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Abstract— Network applications commonly maintain local
copies of remote data sources in order to provide caching,
indexing, and data-mining services to their clients. Modeling
performance of these systems and predicting future updates
usually requires knowledge of the inter-update distribution at the
source, which can only be estimated through blind sampling—
periodic downloads and comparison against previous copies.
In this paper, we first introduce a stochastic modeling framework
for this problem, where updates and sampling follow independent
point processes. We then show that all previous approaches are
biased unless the observation rate tends to infinity or the update
process is Poisson. To overcome these issues, we propose four
new algorithms that achieve various levels of consistency, which
depend on the amount of temporal information revealed by the
source and capabilities of the download process.

Index Terms— Internet, network servers, storage area net-
works, web services, stochastic processes.

I. INTRODUCTION

MANY distributed systems in the current Internet manip-
ulate objects that experience periodic modification in

response to user actions, real-time events, data-centric com-
putation, or some combination thereof. In these cases, each
source (e.g., a webpage, DNS record, stock price) can be
viewed as a stochastic process NU that undergoes updates
(i.e., certain tangible changes) after random delays U1, U2, . . .,
which we assume have some empirical CDF FU (x). Note that
NU (t) is a point process that counts the number of events
in [0, t]; however, when t is not explicitly needed, we use NU

to represent the entire process.
Consistent estimation of inter-update distribution FU (x)

is an important problem, whose solution yields not only
better caching, replication [25], and allocation of download
budgets [24], but also more accurate modeling and charac-
terization of complex Internet systems [8], [10], [12]–[14],
[23], [29], [31]–[33], [38], [40], [46], [48]. Similar issues arise
in lifetime measurement, where Ui represents the duration of
online presence for object or user i [6], [37], [41], [44].

The first challenge with measuring update-interval dynamics
is to infer their distribution using blind sampling, where
variables U1, U2, . . . are hidden from the observer. This sce-
nario arises when the source can only be queried over the
network using a point process NS whose inter-download
delays S1, S2, . . . have some empirical distribution FS(x). Due
to bandwidth and/or CPU restrictions, a common requirement
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is to bound E[Si] from below by some positive constant,
which prevents infinitely fast sampling and introduces bias in
the collected measurements. Unlike censored observations in
statistics, which have access to truncated values of each Ui,
the sampling process here has a tendency to miss entire update
cycles and land in larger-than-average intervals, which gives
rise to the inspection paradox [47].

The second challenge in blind sampling is to reconstruct the
distribution of Ui from severely limited amounts of informa-
tion available from each download. Specifically, the observer
can only compare the two most-recent copies of the source
and obtain indicator variables Qij of a change occurring
between downloads i and j, for all i < j. This constraint is
necessary because determining object-modification timestamps
is a complicated endeavor. For example, dynamic webpages
served by scripts are considered new on each download. Doing
otherwise would require the server to store two copies of
each page and compare them on the fly. Even with this
approach, the exact modification time between two subsequent
downloads remains unknown (e.g., a script rendering traffic
maps would not know when congestion first occurred). This
is further compounded by the fact that object updates are
highly application-specific (e.g., search engines may remove
ad banners, javascript, and other superfluous information
before indexing).

Even if each observer’s content-comparison algorithm could
be uploaded to every source, the computational load needed
to detect updates would make this service prohibitively expen-
sive. This is especially true given the variety of pages and
crawlers in the public Internet, each with its own variation of
the algorithm. Besides complexity at the server, other issues
include unwillingness of certain observers (e.g., commercial
search engines) to disclose proprietary algorithms and diffi-
culty of keeping them up-to-date on remote websites. As a
result, variables {Ui} are hidden not just from the observer,
but also the source.

Existing studies on this topic [10], [19], [20], [26] use Pois-
son NU and constant Si. Due to the memoryless assumption
on FU (x), the problem reduces to estimating just rate μ =
1/E[Ui], rather than an entire distribution, and many complex
interactions between NS and NU are avoided in the analysis.
However, more interesting cases arise in practice, where
non-Poisson updates are quite common [4], [11], [21], [27].
Furthermore, guaranteeing constant Si is impossible in certain
applications where the return delay to the same object is
computed in real-time and is governed by the properties of
trillions of other sources (e.g., in search engines). Thus, new
analytical techniques are required to handle such cases.

