
14-th IEEE International Conference on Peer-to-Peer Computing

Stochastic Models of Pull-Based Data
Replication in P2P Systems

Xiaoyong Li and Dmitri Loguinov∗
Texas A&M University, College Station, TX, 77843, USA

xiaoyong@cs.tamu.edu, dmitri@cs.tamu.edu

Abstract—We consider pull-based data synchronization issues
between a source and its replicas in P2P networks. Under
continuous information change and lazy synchronization, these
systems are highly susceptible to serving outdated content, which
negatively affects their performance and user satisfaction. To
understand these scenarios, we first introduce a novel model
of interaction between two stochastic point processes – updates
at the source and downloads at the replica – and derive the
probability that a random query against the replica retrieves
fresh content. Unlike prior work, we assume non-Poisson dy-
namics and determine statistical properties of the replication
process that make it perform better for a given download rate.
The second half of the paper applies these results to several
more difficult algorithms – cascaded replication, cooperative
caching, and redundant querying from the clients. Surprisingly,
we discover that optimal cooperation involves just a single peer
and that redundant querying can hurt the ability of the system
to handle load (i.e., may lead to lower scalability).

I. INTRODUCTION

P2P file sharing systems have received tremendous interest
in recent years among both Internet users and computer
networking professionals. In the study of these networks, one
fundamental problem is to handle peer overload that may
arise due to the highly popular nature of certain content
and/or temporal fluctuations in demand (e.g., flash crowds). A
common solution for static files is to replicate them from each
source to multiple peers, which distributes the load and thus
improves file-query efficiency. Examples include protocols that
replicate content close to the owner [17], [44], [50], near the
requester [27], and along query paths [16], [43], [58].

With real-time operation of certain P2P applications, such
as online auctions [24], decentralized collaboration [60], web
caching [30], and online games [56], replication faces new
challenges related to data churn (i.e., periodic content updates
at the source). To provide accurate and reliable query results
in these systems, replicated material must be continuously
synchronized with that at the source. Without an effective
consistency-maintenance strategy, these applications may suf-
fer from degraded performance and lower user participation.

The majority of existing P2P synchronization methods are
push-based. To allow the source easy discovery of replica
location, these networks often employ structured P2P networks
to establish a mapping from file IDs to nodes where they can
be found [5], [7], [28], [33], [43], [55], [58]. Since the source
must track the status and location of each replica, as well

∗Supported by NSF grants CNS-1017766 and CNS-1319984.

as reconfigure the distribution tree, these methods may suffer
from high maintenance overhead, especially when the network
structure is volatile (i.e., under high user churn).

In unstructured P2P networks, management of replicas is
usually achieved by message spreading [11], [18], [26], [36],
which may generate large amounts of redundant traffic and
even lead to network collapse when search rates become
sufficiently high. To address this problem, several studies [36],
[45], [46], [47], [52] propose pull-based consistency control,
which allows replicas to self-manage their membership in
replication paths and decide when to download content from
the source. Pull-based techniques have also been used in
pub/sub systems [6], [22] and hybrid push/pull methods found
application in decentralized online social networks [49].

In databases, it is well-known [31], [59] that pull-based syn-
chronization improves both scalability and availability of the
data, but at the expense of increased age of the content served
to clients. As the source evolves, replicas in these networks
go through periods of staleness, during which they provide
outdated responses that do not reflect the true condition of
the source. To measure system performance, it is generally
accepted that the probability of freshness (i.e., likelihood that
the most-recent version is available to consumers) accurately
reflects the quality of a replication strategy. Although this met-
ric has been considered by researchers in web-based systems
[4], [9], [12], [42], [41], [53], it has never been explored in
the context of P2P systems. We aim to fill this void below.

A. Contributions

We start by considering a single source driven by an
update process NU and a single replica with the corresponding
download process ND, which is independent of NU . Our first
contribution is to propose a general framework for modeling
freshness under arbitrary renewal processes (NU , ND). This
allows us to derive the freshness probability p in closed-form
as a function of inter-update distribution FU (x) and inter-
download distribution FD(x). Our formula for p generalizes
all previous analytical results in the literature [2], [3], [8], [9],
[10], [12], [21], [23], [25], [29], [32], [35], [37], [38], [39],
[48], [51], [57], which were predominantly limited to Poisson
NU and two simple cases of FD(x).

Given a fixed download rate λ, our second contribution
is to obtain a condition that allows comparison of freshness
achieved by different download strategies FD(x). We show
that freshness improves if the inter-synchronization interval

978-1-4799-6201-3/14/$31.00 c⃝2014 IEEE

14-th IEEE International Conference on Peer-to-Peer Computing

becomes stochastically larger in second order. This allows us
to prove that constant delays are optimal against all NU . For
the same p, they require 33% less bandwidth than exponential
inter-download delays and 50% less than Pareto.

Based on these results, our third contribution is to analyze
cascaded synchronization, where replicas receive content from
other replicas along a fixed multi-hop path from the source. A
common arrangement covered by this model is a b-way repli-
cation tree, which limits the source to b concurrent downloads,
but keeps client-scalability arbitrarily high depending on the
depth of the tree. Assuming independent operation among the
replicas, we derive a recursive model that provides freshness
at each level i. Our results show that in certain cases p decays
exponentially fast as a function of the depth, suggesting an
interesting coupling between system size and staleness.

Our fourth contribution is to propose a model of cooperative
caching, in which m replicas form a single layer, in which each
participant can synchronize not only with the source, but also
k other replicas. For a target p, the goal is to determine the
optimal (m, k) that maximizes the service rate of the entire
system. The main caveat of this model is that it takes into
account bandwidth constraints at the source and each replica.
We show that making k or m too large is detrimental to
performance; instead, each parameter has a unique optimal
value that achieves the highest service rate, which can be 2−7
times larger than under non-cooperative replication.

Our last contribution is to examine a scenario we call
redundant querying, in which consumers have access to mul-
tiple independent caches. Issuing parallel queries to k replicas
out of the m available, the hope is to improve freshness
by selecting the most up-to-date copy of the source. We
first show that freshness in this case can be computed using
the original update process and a superposition of download
processes from each of the contacted replicas. However, taking
bandwidth into account, this analysis also leads to a surprising
conclusion that redundant querying with k ≥ 2 sometimes
produces lower performance than non-redundant.

II. RELATED WORK

Consistency maintenance in existing P2P networks can be
classified into push-based and pull-based. In the former, the
source is responsible for sending updates to replicas whenever
it deems necessary. To achieve this, the source has to know
the location of all of its replicas either by utilizing a rigid
network structure that maps files to nodes [5], [7], [43], [55],
[58] or randomly flooding the graph [11], [18], [26], [36]. In
pull-based methods, nodes become replicas, discontinue being
such, and adjust their download policy independently of the
source. Existing work in this direction [45], [46], [47] focuses
on determine the polling frequency using a family of linear-
increase multiplicative-decrease (LIMD) algorithms.

