Temporal Update Dynamics under Blind Sampling

Xiaoyong Li, Daren B.H. Cline and Dmitri Loguinov

Internet Research Lab Computer Science Department Texas A&M University, College Station, TX 77843

Apr. 29, 2015

- Introduction
- Overview
- Age Sampling
- Comparison Sampling: Constant Interval
- Comparison Sampling: Random Interval
- Conclusion

Introduction

- Source objects in many distributed systems experience periodic modification
 - In response to user actions, real-time events
 - Examples: web pages, DNS record
- The update process in the source can be viewed as a stochastic process $N_{\rm U}$
 - We are interested in estimating the inter-update distribution $F_U(x)$ using a downloading process N_S with inter delay S_1, S_2, \ldots
 - Previous work use Poisson N_U and constant S_i
 - Challenges
 - Non-Poisson updates
 - Blind sampling: the inter-update delay is hidden from the observer

Motivation

Search engines

- Periodically revisit web pages to reduce their staleness in the index
- Need $F_U(x)$ to determine the download bandwidth to maintain staleness below a certain threshold
- Exponential assumption leads to errors in the download bandwidth that are two orders of magnitude

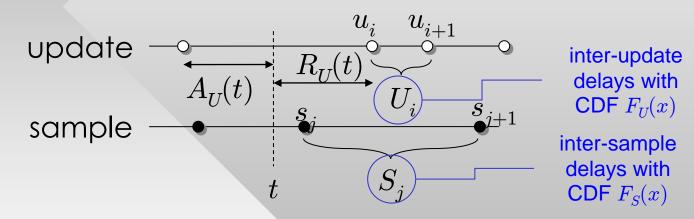
Data Centers

- Replicate quickly changing databases among multiple nodes
- Individual replica may not stay fresh for a long period because of the highly dynamic nature of the source
- How many replicas should be queried by clients to obtain certain consistent level?

- Introduction
- Overview
- Age Sampling
- Comparison Sampling: Constant Interval
- Comparison Sampling: Random Interval
- Conclusion

Notation

- Model
 - Source experiences random updates via process N_U
 - Observer samples the content via process N_S



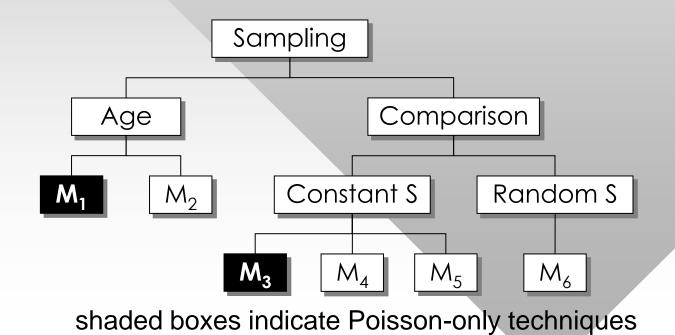
- Age of U at $t : A_U(t)$ with distribution $G_U(x)$ as $t \to \infty$
- Obtain $G_U(x)$ and get $F_U(x)$ by inversing the following equation $G_U(x) = \frac{1}{E[U]} \int_0^x (1 - F_U(y)) dy$

Assumptions

- We only have one update and download sequence (one sample-path), which leads to a possibility of phase-lock
 - $U_i = 1$ for i > 0 and $S_j = 2$ for j > 0
 - Update ages observed are all zero
 - Definition 1: A random variable X is called *lattice* if there exists a constant c such that X/c is always an integer
- Assumption 1: At least one of U and S is non-lattice
 - The condition is satisfied with any continuous random variable, including exponential U in previous works

<u>Roadmap</u>

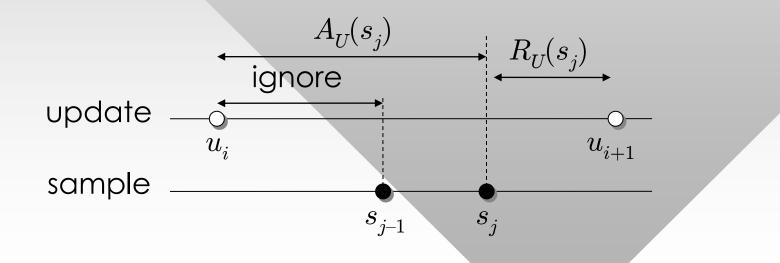
- Age sampling
 - Has access to the last-modification timestamp, which gives the update age at each sampling point $A_U(s_j)$
- Comparison sampling
 - Only use binary values between two successive samples