A. Contributions
Our first contribution is to formalize blind update sampling

using a framework in which both NU and NS are general point
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processes. We establish performance objectives and specify
assumptions necessary for this problem to be solvable. Our
second contribution is to consider a simplified problem where
the source provides last-modification timestamps for each
download. This allows us to develop the necessary tools for
tackling the more interesting cases that follow, build general
intuition, consider conditions under which provably consistent
estimation is possible, and explain the pitfalls of existing
methods under non-Poisson updates.

Armed with these results, we next relax the availability of
last-modified timestamps at the source. For situations where
constant Si is acceptable, we show that unbiased estimators
developed earlier in the paper can be easily adapted to this
environment and then suggest avenues for removing bias in
traces collected by previous methods, all of which forms
our third contribution. We finish the modeling part of the
paper by considering random Si and arrive at our fourth
contribution, which is a novel method that can accurately
reconstruct the update distribution under arbitrary FU (x) and
mildly constrained FS(x).

Our last contribution is to apply our methods to Wikipedia
logs, which contain all edit timestamps and allow easy con-
struction of ground-truth FU (x). We show that the Poisson
update assumption fails on the majority of the pages, with
the remaining content having exponential inter-update delays
but non-negligible correlation. Then, we compare the accuracy
of our methods using the top 10 most-modified articles and
develop a recommendation algorithm for selecting the best
method for every possible scenario.

II. RELATED WORK

Analytical studies on estimating the update distribution
under blind sampling have all assumed NU was Poisson
and focused on determining its average rate, i.e., μ for
stationary cases [4], [10], [19], [20], [26] and μ(t) for non-
stationary [39]. Extension to general processes was achieved
by [26] under the assumption that sampling intervals Si were
infinitely small; however, the problem in these scenarios is
trivial since every Ui is available to the observer with perfect
accuracy.

In measurement literature, the majority of effort was
spent on the behavior of web pages, including analysis of
server logs [30], page-modification frequency during crawl-
ing [4], [7], [21], [27], RSS feed dynamics [38], and con-
tent change between consecutive observations [1], [18], [29].
Problems related to estimation of FU (x) have also emerged
in prediction of future updates [8], [9], [16], [22], [35], [42],
with a good survey in [28], and user lifetime measurement in
decentralized P2P networks [6], [37], [41], [44].

III. OVERVIEW

This section introduces notation, formulates objectives, and
lays down a roadmap of the studied methods.

A. Notation and Assumptions

Denote by ui the time of the i-th update at the source.
Define NU (t) = max{i : ui ≤ t} to be the number of updates
in the time interval [0, t] and suppose Ui = ui+1 − ui is the

Fig. 1. Update/sample process notation.

i-th inter-update delay. Similarly, define sj to be the
j-th sampling point, Sj = sj+1 − sj to be the corresponding
inter-sample delay, and NS(t) = max{j : sj ≤ t} to be the
number of samples in [0, t]. At time t, let age

AU (t) = t − uNU (t) (1)

and residual

RU (t) = uNU (t)+1 − t (2)

be the backward/forward delays to the nearest update. These
concepts are illustrated in Fig. 1. Note that interval Ui in the
figure cannot be seen or measured by the observer, which is
why we called it “hidden” earlier.

We adopt the sample-path approach of [24] to model both
processes, which needs the following assumption.

Assumption 1: Both NU and ND are age-measurable.
While quite technical [24], this condition means that the

age of each process examined at a random time t ∈ [0, T ]
is well-defined as T → ∞. Age-measurability generalizes
well-known families of processes (e.g., renewal, regenerative,
ergodic) and is the weakest set of conditions under which
NU can be meaningfully sampled to produce a distribution
of its cycle lengths. Defining 1A to be the indicator variable
of event A, Assumption 1 guarantees existence of [24]:

FU (x) := lim
n→∞

1
n

n∑

i=1

1Ui≤x (3)

and

FS(x) := lim
n→∞

1
n

n∑

j=1

1Sj≤x, (4)

which are empirical distributions of inter-update and inter-
sample delays, respectively. This allows us to use random vari-
ables U ∼ FU (x) and S ∼ FS(x) to represent update/sample
cycle durations, where μ = 1/E[U ] and λ = 1/E[S] are the
corresponding rates.