In other fields, pull-based data synchronization has also been
studied. In the context of web systems [4], [9], [12], [53],
sources are typically HTML pages modified by their owners.
Replicas can be search engines that use web-crawlers to
periodically reload content and refresh their indexes; however,

source replica consumers

Fig. 1. System model. Arrows represent pull-based requests for information.

additional applications are possible as well – online monitoring
systems [41], [42] of highly dynamic web streams (e.g., stock
market, traffic), traditional web caching [13], [14], [15], RSS
feed aggregation [48], and many others.

In the analytical literature, freshness p was first proposed by
Coffman et al. [12] and later used by much of the follow-up
work [4], [9], [8], [38], [53]. Other ways to capture staleness
include information divergence between the source and its
replica [39], age of the content served to clients [9], the
number of missing updates at the replica [19], [29], and their
combined age [34], [35], [48]. In all of these cases, models
are derived under the assumption that the update process NU

is Poisson. There has been only one attempt [53] to relax
this constraint, but it required deterministic knowledge all
download instances. While appropriate in some cases, this
model is difficult to evaluate in practice when inter-download
delays are random and given by their distribution FD(x).

III. SINGLE-HOP REPLICATION

In this section, we consider a single source and one of
its replicas. We first introduce our assumptions and notation,
define freshness p, and derive its closed-form model. We then
use simulations to highlight several examples.

A. System Model and Notation

We assume a model of data generation, replication, and
consumption in Fig. 1. During system operation, the source
experiences random updates in response to either external
events (e.g., price bids in e-auctions, status changes in on-
line games) or some internal computation (e.g., indexing,
MapReduce output). In either case, each update represents
certain tangible information that manipulates the current state
of the source. The replica has no direct knowledge of these
updates and must infer their occurrence only through periodic
downloads. Its goal is to provide consumers with up-to-date
responses to various types of queries.

Let ui denote the time when the i-th update occurs at the
source. Define NU (t) = max{i : ui ≤ t} to be the number
of updates in [0, t] and Ui = ui+1 − ui as the i-th inter-
update delay. Similarly, let dk be the k-th download instance,
ND(t) = max{k : dk ≤ t} the number of such points in [0, t],
and Dk = dk+1 − dk the k-th inter-synchronization delay.
To keep the system tractable, assume that ND and NU are
independent renewal processes. This means that update inter-
vals {Ui}∞i=1 and synchronization delays {Di}∞i=1 are two sets
of independent and identically distributed (iid) variables. This
allows us to replace them with random variables U ∼ FU (x)
and D ∼ FD(x), respectively.

B. Performance Measure

Observe that a local copy at the replica is fresh if and only
if the last update time uNU (t) is smaller than the last download

2

14-th IEEE International Conference on Peer-to-Peer Computing

download

dk+1

Dk

AD(t)

t

dk

update
ui ui+1

Ui
AU(t)

Fig. 2. Illustration of age and other variables.

time dND(t). Freshness of the data can thus be modeled by an
alternating (ON/OFF) process:

ϕ(t) =

{
1 uNU (t) < dND(t)

0 otherwise
, (1)

where t represents the time of a consumer’s request to the
replica. In practice, it is more convenient to express ϕ(t) as a
function of age. Define the download age at t to be the time
lag from the last synchronization to t:

AD(t) = t− dND(t) (2)

and the update age to be that from the last update:

AU (t) = t− uNU (t). (3)

These definitions are illustrated in Fig. 2, where the empty
circles are update events and the solid ones are download
instances. Using the figure, it is not difficult to see that a
copy is fresh if and only if the download age is smaller than
the update age, which means that:

ϕ(t) =

{
1 AU (t) > AD(t)

0 otherwise
. (4)

We model the consumer as querying the replica at some
large time t by which the system can be considered stationary.
As t → ∞, AU (t) and AD(t) converge to their equilibrium
versions, which we call AU and AD, respectively. Define µ =
1/E[U] to be the update rate and let λ = 1/E[D] be the
download rate. Then, from renewal theory [54], the two ages
have well-known distributions:

GU (x) := P (AU < x) = µ

∫ x

0

(1− FU (y))dy (5)

and

GD(x) := P (AD < x) = λ

∫ x

0

(1− FD(y))dy. (6)

This allows us to formulate the main metric of system per-
formance – the limiting probability that consumers encounter
a fresh copy:

p := lim
t→∞

P (ϕ(t) = 1) = P (AU > AD). (7)

To keep notation simple and prevent unnecessary explana-
tion, we generally use FX(x) to represent the distribution of
variable X , GX(x) to denote its age distribution similar to

0 1 2 3 4 5
0

0.25

0.5

0.75

1

download rate λ

av
er

ag
e

fr
es

hn
es

s

simulation
model

(a) Pareto U , constant D

0 1 2 3 4 5
0

0.25

0.5

0.75

1

download rate λ

av
er

ag
e

fr
es

hn
es

s

simulation
model

(b) constant U , Pareto D

Fig. 3. Simulation results of (8) under µ = 2.

(5)-(6), and lower-case functions fX(x) and gX(x) as the
corresponding densities. We also use F̄X(x) = 1− FX(x) as
the CCDF (complementary cumulative distribution function)
of variable X and replace X(t) with its limiting variable X
as t → ∞, whenever doing so is appropriate.

C. Freshness Probability

Our next result directly follows from (4).
Theorem 1: Freshness experienced by consumers in steady-

state is given by:

p = E[ḠU (AD)] =

∫ ∞

0

ḠU (x)gD(x)dx. (8)

To perform a self-check against prior results with Poisson
NU , observe that (8) simplifies to p = λ(1− e−µ/λ)/µ under
constant D and λ/(λ + µ) under exponential D, which is
in agreement with [9], [12]. We use simulations to examine
model accuracy in more interesting cases of general renewal
processes. Since U and D are non-negative random variables
defined on (0,∞), our Pareto CDF is 1 − (1 + x/β)−α for
α > 1 and β > 0. The mean of this distribution is β/(α− 1),
where α is kept at 3 throughout the paper. We simulate each
process to large enough t to reach stationarity of the underlying
processes. This typically requires a few hundred units of time.

Observe in Fig. 3 that the model matches simulations very
well, with constant download intervals performing signifi-
cantly better against Pareto update cycles in (a) than the other
way around in (b). For instance, using download rate λ = 3,
which is 50% faster than the update rate µ = 2 in the figure,
part (a) achieves 75% freshness, while part (b) only 43%. It
is unclear, however, whether constant D is always better than
Pareto and what impact FU (x) has on the resulting p. We
address this question next.

IV. BEST DOWNLOAD STRATEGY

In this section, we study conditions under which one com-
bination of processes (NU , ND) performs better than another.