- Introduction
- Overview
- Age Sampling
- Comparison Sampling: Constant Interval
- Comparison Sampling: Random Interval
- Conclusion

<u>M1</u>

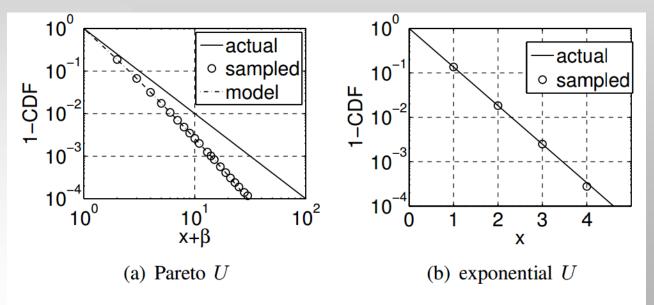
- When multiple sample points land in the same update interval, only retain the one with largest age
 - Keeps a subset of age samples
 - Proposed by previous studies to under Poisson updates
 - Used to estimate the mean of the update

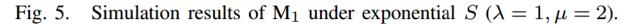


<u>M1</u>

 <u>Theorem 2</u>: The tail distribution of the samples collected by M1 converges in probability to:

$$\bar{G}_1(x) = \frac{E[G_U(x+S)] - G_U(x)}{E[G_U(S)]}$$

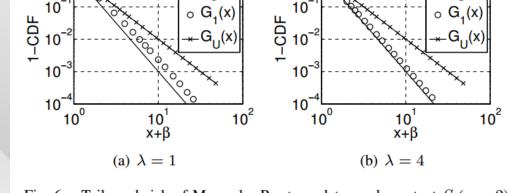




Computer Science, Texas A&M University

<u>Bias in M1</u>

 The tail of M1 is "sandwiched" between the update and age tails
 10°
 10°
 10°



- Fig. 6. Tail sandwich of M_1 under Pareto updates and constant S ($\mu = 2$).
- The fraction of age samples retained by M1 :

 $p = P(R_U < S) = E[G_U(S)]$

• For $p \to 1$, variable D_1 sampled by M1 converges in distribution to A_U . For $p \to 0$ and mild conditions on S, variable D_1 converges in distribution to U

- Instead of using the largest age sample for each detected update, M2 use all available ages
- <u>Theorem 5</u>: Method M2 is consistent with respect to the update age distribution.

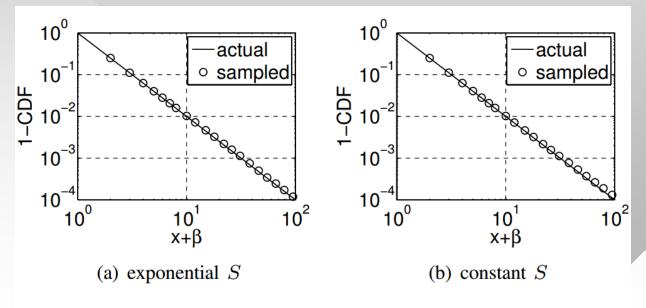


Fig. 7. Verification of (12) under Pareto updates and $\lambda = 1$.