Suppose AU and RU are the equilibrium versions of
AU (t) and RU (t), respectively, as t → ∞. From [24], they
have the well-known residual CDF:

GU (x) := μ

∫ x

0

(1 − FU (y))dy, (5)

whose density is gU (x) := G′
U (x) = μ(1 − FU (x)). We set

the goal of the sampling process to determine the distribution
FU (x) based on observations at times {sj}j≥1, i.e., using a
single realization of the system.
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Fig. 2. Example of phase-lock that prevents recovery of FU (x). (a) s1 = 0.
(b) s1 = 0.3.

B. Applications

Knowledge of FU (x) enables performance analysis in many
fields that employ lazy (i.e., pull-based) data replication. For
example, search engines implement a sampling process NS

using crawlers that periodically revisit web content and merge
updates into backend databases. These organizations are often
concerned with staleness of pages in their index and the
probability that users encounter outdated results. In order
to determine the download frequency needed to maintain
staleness below a certain threshold, the expected number of
updates by which the index is trailing the source, or the amount
of bandwidth needed to maintain a collection of pages at
some freshness level, accurate knowledge of source dynamics,
i.e., distribution FU (x), is required [24].

In another example, suppose a data center replicates
a quickly changing database (driven by some update
process NU ) among multiple nodes for scalability and fault-
tolerance reasons. Because of the highly dynamic nature of the
source, individual replicas may not stay fresh for long periods
of time, but they jointly may offer much better performance
as a whole. In such cases, questions arise about the number of
replicas k that should be queried by clients to obtain results
consistent with the source [25] and/or the probability that
a cluster of n replicas can recover the most-recent copy of
the source when it crashes [24]. Similar problems appear in
multi-hop replication and cooperative caching, where service
capacity of the caching network is studied as well [25].

Finally, accurate measurement of FU (x) enables better
characterization of Internet systems, their update patterns in
response to external traffic, and even user behavior. While it
is possible to use the exponential distribution to approximate
any FU (x), as typically done in the literature [4], [10], [19],
[20], [26], this can lead to significant errors in the analy-
sis. As shown in [24] using the search-engine example and
Wikipedia’s update process NU , the exponential assumption
may produce errors in the download bandwidth that are two
orders of magnitude. In more complicated settings, such as
cascaded and cooperative systems [25], the impact of inaccu-
rate FU (x) may be even higher.

C. Caveats

In general, sample-path approaches to modeling interac-
tion of two processes lead to a possibility of phase-lock,
where the distance of download points from the last update,
i.e., {AU (sj)}j≥1, is not a mixing process. For example,
consider Fig. 2, where Ui = 1 for i ≥ 1 and Sj = 2 for j ≥ 1.
Notice that update ages AU (sj) observed at download points
are all equal to s1. Since this case cannot be distinguished
from Ui = 0.5 or Ui = 2, it is easy to see how phase-lock

Fig. 3. Method taxonomy (shaded boxes indicate Poisson-only techniques).

precludes estimation of FU (x). The problem can be avoided
by requiring that the considered cycle lengths exhibit certain
mixing properties.

Definition 1: A random variable X is called lattice if there
exists a constant c such that X/c is always an integer,
i.e.,

∑∞
i=1 P (X/c = i) = 1.

Lattice distributions are undesirable in our context as they
produce phase-lock when sampling other lattice distributions.
Finding the most general conditions for avoidance of phase-
lock is a difficult problem, but the following sufficient condi-
tion exists [24].

Definition 2: An age-measurable point process is called
age-mixing if it is renewal with non-lattice delays.

Assumption 2: At least one of (NU , NS) is age-mixing.
This condition is easy to satisfy with any continuous random

variable, but a more esoteric example would be a discrete
distribution placing mass on two numbers whose ratio is
irrational, e.g., (π, 3) or (e,

√
2).

D. Roadmap

As illustrated in Fig. 3, we partition the various approaches
into two broad categories. In age sampling, the observer
has access to the last-modified timestamp uNU (sj) at each
download point sj , or equivalently, the update age AU (sj).
Although now rare, this information can still be sometimes
obtained from the HTTP headers, timestamps within the
downloaded HTML, or sitemaps [28]. As shown in the
figure, we call the two studied methods in this category
M1 and M2. They operate by deriving FU (x) from the col-
lected age samples, where M1 has been proposed in previous
work [10], [26] for Poisson-only cases and M2 is novel.

