:

$$\bar{\rho} = \mu E[w_2(A_D)] = \lambda \mu E[w_3(D)] \quad w_n(x) = \int_0^x w_{n-1}(y) dy$$

- Matches previous results with exponential update
- Allows decaying function w(x) = 1/(1+x)



- Motivation
- Staleness Formulation
- Staleness Cost
- Optimality
- Applications
- Conclusion

Optimality

- With the same download rate λ , what distribution of synchronization intervals $F_D(x)$ is best?
- <u>Definition 7</u>: Variable X is stochastically larger than Y in second order, i.e., $X \ge_{st}^2 Y$, if

$$\int_0^x \bar{F}_X(y)dy \ge \int_0^x \bar{F}_Y(y)dy \text{ for all } x \ge 0$$

• Theorem 7: For a given download rate λ and fixed update process N_U , both $\bar{\eta}$ and $\bar{\rho}$ decreases if download delays become stochastically larger in second order

Best Download Strategy

- Similarly, for a given update rate μ and fixed download process N_D , freshness increases if inter-update delays become stochastically smaller in second order
- <u>Lemma 3</u>: For a given mean, a constant stochastically dominates all other random variables in second order
- Corollary 1: Constant inter-synchronization delays are optimal under both η and ρ , all suitable weights w(x), and all update processes N_U

- Motivation
- Staleness Formulation
- Staleness Cost
- Optimality
- Applications
- Conclusion

Real-Life Update Process

- The most frequently modified article in Wikipedia
 - "George W. Bush" with 44,296 updates in 10 years
 - (a) Pareto tail $(1 + x/\beta)^{-\alpha}$ with $\alpha = 1.4, \beta = 0.93$
 - (b) Long-range dependence
 with Hurst parameter 0.81
 - (c) Non stationary
 - (d) Comparison between
 Poisson and real updates

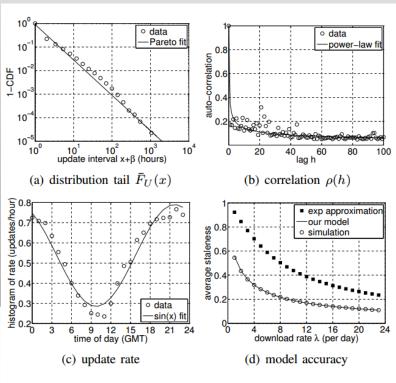
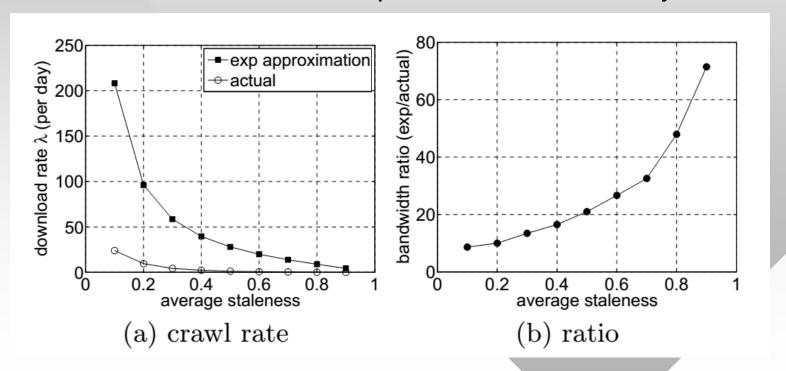


Fig. 7. George W. Bush page dynamics.

Bandwidth Estimation

- Comparison of our results with previous work
 - Apply both models to George W. Bush
 - Poisson: 20% staleness requires 95 downloads/day
 - Real: 20% staleness requires 8 downloads/day



Aggregation (Many-to-One)

Resource allocation

probability that an incoming query quest i

update rate of source i subject to $\sum_{i=1}^{n} \lambda_i \leq \Lambda$

download rate of source i

- Using source penalty $\overline{\eta}$:
 - Page starvation exists: a source i will never be synchronized when total bandwidth Λ is relatively small compared to the source update rate μ_i
- Theorem 4: Assume $q_i\mu_i>q_j\mu_j>0$ and constant download delay, optimal solution using $\bar{\rho}$ guarantees that $\lambda_i > \lambda_j > 0$
 - No page starves $\lambda_i = \Lambda \frac{\sqrt{q_i \mu_i}}{\sum_{i=1}^{M} \sqrt{q_i \mu_i}}$.

Load-Balancing (One-to-Many)

- Single source multiple replicas
 - The goal is to deduce the expected penalty afforded by the freshest member of all m replicas
 - Each replica has rate λ/m
 - Compare with single replica with rate λ
- The staleness at different replicas is no longer independent
 - Updates at the source make all copies outdated
 - The entire collection of replicas can be replaced by a single replica that that refresh pattern N_D^* , which is the superposition of all point processes $\{N_D^i\}_{i=1}^m$

Conclusion

- We proposed a novel framework for modeling staleness metrics under general update/download processes
- We established that constant inter-refresh intervals were optimal for all considered cases
- Finally, we consider a family of related problem stemming from $1 \times m$ and $M \times 1$ replication, showing that they can be solved from the preceding results

Questions?