<u>M2</u>

- M1 and M2 has the same network overhead because they both have to contact the source $N_{\!S}(t)$ times
 - Effect of the observation window $T\,$ and expected sampling interval $S\,$
 - relative error on the update age mean

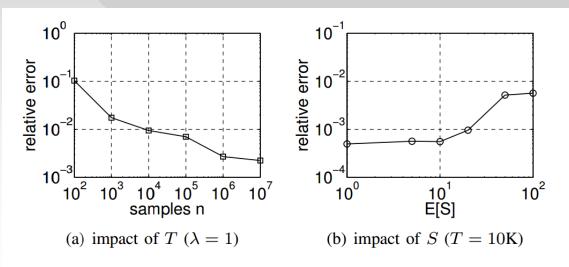


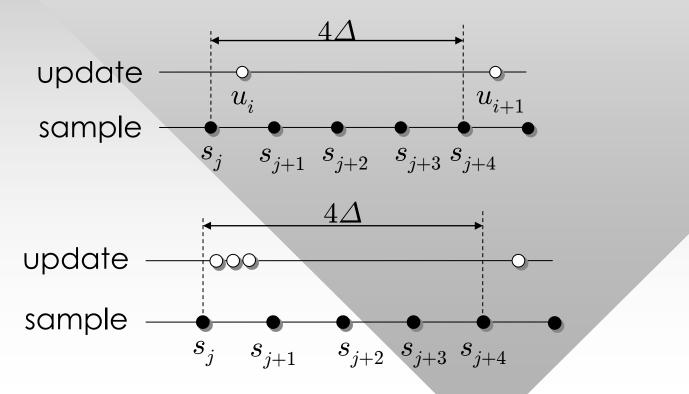
Fig. 9. Average relative error of $\zeta(T)$ of M₂ under Pareto U and exponential S ($\mu = 2, m = 1000$).

- Introduction
- Overview
- Age Sampling
- Comparison Sampling: Constant Interval
- Comparison Sampling: Random Interval
- Conclusion

- Do not have access to age
- The inter-sample delay Δ is a constant
- Binary observations Q_{ij}
 - Indicates whether an update occurs between two sampling points s_i and s_j
- All observations related to update intervals are multiple of inter-sample delay $S{=}\varDelta$
 - An estimator is Δ -consistent with respect to the target distribution if it can correctly reproduce it in all discrete points $x_n = n\Delta$ as $T \to \infty$

<u>M3</u>

- Round the distance between each adjacent pair of detected updates to the nearest multiple of \varDelta
 - Expected to produce the update distribution $F_U(x)$
 - Inaccurate when multiple updates occurs within one Δ



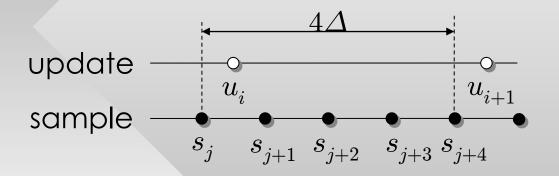
<u>Theorem 6</u>: The tail distribution of M3 is a step-function

$$\overline{G}_{3}(x_{n}) = \frac{G_{U}(x_{n+1}) - G_{U}(x_{n})}{G_{U}(\Delta)}$$

- Similar to M1, M3 is consistent when $F_U(x)$ is exponential
- When $\Delta \to \infty$, G_3 converges to $G_U(x)$
- When $\Delta \to 0$, G_3 converges to $F_U(x)$
 - Neither scenario is usable in practice

<u>M4</u>

- Collect age samples at each sampling point
 - Four samples in the example: Δ , 2Δ , 3Δ , 4Δ



- <u>Theorem 7</u>: M4 is Δ -consistent with respect to the age distribution
 - The mean age of M3 is not necessarily larger than that of M4
 e.g. Pareto update and ∆=1, M3 and M4 produces mean age
 1.33 and 1.63, respectively.

<u>M5</u>

- A closer look at M3 results $\bar{G}_3(x_n) = \frac{G_U(x_{n+1}) G_U(x_n)}{G_U(\Delta)}$
- $G_U(x)$ can be recursively recovered using samples in M3
- <u>Theorem 8</u>: M5 is Δ -consistent with the age distribution.