In comparison sampling, we assume that the observer
retains the most recent copy of the object or a fingerprint
of its relevant portions (e.g., after removing ads and repeated
keywords). Define Qij to be an update-indicator process:

Qij =

{
1 update occurs between si and sj

0 otherwise
. (6)

Unlike the previous scenario, estimation of FU (x) here must
use only binary values {Qij}. Going back to Fig. 3, we study
comparison sampling under two strategies. For constant S,
we first analyze two methods we call M3 and M4, which are
discrete versions of M1 and M2, respectively. We then propose
a novel method M5 that allows recovery of FU (x) from biased
samples of M3, should such traces become available from
prior measurement studies. For random S, we introduce our
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Fig. 4. Illustration of M1.

final approach M6 that is consistent under the most general
conditions.

IV. AGE SAMPLING

This section is a prerequisite for the results that follow.
It starts with understanding state of the art in this field and its
pitfalls. It then shows that a simple modification allows prior
work to become unbiased under non-Poisson updates.

A. Basics

In age sampling, the observer has a rich amount of infor-
mation about the update cycles. This allows reconstruction of
FU (x) in all points x ≥ 0, which we set as our goal.

Definition 3: Suppose H(x, T ) is a CDF estimator that uses
observations in [0, T ]. Then, we call it consistent with respect
to distribution F (x) if it converges in probability to F (x) as
the sampling window becomes large:

lim
T→∞

H(x, T ) = F (x), x ≥ 0. (7)

Note that consistent estimation of FU (x) is equivalent to
that of GU (x) since there is a one-to-one mapping (5) between
the two functions. Specifically, appropriately smoothing the
numerical derivative of a consistent estimate for GU (x) can
provide a consistent estimate for gU (x) = G′

U (x), from
which FU (x) = 1 − gU (x)/gU (0) follows. Furthermore,
the update rate μ is also readily available as gU (0). The
rate of convergence for the two CDFs may be different, but
asymptotically this makes no difference. Under Poisson NU ,
the memoryless property ensures that FU (x) = GU (x) and
no conversion is needed; however, in more general cases, this
distinction is important.

B. Modeling M1

To estimate the mean μ of a Poisson update process, prior
studies [10], [26] proposed that only a subset of age samples
{AU (sj)}j≥1 be retained by the observer. In particular, when
multiple sample points land in the same update interval, only
the one with the largest age is kept, while the others are
discarded. As shown in Fig. 4, points sj−1 and sj hit the same
update cycle [ui, ui+1], in which case only AU (sj) is used in
the measurement and AU (sj−1) is ignored. It was perceived
in [10] and [26] that doing otherwise would create a bias and
lead to incorrect estimation, but no proof was offered. We call
this method M1 and study its performance next.

Although previous studies [10], [26] mainly focused on M1

under constant S, we consider it as a general random variable.
As we prove in this section, M1 is a fascinating method
because depending on S it can measure an entire spectrum
of distributions contained between FU (x) and GU (x). From

Fig. 5. Verification of (9) under Pareto U (μ = 2). (a) constant S.
(b) exponential S.

Fig. 4, notice that M1 collects ages AU (sj) at such points sj

that satisfy RU (sj) < Sj , or equivalently Qj,j+1 = 1.
All other age measurements are ignored. Then, the fraction
of age samples retained by M1 in [0, T ] is given by:

pT :=
1

NS(T )

NS(T )∑

j=1

1RU (sj)<Sj
, (8)

which is an important metric that determines the overhead
of M1 and its bias later in the section. Expansion of (8) in
the next result follows from Assumption 2, the equilibrium
residual equation for non-lattice intervals, and the law of large
numbers [47].

Theorem 1: As T → ∞, pT converges in probability to:

p := lim
T→∞

pT = P (RU < S) = E[GU (S)]. (9)

This result shows that p is affected not just by the update
distribution FU (x), but also the sample distribution FS(x).
To see this effect in simulations, we use constant and exponen-
tial S to sample Pareto FU (x) = 1−(1+x/β)−α, where α = 3
and β = 1 throughout the paper. Fig. 5 confirms a good match
between the model and simulations. As expected, p decreases
as the sampling rate λ = 1/E[S] increases, which is caused
by an increased density of points landing within each update
interval and thus a higher discard rate. The figure also shows
that constant S samples more points than the exponential case.
In fact, it is possible to prove a more general result – constant
S exhibits the largest p (i.e., highest overhead) for a given λ
– but this is not essential to our results below.