A. Basics

Noticing from (6) that gD(x) = G′
D(x) = λ(1 − FD(x)),

the result in (8) shows that expected freshness p is impacted
by not only the product of update and download rates µλ, but
also the entire functions FD(x) and FU (x). To establish order

3

14-th IEEE International Conference on Peer-to-Peer Computing

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

download rate λ

av
er

ag
e

fr
es

hn
es

s

constant D
exponential D
Pareto D

(a) Pareto U

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

update rate µ

av
er

ag
e

fr
es

hn
es

s

Pareto U
exponential U
constant U

(b) Pareto D

Fig. 4. Ordering of freshness under different families of distributions.

between distributions, we need the next definition commonly
used in game theory and statistics.

Definition 1: Variable X is said to be stochastically larger
than Y , which is written as X ≥st Y , if F̄X(x) ≥ F̄Y (x)
for all x ≥ 0. Variable X is stochastically larger than Y in
second order, which is written as X ≥2

st Y , if
∫ x

0
F̄X(y)dy ≥∫ x

0
F̄Y (y)dy for all x ≥ 0.

Since ḠU (x) is a monotonically non-increasing function, it
is easy to show that (8) produces the following result.

Lemma 1: For two download strategies driven by inter-
synchronization delays X and Y , freshness pX ≥ pY when the
age of Y stochastically dominates that of X , i.e., AY ≥st AX .

To make this result useful, we next translate stochastic
dominance between ages to that between the corresponding
variables.

Lemma 2: Assuming E[X] = E[Y] > 0, variable X is
stochastically larger than Y in second order, i.e., X ≥2

st Y , if
and only if the age of Y is stochastically larger than that of
X , i.e., AY ≥st AX .

Proof: Let GX(x) and GY (x) be the CDFs of AX and
AY , respectively. Define:

J(x) = ḠY (x)− ḠX(x) (9)

and expressed it as:

J(x) =

∫ x

0
F̄X(y)dy

E[X]
−

∫ x

0
F̄Y (y)dy

E[Y]
. (10)

Since both means are positive and equal to each other, we
get that AY ≥st AX iff J(x) ≥ 0 for all x ≥ 0, which holds
iff X ≥2

st Y .
Combining these observations, we obtain the following.
Theorem 2: For a given NU and two download distributions

FX(x) and FY (x) with the same rate λ, freshness pX ≥ pY
when X stochastically dominates Y in second order. Similarly,
for a given ND and two update distributions FW (x) and
FZ(x) with the same rate µ, freshness pW ≥ pZ when Z
stochastically dominates W in second order.

B. Examples

Our last result shows that freshness is improved when D
becomes stochastically larger in second order or U becomes
the opposite, i.e., smaller. To put this in perspective, consider
three classes of distributions often observed in practice. The

first one is NWU (new worse than used), which means that
conditioned on the fact that an interval is at least y time units,
its surplus length beyond y is stochastically larger than the
original interval size, i.e., P (X > x + y|X > y) ≥ P (X >
x) for all x, y ≥ 0. While many heavy-tailed distributions
belong to NWU, two most common examples are Pareto and
Weibull. If the inequality is reversed, we obtain what is known
as NBU (new better than used). Examples include uniform and
constant. Finally, if P (X > x+ y|X > y) = P (X > x), the
distributions are called memoryless (i.e., exponential).

Suppose X is NWU, Y is memoryless, and Z is NBU
such that E[X] = E[Y] = E[Z]. It then follows [20] that
Z ≥2

st Y ≥2
st X . Applying this observation to Fig. 4(a), it

is no wonder than Pareto D produces worse freshness than
exponential, which in turn is worse than constant. For a fixed
probability p = 0.5, the optimal case requires 33 − 50% less
bandwidth than the other two distributions. This relationship
is reversed in application to U in Fig. 4(b) – Pareto is the best,
while constant is the worst.

C. Optimality
From the discussion above, NBU download delays are better

than NWU and exponential; however, it is unclear which NBU
distribution is the best and whether other classes may be
better than NBU. We are now ready to seek answers to these
questions.

Lemma 3: For a given mean, a constant stochastically dom-
inates all other random variables in second order.

Proof: Suppose l is the fixed mean of all distributions
under consideration. Let FX(x) = 1x>l be the CDF of a
constant and FY (x) be the CDF of another random variable
Y such that E[Y] = l. Define:

δ(x) :=

∫ x

0

(F̄X(y)− F̄Y (y))dy (11)

and observe that it suffices to prove that δ(x) ≥ 0 for all
x ≥ 0. For x ≤ l, notice that F̄X(x) = 1 and thus:

δ(x) =

∫ x

0

FY (y)dy ≥ 0. (12)

For x > l:

δ(x) =

∫ x

0

F̄X(y)dy −
∫ x

0

F̄Y (y)dy

= l −
∫ x

0

F̄Y (y)dy ≥ l −
∫ ∞

0

F̄Y (y)dy = 0,

where we use the fact that
∫∞
0

F̄Y (y)dy equals the mean E[Y]
of a non-negative random variable Y .

This leads to the main result of this section.
Theorem 3: For a fixed download rate λ, constant inter-

synchronization delays are optimal under all NU .

V. CASCADED REPLICATION

We begin this section by introducing our cascaded model
and show that freshness at each level can be determined if we
know the residual distribution of ON cycles of ϕ(t). We then
derive a recursive formula for the freshness at each layer i and
finish this section with simulations and discussion.

4

14-th IEEE International Conference on Peer-to-Peer Computing

source replica1

consumers

replica2

consumers

…

Fig. 5. Cascaded replication at depth two.

A. Objectives

Motivated by the fact that replication trees are a common
mechanism to scale the system to a large number of clients,
we next consider a cascaded model in which caches at level
i download content from those at level i − 1. As before,
replicas operate independently of the source and each other.
As illustrated in Fig. 5, it suffices to consider a single branch
of the tree that starts from the source (at level 0) and traverses
towards the leaves.

We assume that each level i of the tree operates using inter-
download delays D(i) ∼ F

(i)
D (x) and has its own freshness

process ϕi(t). This allows nodes near the root to synchronize
faster or slower than those near the leaves (e.g., due to
bandwidth constraints of the source or other reasons). Our
task is to derive the average freshness pi for queries directed
towards replicas at depth i. Unlike (7), which is a simple
function of two ages, there is no obvious way (yet) to express
how pi depends on the parameters of the system. The next
subsection builds enough results to perform just that.

B. Freshness Residuals

For now, assume the single-layer case. Given the freshness
process ϕ(t) in Fig. 6, define the ON durations (i.e., periods
when ϕ(t) = 1) to be given by some variable V . Note that
ϕ(t) transitions from OFF to ON upon the first download
following an update. It similarly goes from ON to OFF at
the first update following a download. At time t, define the
age AV (t) and residual RV (t) as the backward and forward
delays, respectively, to the end of the ON segment.