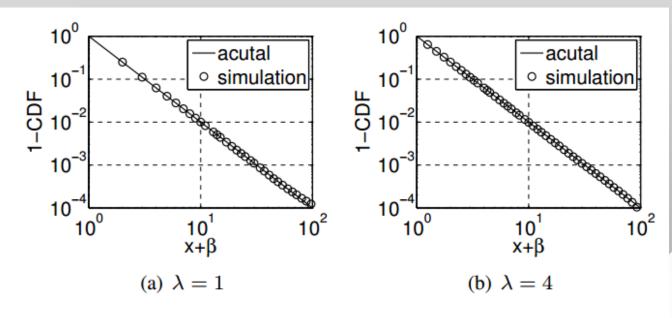


Fig. 12. Verification of (22) under Pareto $U \ (\mu = 2)$.

Comparison between M4 and M5

Weighted Mean Relative Difference between two distribution

$$W(T) = \frac{\sum_{n} |H(x_{n}, T) - G_{U}(x_{n})|}{\sum_{n} (H(x_{n}, T) + G_{U}(x_{n}))/2}$$

Kolmogorov-Smirnov statistic

$$\kappa(T) = \sup_{x} |H(x,T) - G_U(x)|$$

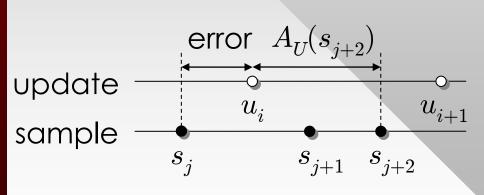
Convergence of Both Δ -Consistent Methods under Pareto U ($\mu = 2, \lambda = 1$)

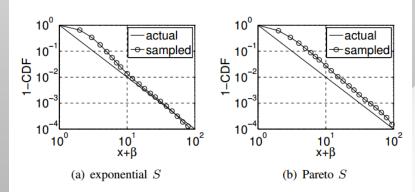
Т	M_4		M_5	
	w(T)	$\kappa(T)$	w(T)	$\kappa(T)$
10^{2}	3.5×10^{-2}	6.4×10^{-2}	3.7×10^{-2}	6.7×10^{-2}
10^{3}	1.4×10^{-2}	2.2×10^{-2}	1.4×10^{-2}	2.2×10^{-2}
10^{4}	4.7×10^{-3}	7.2×10^{-3}	4.7×10^{-3}	7.3×10^{-3}
10^{5}	1.5×10^{-3}	2.4×10^{-3}	1.5×10^{-3}	2.4×10^{-3}
10^{6}	4.1×10^{-4}	5.8×10^{-4}	4.1×10^{-4}	5.8×10^{-4}
10^{7}	2.2×10^{-4}	2.6×10^{-4}	2.2×10^{-4}	2.6×10^{-4}

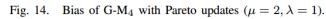
- Introduction
- Overview
- Age Sampling
- Comparison Sampling: Constant Interval
- Comparison Sampling: Random Interval
- Conclusion

22

- Straightforward Approach
 - Generalize M4 to random S
 - Approximate $A_U(s_j)$ by $s_j s_j^*$; s_j^* is the most-recent sample point after which an update has been detected
 - Round-off error varies from interval to interval
 - Biased







<u>M6</u>

- For a user defined constant h and fixed $y_n = nh$, count the number of inter-sample $W(y_n)$ with distances $s_j - s_i$ that round up to y_n and the number of them with an update $Z(y_n)$. Define $G_6(y_n) = Z(y_n)/W(y_n)$
 - Use n^2 samples, while all other methods have linear overhead
 - <u>Theorem 9</u>: When $h \to 0$, and $F_S(x) > 0$, M6 is consistent with respect to the age distribution

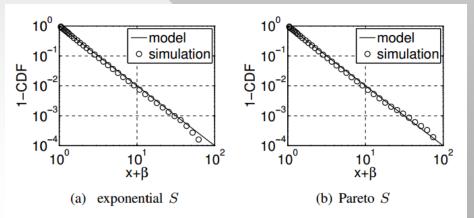


Fig. 15. Simulations of M₆ under Pareto updates $(h = 0.05, \mu = 2, \lambda = 1)$.

Conclusion

- We studied the problem of estimating the update distribution at a remote source under blind sampling
- We analyzed prior approaches and showed them to be biased under general conditions
- We introduced novel modeling techniques and proposed several unbiased algorithms
- Future work includes analysis of convergence speed, investigation of non-parametric smoothing techniques for density estimation