Let K(x, T ) be the number of samples that M1 obtains in
[0, T ] with values no larger than x:

K(x, T ) :=
NS(T )∑

j=1

1RU (sj)<Sj
1AU (sj)≤x. (10)

Then, it produces a distribution in [0, T ] given by:

G1(x, T ) :=
K(x, T )
K(∞, T )

. (11)

Theorem 2: Denoting by F̄ (x) = 1−F (x) the complement
of function F (x) and letting T → ∞, the tail distribution of
the samples collected by M1 converges in probability to:

Ḡ1(x) := lim
T→∞

Ḡ1(x, T ) =
E[GU (x+S)− GU (x)]

E[GU (S)]
. (12)
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Fig. 6. Simulation results of M1 under exponential S (λ = 1, μ = 2).
(a) Pareto U . (b) exponential U .

Proof: Under Assumption 2 and T → ∞, AU (sj) and
RU (sj) converge to their equilibrium versions AU and RU ,
respectively. Therefore:

lim
T→∞

K(x, T )
NS(T )

= P (AU ≤ x, RU < S). (13)

From Theorem 1, we know that:

lim
T→∞

K(∞, T )
NS(T )

= p = E[GU (S)]. (14)

Dividing (13) by (14) yields:

G1(x) = lim
T→∞

G1(x, T ) =
P (AU ≤ x, RU < S)

E[GU (S)]
, (15)

where E[GU (S)] > 0 is guaranteed for all cases except S
being zero with probability 1. To derive the numerator of (15),
condition on RU and S:

P (AU ≤ x, RU < S)

=
∫ ∞

0

[∫ z

0

P (AU ≤ x|RU = y)gU (y)dy
]
dFS(z), (16)

Expanding the probability of event AU ≤ x given a fixed
residual RU = y leads to:

P (AU ≤ x|RU = y) =
P (y < U ≤ x + y)

P (U > y)

=
FU (x + y) − FU (y)

1 − FU (y)
. (17)

Recalling that gU (y) = μ(1−FU (y)) is the residual density
and applying (17), the inside integral of (16) becomes:

∫ z

0

P (AU ≤ x|RU = y)gU (y)dy

= μ

∫ z

0

(FU (x + y) − FU (y))dy

= μ

∫ z

0

F̄U (y)dy − μ

∫ z+x

x

F̄U (w)dw

= GU (z) + GU (x) − GU (x + z). (18)

This transforms (15) to:

G1(x) =

∫ ∞
0

(GU (z) + GU (x) − GU (x + z))dFS(z)
E[GU (S)]

=
E[GU (S) − GU (x + S)] + GU (x)

E[GU (S)]
, (19)

which is the complement of the tail in (12).

Observe from (12) that M1 measures neither the update
distribution FU (x) nor the age distribution GU (x). To see
the extent of this bias, Fig. 6(a) plots simulation results for
exponential S and Pareto U in comparison to (12). Notice
in the figure that our model closely tracks the simulated
tail Ḡ1(x), which remains heavy-tailed, albeit different from
that of the target distribution FU (x). It was known in prior
work [10], [26] that M1 is unbiased for exponential U , with
one example illustrated in Fig. 6(b). We next strengthen this
result to provide not only a sufficient, but also a necessary
condition.

Theorem 3: Exponential U is the only case that allows M1

to be consistent with respect to FU (x) for all S.
Proof: For M1 to be consistent in (12), E[GU (x + S) −

GU (x)] = E[GU (S)]F̄U (x) must hold for all distributions S.
This is a well-known functional equation that is solved only
by exponential FU (x).

C. Quantifying Bias in M1

Suppose D1 ∼ G1(x) is a random variable drawn from the
distribution observed by M1 over an infinitely long measure-
ment period. Our goal in this subsection is to determine the
relationship between D1, U , and AU under different sampling
rates and update distributions. We first re-write (12) in a more
convenient form.