Our later sections will require the distribution of RV (t),
which is our focus here. Let the residual of the update process
at time t be the interval from t to the next update event:

RU (t) = uNU (t)+1 − t. (13)

When t lands in an ON cycle, Fig. 6 shows that RV (t) is
the same with RU (t), which yields:

P (RV (t) < x) = P (RU (t) < x|ϕ(t) = 1)

= P (RU (t) < x|AU (t) > AD(t)). (14)

This is a subtle point, but RV (t) and RU (t) have different
distributions, unless U is exponential. Conditioning on the ON
state of ϕ(t) introduces bias into RV (t), which in certain cases
makes it stochastically larger than update residuals RU (t) and
at other times smaller (see below). In order to simplify (14),
we need the following lemma.

Lemma 4: Consider a renewal process with interval lengths
X ∼ FX(x). As t → ∞, the probability that the age of this

download

update

t

AV(t) RV(t)

V ON

OFF

Fig. 6. The age and residual of V in process ϕ(t).

process at time t is greater than a and simultaneously the
residual is greater than b is:

lim
t→∞

P (AX(t) > a,RX(t) > b) = ḠX(a+ b). (15)

Armed with Lemma 4, we are ready to obtain the residual
distribution of ON durations.

Theorem 4: The residual distribution of V is given by:

GV (x) := P (RV < x) = 1− E[ḠU (AD + x)]

E[ḠU (AD)]
. (16)

Proof: Re-writing (14) and applying Lemma 4:

ḠV (x) = lim
t→∞

P (RU (t) > x|AU (t) > AD(t))

=
1

p
lim
t→∞

P (RU (t) > x,AU (t) > AD(t))

=
1

p

∫ ∞

0

gD(y) lim
t→∞

P (RU (t) > x,AU (t) > y)dy

=
1

p

∫ ∞

0

gD(y)ḠU (x+ y)dy. (17)

Recalling (8) and collapsing the integral, we get (16).
Fig. 7(a) shows that the model matches simulations very

accurately under Pareto U . As mentioned earlier, when the
update distribution is exponential, i.e., FU (x) = GU (x) =
1− e−µx, from (16) we get:

GV (x) = 1− E[e−µ(AD+x)]

E[e−µAD]
= 1− e−µx, (18)

which indicates that GV (x) remains exponential with the same
rate µ. However, this is not true for non-exponential cases. To
see this, we plot in Fig. 7(b) the tails of RU and RV for Pareto
U . Observe in the figure that the latter is more heavy-tailed
than the former. In fact, it can be shown that RV ≥st RU for
NWU update distributions and the opposite for NBU.

Recalling (5)-(6), analysis above allows easy access to the
CDF of ON durations:

FV (x) : = P (V < x) = 1− gV (x)

gV (0)
= 1− E[gU (AD + x)]

E[gU (AD)]

and the average amount of time the replica stays fresh:

E[V] =
1

gV (0)
=

E[ḠU (AD)]

E[gU (AD)]
. (19)

5

14-th IEEE International Conference on Peer-to-Peer Computing

10
0

10
110

−2

10
−1

10
0

x+β

P
(X

>
x)

model
simulation

(a) simulation of (16)

10
0

10
110

−2

10
−1

10
0

x+β

P
(X

>
x)

tail of G
V
(x)

tail of G
U
(x)

(b) comparison of tails

Fig. 7. Residual distribution GV (x) under Pareto U (α = 3, β = 1) and
exponential D (λ = 2).

C. Cascaded Freshness

We now return to the main problem of this section and
reactivate usage of sub/super-scripts i to denote the depth of
the replica in the tree. As illustrated in Fig. 8, the copy at level
i is fresh at time t if and only if the copy at level i − 1 is
fresh and the download age A

(i)
D (t) is smaller than the current

age A
(i−1)
V of the ON duration at level i− 1:

ϕi(t) =

{
1 A

(i−1)
V (t) > A

(i)
D (t), ϕi−1(t) = 1

0 otherwise
. (20)

Our first result allows pi to be expressed as a function of
the residual ON duration within the previous level i− 1.

Lemma 5: The expected freshness at depth i is given by:

pi = E[ri−1(A
(i)
D)], (21)

where

ri(y) = lim
t→∞

P (R
(i)
V (t) > y, ϕi(t) = 1). (22)

Proof: Using (20) and recalling from renewal theory that
A

(i−1)
V (t) has the same distribution as R

(i−1)
V (t):

pi = lim
t→∞

P (ϕi(t) = 1)

= lim
t→∞

∫ ∞

0

P (R
(i−1)
V (t) > y, ϕi−1(t) = 1)g

(i)
D (y)dy

=

∫ ∞

0

ri−1(y)g
(i)
D (y)dy = E[ri−1(A

(i)
D)], (23)

where ri(y) was given earlier in (22).
Our next step is to recursively expand ri(y).
Lemma 6: For all i ≥ 1:

ri(y) = E
[
ḠU

(
y +

i∑
k=1

A
(k)
D

)]
. (24)

Proof: First, observe from Fig. 8 that residual ON dura-
tions at levels i and i − 1 are the same as long as the i-th
replica is fresh:

P (R
(i)
V (t) > y, ϕi(t) = 1) = P (R

(i−1)
V (t) > y, ϕi(t) = 1).

φi—1(t)

t

φi(t)
AD
(i)(t)

AV
(i—1)(t)

Fig. 8. Processes ϕi−1(t) and ϕi(t) in cascaded replication.

On the right-hand side of this result, expanding event
ϕi(t) = 1 using (20) and applying Lemma 4, we get:

P (Ri
V (t) > y, ϕi(t) = 1)

= P (R
(i−1)
V (t) > y,A

(i−1)
V (t) > A

(i)
D (t), ϕi−1(t) = 1)

= P (R
(i−1)
V (t) > y +A

(i)
D (t), ϕi−1(t) = 1). (25)

Letting t → ∞ and closely examining the last equation,
notice that it provides a recursive formula on ri(y):

ri(y) = ri−1(y +A
(i)
D) = r1

(
y +

i∑
k=2

A
(k)
D

)
, (26)

where the last result is obtained by repeatedly expanding
ri−1(.). Since r1(y) = P (RV > y)p, we can combine (16)
and (8) to obtain:

r1(y) = E[ḠU (y +A
(1)
D)]. (27)

Merging (26)-(27), we immediately get (24).
This leads to our main result.
Theorem 5: The probability of freshness at depth i is:

pi = E[ḠU (Qi)], (28)

where Qi = A
(1)
D +A

(2)
D + . . .+A

(i)
D .

To perform a self-check, notice that p1 in (28) reduces to p
in (8). For i ≥ 2, the model is also quite simple – it says that
the freshness at level i is given by that of a single-layer system
in which the download process ND operates using intervals D
whose age AD is the summation of ages at levels 1, 2, . . . , i.
For example, using constant D(i) = d, each of the ages A

(i)
D

is uniform in [0, d]. For non-trivial i, their convolution Qi is
approximately Gaussian with mean id/2.

D. Discussion

Analyzing (28), first notice that it makes no difference
in which order the replicas form the chain – freshness pi
only depends on the summation Qi =

∑i
k=1 A

(k)
D . Therefore,

placing high-rate download processes towards the top of the
tree and slow towards the bottom produces exactly the same
freshness as doing vice versa. Keeping source overload in
mind, the best strategy may then be to design trees with high
branching factors b (i.e., low depth) and slow λ near the root,
placing faster processes towards the leaves.

6

14-th IEEE International Conference on Peer-to-Peer Computing

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

cascade level i

av
er

ag
e

fr
es

hn
es

s

simulation
model

(a) exponential U

0 2 4 6 8 10
10

−2

10
−1

10
0

cascade level i

av
er

ag
e

fr
es

hn
es

s

simulation
model

(b) Pareto U

Fig. 9. Cascaded freshness with exponential D and λ = µ = 2.

When the update process at the source is Poisson, i.e., GU =
1− e−µx, the tail CDF of U decomposes into a product:

pi =
i∏

k=1

E
[
ḠU (A

(k)
D)

]
=

i∏
k=1

p(A
(i)
D), (29)

where p(A
(i)
D) is the freshness probability of N

(i)
D working

directly with the source. Therefore, if we know that replicas
A and B separately achieve freshness pA and pB , their
cascaded performance will produce freshness pApB at level 2.
If additionally the download processes are all homogeneous,
i.e., F (i)

D (x) = F
(j)
D (x) for all (i, j, x), the freshness value pi

is an exponentiation of the single-step model (8).
Note that multiplicative reduction in pi as a function of

i presents an interesting tradeoff – as the tree size scales
exponentially up, freshness scales exponentially down. In
order to prevent pi → 0, one must increase the download
rate λi at depth i such that

∑∞
i=1 log p(A

(i)
D) > −∞. One of

the slowest growing functions that satisfies this condition is
p(A

(i)
D) = 1−(i+1)−ρ, where ρ is slightly larger than 1. Using

exponential D as an example, we get p(A(i)
D) = λi/(λi + µ),

which translates into λi = µ((i + 1)ρ − 1), showing that
bandwidth requirements must scale super-linearly, but at least
not exponentially, with i.

We next use simulations with homogeneous download de-
lays to compare the decay rate in pi for exponential and Pareto
U . Fig. 9 shows that model (28) is quite accurate and that the
Pareto case in (b) decreases much slower than the exponential
in (a). This suggests that NWU distributions of U are easier to
scale than either exponential or NBU. This can be confirmed
by noticing that the heavier the tail ḠU (x), the slower pi
decays in (28).

VI. COOPERATIVE CACHING

In this section, we consider a novel cooperative model in
which all replicas are at level 1, but they are allowed to
communicate with each other. We first introduce the details of
this configuration and the corresponding notation. We follow
that up with analyzing parameter selection and formulating
optimality conditions that lead to best freshness.

A. Model and Notation

As shown in Fig. 10, suppose there are m replicas in the sys-
tem that form a cluster. As before, N (i)

D is the download pro-

source

replica1

…

consumer

replicam

query

random

replica

Fig. 10. Cooperative replication.

cess between each replica i and the source; however, we now
additionally assume that N

(i)
C represents the communication

process that each replica uses to poll other nodes within the
cluster. At each point of N (i)

C , the node contacts k other peers
and selects the freshest response for download. All processes
are renewal and independent of each other. Let C ∼ FC(x)
describe the length of cycles in each communication process
and ν = 1/E[C] be its rate.

In order for a replica to cooperate with others, it has to
know their location. One option is to require that the source
maintain a replica list ordered by the most-recent download
timestamp. This list can then be disseminated to replicas upon
each contact with the source. In order to choose k peers among
m, we consider two strategies: random and recent. The former
selects k peers in m uniformly randomly (assuming global
knowledge or other mechanisms) and the latter selects those
with the largest contact timestamps.

B. Simple Scenario

With a fixed per-node intra-cluster communication band-
width kν, the first question is how to choose k and ν such
that they provide the highest freshness. With cooperation,
closed-form derivations are difficult because downloads follow
random cascaded chains (i.e., s → x1 → x2 → . . . where
s signifies the source and xk the k-th replica ID along this
chain). We therefore use simulations to study this problem.

For random selection, observe from Fig. 11(a)-(c) that the
expected freshness p achieves a global maximum at k = 1,
which is noticeably higher than in non-cooperative cases (i.e.,
k = 0). Freshness then monotonically decreases as the number
of contacted nodes k increases. This can be explained by
the fact that the replicas’ freshness processes {ϕi(t)}t≥0 are
highly correlated, i.e., an update at time t makes all of them
transition from ON to OFF. Thus, the benefit of contacting
k ≥ 2 peers at lower rate ν is smaller than contacting one
peer with higher ν.

Interestingly, recent selection in Fig. 11(a)-(c) peaks at later
points k ≥ 2, but then succumbs to the same effect. In
fact, as k gets larger, the most-recent list becomes essentially
composed of random nodes and both methods converge. In
all studied cases, random selection beats recent. The intuition
is that the latter is biased towards certain peers that were the
most up-to-date at time dk, but are no longer the freshest by
the next download instance dk+1. Instead, results show that a
random peer has fresher information when we average over
the entire interval [dk, dk+1]. This indicates that the optimal

7

14-th IEEE International Conference on Peer-to-Peer Computing

0 2 4 6 8
0.5

0.6

0.7

0.8

0.9

contacted replicas k

av
er

ea
ge

 fr
es

hn
es

s

random selection
recent selection

(a) exponential D, ν = 10/k

0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

contacted replicas k

av
er

ea
ge

 fr
es

hn
es

s

random selection
recent selection

(b) Pareto D, ν = 10/k

0 2 4 6 8

0.65

0.7

0.75

0.8

contacted replicas k

av
er

ea
ge

 fr
es

hn
es

s

random selection
recent selection

(c) constant D, ν = 10/k

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

communication rate ν

av
er

ag
e

fr
es

hn
es

s

constant C
exponential C
Pareto C

(d) random selection k = 1

Fig. 11. Effect of k and ν in cooperative replication (µ = λ = 1,m = 10).
Exponential U and C.

strategy is to choose exactly one uniformly random peer (i.e.,
k = 1) and hence keep ν as large as possible.