Theorem 4: The tail distribution measured by M1 can be
expressed in two alternative forms:

Ḡ1(x) = ḠU (x)
P (AU < x + S|AU > x)

P (AU < S)
(20)

= F̄U (x)
E[

∫ S

0
P (U > x + y|U > x)dy]

E[
∫ S

0
P (U > y)dy]

. (21)

Proof: We first show (20). Recalling that GU (x) =
P (AU < x) yields:

Ḡ1(x) =
P (AU < x + S) − P (AU < x)

P (AU < S)

= ḠU (x)
P (x < AU < x + S)

P (AU < S)P (AU > x)
. (22)

From the definition of conditional probability, we get:

P (x < AU < x + S)
P (AU > x)

= P (AU < x + S|AU > x). (23)

Substituting (23) into (22), we get (20).
To establish (21), rewrite (22) as:

Ḡ1(x) = F̄U (x)
P (x < AU < x + S)
P (AU < S)P (U > x)

, (24)

whose numerator can be transformed to:

P (x < AU < x + S) = μE
[∫ x+S

x

F̄U (y)dy
]

= μE
[∫ S

0

F̄U (x + y)dy
]
, (25)

where we use the fact that gU (x) = μF̄ (x). Dividing (25) by
F̄U (x) produces:

P (x < AU < x + S)
P (U > x)

= μE
[∫ S

0

P (U > x + y|U > x)dy
]
.
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Fig. 7. Tail sandwich of M1 under Pareto updates and constant S (μ = 2).
(a) λ = 1. (b) λ = 4.

Similarly, we can expand:

P (AU < S) = μE
[∫ S

0

P (U > x)dy
]
. (26)

Using the last two equations in (24), we obtain (21).
Theorem 4 suggests that the tail of D1 may indeed have

some relationship to those of AU and U . In order to establish
this formally, we need to define three classes of variables.

Definition 4: Variable X is said to be NWU (new worse
than used) if P (X > x + y|X > y) ≥ P (X > x) for all
x, y ≥ 0. If this inequality is reversed, X is said to be NBU
(new better than used). Finally, if P (X > x + y|X > y) =
P (X > x) for all x, y ≥ 0, the variable is called memoryless.

Note that NWU distributions are usually heavy-tailed,
with two common representatives being Pareto and Weibull.
Conditioning on U ’s survival to some age y, its residual length
U − y is stochastically larger than U itself. NBU are typically
light-tailed distributions, exemplified by uniform and constant.
Finally, the memoryless class consists of only exponential
distributions, where past knowledge has no effect on the future.

When both U and AU are NWU, as is the case with Pareto
distributions, Theorem 4 shows that Ḡ1(x) is “sandwiched”
between the other two tails, i.e., F̄U (x) serves as a lower bound
and ḠU (x) as an upper. This means that D1 is stochastically
smaller than AU , but stochastically larger than U . Fig. 7 shows
an example confirming this, where the faster sampling rate
in (b) moves the curve closer to F̄U (x). The relationship
among the tails is reversed if U and AU are NBU. For
exponential update distributions, all three tails are equal, which
is an another way to show its lack of bias. We examine a few
other cases next.

D. Achieving Consistency in M1

If Ḡ1(x) is sandwiched between two tails, the first intuitive
avenue for removing bias is to tighten the distance between
F̄U (x) and ḠU (x); however, this can only be achieved by
forcing the source to undergo updates with U that is “closer"
to exponential. As this is usually impractical, the second
technique is to adjust the sampling distribution FS(x) such
that the distance of Ḡ1(x) to one of U ’s tails shrinks to zero.
To this end, our next result demonstrates that D1 “leans"
towards U or AU solely based on the fraction of retained
samples p.

Theorem 5: For p → 1, variable D1 sampled by M1 con-
verges in distribution to AU . For p → 0 and mild conditions
on S, variable D1 converges in distribution to U .

Proof: Recall that p = E[GU (S)]. When E[GU (S)] → 1,
so does E[GU (S + x)]. Therefore:

Ḡ1(x) =
E[GU (S + x)] − GU (x)

E[GU (S)]
→ ḠU (x). (27)

To prove the second part, assume that S/E[S] converges
to a random variable with mean 1. Since p → 0 implies that
S → 0 almost surely, we get:

GU (S)
E[S]

=

∫ S

0 F̄U (y)dy

E[U ]E[S]
=

S
∫ 1

0 F̄U (Sy)dy

E[U ]E[S]
→ μ, (28)

where we use the fact that F̄U (Sy) → 1 for all fixed y.
Noticing that GU (S)/E[S] is upper bounded by random

variable μS/E[S], the latter of which has a finite mean, and
applying the dominated convergence theorem (DCT), we get:

lim
p→0

E[GU (S)]
E[S]

= μ. (29)

Similarly, we obtain:

GU (S + x) − GU (x)
E[S]

=

∫ S+x

x
F̄U (y)dy

E[U ]E[S]

=
S

∫ 1

0 F̄U (Sy + x)dy

E[U ]E[S]
, (30)

which converges to μF̄U (x). Applying the DCT again, we get:

lim
p→0

E[GU (S + x) − GU (x)]
E[S]

= μF̄U (x). (31)

Combining (29) and (31) produces:

lim
p→0

E[GU (S + x) − GU (x)]
E[GU (S)]

= F̄U (x), (32)

which is what we intended to prove.
To understand this result, we discuss several examples.