C. Convergence of Freshness

We now fix k = 1 and vary ν in Fig. 11(d) to analyze the
effect of C and ν. As before, NBU synchronization performs
the best, followed by exponential and NWU. Reasoning similar
to that used in previous sections suggests that constant C
remains optimal for cooperative caching. In the figure, p starts
at 0.5 and gradually improves to 0.72−0.78 depending on the
distribution of C; however, what happens to freshness as intra-
cluster bandwidth ν becomes very large? We address this next.

Theorem 6: As ν → ∞, freshness under random selection
equals that computed using the original update process NU

and a superposition N∗
D of m download processes {N (i)

D }mi=1.
Note that this result holds for all k ≥ 1. We are now able to

compute the limiting freshness probability for the case in Fig.
11(d) with exponential C. Since a superposition of Poisson
process remains Poisson, we get that p∞ = mλ/(mλ+ µ) =
0.91. As an alternative to raising ν, freshness can be increased
by allowing bidirectional communication between replicas.
When A requests updates from B, it can offer its own content
for upload to B. This effectively doubles rate ν in our model,
but keeps it fully applicable to this technique as well.

D. Full System

We now consider a more realistic cooperative replication
system that has two conflicting goals – serving clients and
maintaining freshness. The tradeoff arises from bandwidth
consumption – larger ν leads to higher freshness, but reduces
the ability of each node to answer consumer queries.

Let s be the service rate that each replica can offer to its
clients and suppose that all peers have the same bandwidth

0 100 200 300 400
0

150

300

450

600

total replicas m

se
rv

ic
e

ra
te

 R

(a) service rate R

0 100 200 300 400
0

2.0

4.0

6.0

8.0

total replicas m

im
pr

ov
em

en
t f

ac
to

r

(b) service rate ratio

Fig. 12. Effect of m on service rate R (ϵ = 0.5, µ = 1, B = 10). All
distributions are exponential.

constraint B (including the source). The system is considered
usable if the average freshness is no smaller than 1 − ϵ,
where ϵ > 0 is some design parameter. Define p(λ, k, ν) to
be the freshness probability achieved by a cluster using the
source download rate λ, k-way cooperation, and intra-cluster
synchronization rate ν. Then, the objective is to maximize the
combined service rate R := ms = m(B−λ− kν) subject to:{

mλ ≤ B

p(λ, k, ν) ≥ 1− ϵ
. (30)

Since all peers are homogenous, the source bandwidth
should be shared equally, which means that the first line of (30)
reduces to m = B/λ. For non-cooperative replication, both k
and ν are zero and thus R = B2/λ − B. The only unknown
parameter is λ, which can be determined from the freshness
condition of (30) as λ = q−1(1− ϵ), where q(x) = p(x, 0, 0).
For example, with exponential U and D:

q(x) =
x

x+ µ
= 1− ϵ, (31)

from which we get:

λ =
µ(1− ϵ)

ϵ
and R =

B2ϵ

µ(1− ϵ)
−B. (32)

For cooperative replication, the previous subsection shows
that the optimal case is k = 1. Now suppose we fix m. This
allows us to determine the remaining parameters of the system
using the model above. Indeed, λ = B/m and ν = q−1

2 (1−ϵ),
where q2(x) = p(λ, 1, x). To understand why there is an
inherent tradeoff in this system, notice that larger m affords
the system more combined bandwidth R = m(B − λ − kν);
however, this also leads to lower source-synchronization rate
λ = B/m, which decreases freshness. To compensate for
lower freshness, replicas must communicate with other peers
at a higher rate ν, which in turn lowers R.

Thus, there must be an optimal m that maximizes the
service rate for a given set (ϵ, B,NU). To demonstrate this,
we plot simulation results in Fig. 12(a), where R hits a peak
at m = 240 and then drops monotonically. The improvement
ratio between cooperative and non-cooperative R in Fig. 12(b)
reaches 4 by m = 90 and 6 by m = 200. Table I shows
additional scenarios. Observe that cooperative replication is
more effective when the target freshness is smaller. The benefit

8

14-th IEEE International Conference on Peer-to-Peer Computing

TABLE I
OPTIMAL SERVICE RATE COMPARISON BETWEEN COOPERATIVE AND

NON-COOPERATIVE REPLICATION

1− ϵ Non-cooperative R Cooperative R Ratio
0.4 270 1865 6.9
0.5 90 590 6.6
0.6 50 134 2.7
0.7 33 42 1.3

decreases as ϵ → 0 since it becomes progressively more
difficult to find peers with exceedingly fresh copies.

VII. REDUNDANT QUERYING

To obtain fresher results, existing work [1] suggests that
consumers contact multiple replicas. As illustrated in Fig. 13,
this model uses a single-layer non-cooperative caching with re-
dundant queries to achieve higher robustness against staleness.
Contacting k ≥ 2 random replicas and retrieving the freshest
copy, consumers effectively replace a single download process
ND with a superposition N∗

D of k processes {N (i)
D }ki=1. This

observation is similar to Theorem 6 except the number of
superposed processes is k rather than m.

A. Analysis

As before, suppose 1− ϵ is the target freshness at the user
and p(λ) is that achieved by a non-redundant system (i.e.,
using k = 1). Then, recalling the previous section, there is
a unique download rate λ = p−1(1 − ϵ) that determines the
optimal cluster size m = B/λ and the combined service rate:

R = m(B − λ) =
B2

λ
−B. (33)

We now contrast this with a redundant configuration. Define
λ′ to be the download rate of each replica and λ∗ = kλ′

to be that of the superposed process N∗
D. Since freshness is

now determined by λ∗ = p−1
∗ (1 − ϵ), where p∗(x) is the

freshness probability under N∗
D, we can lower each λ′ and

hopefully increase system size m∗ = B/λ′ = Bk/λ∗ beyond
m. However, the main caveat is that each replica now serves
k times more traffic to the clients, which means that the best
possible query rate of the new system is:

R∗ =
m∗(B − λ′)

k
=

B2

λ∗ − B

k
. (34)

B. Discussion

In the simplest case of exponential D, both ND and N∗
D are

Poisson, which immediately leads to λ∗ = λ since functions
p(x) and p∗(x) are the same. This shows that the redundant
system can support exactly m∗/m = k times more servers, but
the service-rate ratio R∗/R stays pretty close to 1, i.e., there
is virtually no benefit. To tackle more complex cases, assume
k is sufficiently large, in which case the superposition process
N∗

D tends to Poisson from the Palm-Khintchine theorem [40].
From (32), we know that λ∗ = µ(1 − ϵ)/ϵ, which leads to a
closed-form service rate:

R∗ =
B2ϵ

µ(1− ϵ)
− B

k
. (35)

source

replica1

…

consumer

replicam

query random

subset of size k

Fig. 13. Redundant querying with k = 3.