In order to converge p to 1, method M1 has to sample with
sufficiently large S to achieve P (S > RU ) = 1. For general
FU (x), this can be guaranteed only if S converges to infinity,
in which case the measurement process will be impossibly
slow. If an upper bound on U is known, then setting S to be
always larger can also produce p = 1. In these scenarios,
however, M1 will sample GU (x) and additional steps to
recover FU (x) must be undertaken.

To achieve p = 0, M1 has to use high sampling rates
such that each update interval contains an infinite number of
samples, i.e., S must converge to zero. In this case, the method
may consume exorbitant network resources and additionally
create undesirable load conditions at the source.

E. Method M2

Instead of using the largest age sample for each detected
update, a more sound option is to use all available ages. While
extremely simple, this method has not been proposed before.
We call this strategy M2 and define G2(x, T ) to be the fraction
of its samples in [0, T ] with values smaller than or equal to x:

G2(x, T ) :=
1

NS(T )

NS(T )∑

j=1

1AU (sj)≤x. (33)
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Fig. 8. Verification of (34) under Pareto updates and λ = 1.
(a) exponential S. (b) constant S.

Fig. 9. Performance of M2 under Pareto U and constant S (μ = 2, λ = 100).
(a) E[U ] (b) FU (x) (h = 0.1).

The next result follows from Assumption 2 and the equilib-
rium residual equation [24].

Theorem 6: Method M2 is consistent with respect to the
age distribution:

G2(x) := lim
T→∞

G2(x, T ) = GU (x). (34)

Next we use simulations to verify the usefulness of (34).
From Fig. 8, observe that the sampled distribution of M2 does
in fact equal GU (x). To obtain FU (x) = 1 − gU (x)/gU (0)
from an empirical CDF GU (x), we adopt numerical dif-
ferentiation from [43]. This method uses bins of size h
and k-point derivatives, bounding Taylor-expansion errors to
O(hk/k!). For the estimator to work, it must first accurately
determine gU (0) = 1/E[U ]. Using k = 5 and non-symmetric
(i.e., one-sided) derivatives around x = 0, Fig. 9(a) demon-
strates that the estimated E[U ] monotonically decreases in h
and eventually stabilizes at the true value. Since h is a user-
defined parameter independent of (NU , NS), it can be arbi-
trarily small. Thus, a binary search on h to find the flat region
in E[U ] can always determine its value with high accuracy.
Applying this technique, the update distribution estimated by
M2 is shown in Fig. 9(b) in comparison to FU (x). Notice that
the two curves are indistinguishable.

F. Discussion

Although M1 has fewer samples, its network traffic remains
the same as that of M2, because they both have to contact the
source NS(t) times in [0, t]. However, the smaller number
of retained values in M1 may lead to lower computational
cost and better RAM usage in density-estimation techniques
that utilize all available samples (e.g., kernel estimators). For
the route we have taken, i.e., differentiation of G2(x), the
two methods exhibit the same overhead.

We now focus on the performance of M2 in finite obser-
vation windows [0, T ]. One potential issue is the redundancy

Fig. 10. Average relative error of ζ(T ) of M2 under Pareto U and exponential
S (μ = 2, m = 1000). (a) impact of T (λ = 1). (b) impact of S (T = 10K).

(and high dependency) of samples that it collects
(i.e., all ages within the same update interval are
deterministically predictable), which is what M1 tried
to avoid. While necessary, can this redundancy lead to slower
convergence? For a given T , would it be better to collect
fewer samples that are spaced further apart?