TABLE II
IMPROVEMENT FROM REDUNDANT QUERYING COMPARED TO

NON-REDUNDANT

1− ϵ Pareto D exponential D constant D
m∗/m R∗/R m∗/m R∗/R m∗/m R∗/R

0.1 21.8 1.1 20 1 18.0 0.90
0.3 26.6 1.3 20 1 14.6 0.73
0.5 32.8 1.6 20 1 12.5 0.63
0.7 42.3 2.1 20 1 11.2 0.56

If D has an NWU distribution, k-way aggregation makes
D∗ stochastically larger in second order and thus improves
freshness (see the discussion in Section IV-B). Counter-
intuitively, however, if D has an NBU distribution, transition
to a Poisson N∗

D makes the redundant case perform worse
than the non-redundant. These effects are shown in Table II
for k = 20 and B = 1000. As target freshness increases, the
Pareto case gradually improves and finishes with rates 110%
above those in the non-redundant scenario. The opposite trend
occurs with constant D, which gradually becomes worse and
ends up losing 44% of service capacity in the last row.

VIII. CONCLUSION

We proposed a general framework for modeling lazy syn-
chronization and derived the probability of freshness under
general update/download processes. We then extended these
results to cascaded and cooperative replication, finding solu-
tions to a number of optimization problems in those contexts.
Finally, we examined redundant querying and found cases
when doing so was detrimental to system performance.

Future work involves combining the various studied tech-
niques (i.e., cascading, cooperation, and redundancy) into a
single architecture that can bring together the benefits of its
individual pieces to create a more scalable system.

REFERENCES

[1] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and
I. Stoica, “Probabilistically Bounded Staleness for Practical Partial
Quorums,” VLDB Endow., vol. 5, no. 8, pp. 776–787, Apr. 2012.

[2] B. E. Brewington and G. Cybenko, “How Dynamic is the Web,”
Computer Networks, no. 1-6, pp. 257–276, Jun. 2000.

[3] L. Bright, A. Gal, and L. Raschid, “Adaptive Pull-based Policies for
Wide Area Data Delivery,” ACM Trans. Database Syst., vol. 31, no. 2,
pp. 631–671, Jun. 2006.

[4] D. Carney, S. Lee, and S. Zdonik, “Scalable Application-Aware Data
Freshening,” in Proc. IEEE ICDE, Mar. 2003, pp. 481–492.

[5] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. Rowstron, “Scribe:
A Large-scale and Decentralized Application-level Multicast Infrastruc-
ture,” IEEE JSAC, vol. 20, no. 8, pp. 1489–1499, Sep. 2006.

9

14-th IEEE International Conference on Peer-to-Peer Computing

[6] B. Chandramouli and J. Yang, “End-to-end Support for Joins in Large-
scale Publish/Subscribe Systems,” VLDB Endow., vol. 1, no. 1, pp. 434–
450, Aug. 2008.

[7] X. Chen, S. Ren, H. Wang, and X. Zhang, “Scope: Scalable Consistency
Maintenance in Structured P2P Systems,” in Proc. IEEE INFOCOM,
Mar. 2005, pp. 1502–1513.

[8] J. Cho and H. Garcia-Molina, “The Evolution of the Web and Impli-
cations for an Incremental Crawler,” in Proc. VLDB, Sep. 2000, pp.
200–209.

[9] J. Cho and H. Garcia-Molina, “Synchronizing a Database to Improve
Freshness,” in Proc. ACM SIGMOD, May 2000, pp. 117–128.

[10] J. Cho and H. Garcia-Molina, “Estimating Frequency of Change,” ACM
Trans. Internet Technol., vol. 3, no. 3, pp. 256–290, Aug. 2003.

[11] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A Dis-
tributed Anonymous Information Storage and Retrieval System,” in Proc.
ICSI Workshop on Design Issues in Anonymity and Unobservability, Jul.
2000, pp. 46–66.

[12] E. G. Coffman, Z. Liu, and R. R. Weber, “Optimal Robot Scheduling
for Web Search Engines,” Journal of Scheduling, no. 1, pp. 15–29, Jun.
1998.

[13] E. Cohen and H. Kaplan, “The Age Penalty and Its Effect on Cache
Performance,” in Proc. USENIX USITS, Mar. 2001, pp. 73–84.

[14] E. Cohen and H. Kaplan, “Aging Through Cascaded Caches: Per-
formance Issues in the Distribution of Web Content,” in Proc. ACM
SIGCOMM, Aug. 2001, pp. 41–53.

[15] E. Cohen and H. Kaplan, “Refreshment Policies for Web Content
Caches,” in Proc. IEEE INFOCOM, Apr. 2001, pp. 1398–1406.

[16] R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNS Using a Peer-
to-Peer Lookup Service,” in Proc. IPTPS, Mar. 2002, pp. 155–165.

[17] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area Cooperative Storage with CFS,” in Proc. ACM SOSP, Oct. 2001,
pp. 188–201.

[18] A. Datta, M. Hauswirth, and K. Aberer, “Updates in Highly Unreliable,
Replicated Peer-to-Peer Systems,” in Proc. IEEE ICDCS, May 2003, pp.
76–85.

[19] D. Denev, A. Mazeika, M. Spaniol, and G. Weikum, “SHARC: Frame-
work for Quality-Conscious Web Archiving,” in Proc. VLDB, Aug. 2009,
pp. 183–207.

[20] J. V. Deshpande, S. C. Kochar, and H. Singh, “Aspects of Positive
Ageing,” J. Applied Probability, vol. 23, no. 3, pp. 748–758, Sep. 1986.

[21] D. Dey, Z. Zhang, and P. De, “Optimal Synchronization Policies for
Data Warehouses,” INFORMS J. on Computing, no. 2, pp. 229–242,
Jan. 2006.

[22] Y. Diao, S. Rizvi, and M. J. Franklin, “Towards an Internet-Scale XML
Dissemination Service,” in Proc. VLDB, Aug. 2004, pp. 612–623.

[23] J. Eckstein, A. Gal, and S. Reiner, “Monitoring an Information Source
Under a Politeness Constraint,” INFORMS J. on Computing, no. 1, pp.
3–20, Jan. 2008.

[24] M. Fontoura, M. Ionescu, and N. Minsky, “Law-Governed Peer-to-peer
Auctions,” in Proc. WWW, May 2002, pp. 109–116.

[25] A. Gal and J. Eckstein, “Managing Periodically Updated Data in
Relational Databases: A Stochastic Modeling Approach,” J. ACM, no. 6,
pp. 1141–1183, Nov. 2001.

[26] Gnutella. [Online]. Available: http://en.wikipedia.org/wiki/Gnutella.
[27] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher, “Peer-

to-Peer Caching Schemes to Address Flash Crowds,” in Proc. IEEE
ICDCS, Mar. 2004, pp. 360–369.

[28] Y. Hu, M. Feng, and L. N. Bhuyan, “A Balanced Consistency Mainte-
nance Protocol for Structured P2P Systems,” in Proc. IEEE INFOCOM,
Mar. 2010, pp. 286–290.

[29] Y. Huang, R. H. Sloan, and O. Wolfson, “Divergence Caching in Client-
Server Architectures,” in Proc. IEEE PDIS, Sep. 1994, pp. 131–139.

[30] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A Decentralized Peer-
to-peer Web Cache,” in Proc. IEEE PODC, Jul. 2002, pp. 213–222.

[31] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat, “Providing High
Availability Using Lazy Replication,” ACM Trans. Comput. Syst., no. 4,
pp. 360–391, Nov. 1992.

[32] J.-J. Lee, K.-Y. Whang, B. S. Lee, and J.-W. Chang, “An Update-Risk
Based Approach to TTL Estimation in Web Caching,” in Proc. IEEE
WISE, Dec. 2002, pp. 21–29.

[33] Z. Li, G. Xie, and Z. Li, “Efficient and Scalable Consistency Mainte-
nance for Heterogeneous Peer-to-Peer Systems,” IEEE Trans. Parallel
and Distributed Systems, vol. 19, no. 12, pp. 1695–1708, Dec. 2008.

[34] Y. Ling and W. Chen, “Measuring Cache Freshness by Additive Age,”
SIGOPS Oper. Syst. Rev., vol. 38, pp. 12–17, Jul. 2004.

[35] Y. Ling and J. Mi, “An Optimal Trade-off between Content Freshness
and Refresh Cost,” Applied Probability, vol. 41, no. 3, pp. 721–734,
Sep. 2004.

[36] X. Liu, J. Lan, P. Shenoy, and K. Ramaritham, “Consistency Main-
tenance in Dynamic Peer-to-peer Overlay Networks,” Comput. Netw.,
vol. 50, no. 6, pp. 859–876, Apr. 2006.

[37] N. Matloff, “Estimation of Internet File-access/Modification Rates from
Indirect Data,” ACM Trans. Model. Comput. Simul., vol. 15, pp. 233–
253, Jul. 2005.

[38] C. Olston and J. Widom, “Best-Effort Cache Synchronization With
Source Cooperation,” in Proc. ACM SIGMOD, May 2002, pp. 73–84.

[39] C. Olston and S. Pandey, “Recrawl Scheduling Based on Information
Longevity,” in Proc. WWW, Apr. 2008, pp. 437–446.

[40] K. Palm, “Intensitätsschwankungen im Fernsprechverkehr,” Ericsson
Technics, vol. 44, 1943.

[41] S. Pandey, K. Dhamdhere, and C. Olston, “WIC: A General-Purpose
Algorithm for Monitoring Web Information Sources,” in Proc. VLDB,
Aug. 2004, pp. 360–371.

[42] S. Pandey, K. Ramamritham, and S. Chakrabarti, “Monitoring the
Dynamic Web to Respond to Continuous Queries,” in Proc. WWW, May
2003, pp. 659–668.

[43] M. Roussopoulos and M. Baker, “CUP: Controlled Update Propagation
in Peer-to-Peer Networks,” in Proc. USENIX Annual Technical Confer-
ence, Apr. 2003, pp. 167–180.

[44] A. Rowstron and A. Rowstron, “Storage Management and Caching in
PAST, A Large-Scale, Persistent Peer-to-Peer Storage Utility,” in Proc.
ACM SOSP, Nov. 2001, pp. 188–201.

[45] H. Shen, “IRM: Integrated File Replication and Consistency Mainte-
nance in P2P Systems,” IEEE Trans. Parallel Distrib. Syst., vol. 21,
no. 1, pp. 100–113, Jan. 2012.

[46] H. Shen and G. Liu, “A Geographically Aware Poll-Based Distributed
File Consistency Maintenance Method for P2P Systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 11, pp. 2148–2159, Nov. 2013.

[47] H. Shen and G. Liu, “A Lightweight and Cooperative Multifactor
Considered File Replication Method in Structured P2P Systems,” IEEE
Trans. Comput., vol. 62, no. 11, pp. 2115–2130, Jan. 2013.

[48] K. C. Sia and J. Cho, “Efficient Monitoring Algorithm for Fast News
Alerts,” IEEE Trans. Knowl. Data Eng., no. 7, pp. 950–961, Jul. 2007.

[49] A. Silberstein, J. Terrace, B. F. Cooper, and R. Ramakrishnan, “Feeding
Frenzy: Selectively Materializing Users’ Event Feeds,” in Proc. ACM
SIGMOD, Jun. 2010, pp. 831–842.

[50] T. Stading, P. Maniatis, and M. Baker, “Peer-to-Peer Caching Schemes
to Address Flash Crowds,” in Proc. IPTPS, Mar. 2002, pp. 203–213.

[51] Q. Tan and P. Mitra, “Clustering-based Incremental Web Crawling,”
ACM Transactions on Information Systems, no. 4, pp. 1–27, Nov. 2010.

[52] X. Tang, J. Xu, and W.-C. Lee, “Analysis of TTL-Based Consistency
in Unstructured Peer-to-Peer Networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 19, no. 12, pp. 1683–1694, Feb. 2008.

[53] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen,
“Optimal Crawling Strategies for Web Search Engines,” in Proc. WWW,
May 2002, pp. 136–147.

[54] R. W. Wolff, Stochastic Modeling and the Theory of Queues. Prentice
Hall, 1989.

[55] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov,
“Spamming Botnets: Signatures and Characteristics,” in Proc. ACM
SIGCOMM, Sep. 2006, pp. 171–182.

[56] A. Yahyavi and B. Kemme, “Peer-to-peer Architectures for Massively
Multiplayer Online Games: A Survey,” ACM Comput. Surv., vol. 46,
no. 1, pp. 9:1–9:51, Oct. 2013.

[57] M. Yang, H. Wang, L. Lim, and M. Wang, “Optimizing Content
Freshness of Relations Extracted From the Web Using Keyword Search,”
in Proc. ACM SIGMOD, Jun. 2010, pp. 819–830.

[58] L. Yin and G. Cao, “DUP: Dynamic-tree Based Update Propagation in
Peer-to-Peer Networks,” in Proc. IEEE ICDE, Apr. 2005, pp. 258–259.

[59] H. Yu and A. Vahdat, “Design and Evaluation of a Continuous Con-
sistency Model for Replicated Services,” in Proc. USENIX OSDI, Jun.
2000, pp. 305–318.

[60] J. Zhu, J. Gong, W. Liu, T. Song, and J. Zhang, “A Collaborative Virtual
Geographic Environment Based on P2P and Grid Technologies,” Inf.
Sci., vol. 177, no. 21, pp. 4621–4633, Nov. 2007.

10