Define

ζ(T ) :=
1

NS(T )

NS(T )∑

j=1

AU (sj) (35)

to be the average age observed by M2 in [0, T ] using one
realization of the system. We now use deviation of ζ(T ) from
E[AU ] = μE[U2]/2 as indication of error. Specifically, let

ε(T ) := E
[∣∣1 − ζ(T )

E[AU ]

∣∣
]
. (36)

be the expected relative error computed over m sample-paths.
First, we fix the sampling rate λ = 1 and change T

from 100 to 1M time units. As expected, ε(T ) in Fig. 10(a)
monotonically decreases as the observation window gets
larger, confirming asymptotic convergence of M2 discussed
throughout this section. Next, we keep T constant at 10K
and vary E[S]. As shown in Fig. 10(b), the error monotoni-
cally drops with E[S], suggesting that having more samples,
regardless of how redundant, improves performance.

V. COMPARISON SAMPLING: CONSTANT INTERVALS

In contrast to the previous section, the remaining methods
do not have access to age; instead, they must work with binary
observations Qij , which indicate whether an update occurred
between two sampling points si and sj . This section deals
with constant inter-download delay, which is not just simple
to implement and the only one considered in the literature, but
also maximally polite (i.e., least bursty) for a given download
rate λ.

A. Basics

Assume constant inter-sample delays S = Δ and notice that
all observations related to update intervals must be multiples
of Δ. It is therefore impossible to reconstruct FU (x), or even
GU (x), in every point x. This requires an adjustment in our
objectives.

Definition 5: An estimator H(x, T ) is Δ-consistent with
respect to distribution F (x) if it can correctly reproduce it in
all discrete points xn = nΔ as T → ∞:

lim
T→∞

H(xn, T ) = F (xn), n = 1, 2, . . . (37)
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Fig. 11. Comparison sampling in M3 with constant intervals of size Δ.

Fig. 12. Pitfalls of M3.

Unless the sampling rate is infinite, Δ-consistent estimation
produces a step-function CDF. The main caveat of this section
is that knowledge of the age distribution in discrete points is
insufficient for Δ-consistent estimation of FU (x). This occurs
because the estimated GU (x) lacks data in every interval
(xn, xn+1), which precludes differentiation and leaves gU (x)
unobtainable.

Depending on the smoothness of GU (x) and/or prior knowl-
edge about the target distribution, one can use interpolation
between the known points GU (xn). In such cases, FU (x)
may be reconstructed with high accuracy using kernel density-
estimation techniques; however, the result is application-
specific. We thus do not dwell on numerical methods
needed to perform these manipulations and instead focus on
Δ-consistency in regard to GU (x).

B. Method M3

Prior work in several fields [6], [10], [26], [37], [41] has sug-
gested an estimator, which we call M3, that rounds the distance
between each adjacent pair of detected updates to the nearest
multiple of Δ, from which it builds a distribution G3(x).
This technique was used in [10] and [26] to track webpage
updates, in [36] to estimate lifetimes of storage objects, and
in [6], [37], and [41] to sample user lifetimes in P2P networks.
In the OS/networking literature, the approach is known as
Create-Based Method (CBM) because it tracks each object
from its creation, as opposed to other methods that track
deletions.

Define rk to be the number of samples needed to see the
k-th update, i.e.,

rk := min
{
m ≥ 1 :

m∑

j=1

Qj,j+1 = k
}
. (38)

Then, the samples collected by M3 are (rk+1 − rk)Δ for
k = 1, 2, . . . To understand this better, Fig. 11 shows an
example where updates are detected after downloads j and
j +4, which produces rk+1− rk = 4 and a single sample 4Δ.
Based on the description in prior work, this technique serves
the purpose of directly measuring Ui by counting full intervals

of size Δ that fit in [ui, ui+1]. As a result, the output of M3

is usually expected to produce the update distribution FU (x).
While this makes sense for the case in Fig. 11, the method

becomes grossly inaccurate when multiple updates occur
within Δ time units of each other, which brings us back to the
issue of hidden variables Ui. Consider Fig. 12, where 2/3 of
the update durations are less than Δ. Since M3 in this scenario
produces one sample 4Δ, it skews the mass of the distribution
to much higher values than needed.

We now model the performance of M3 under general U and
obtain the limiting distribution of its samples. Define G3(x, T )
to be the CDF of observed durations in [0, T ]:

G3(x, T ) :=
∑∞

k=1 1rk≤T1(rk+1−rk)Δ≤x∑∞
k=1 1rk≤T

. (39)

Let x+ = Δ	x/Δ
 be x rounded-up to the nearest multiple
of Δ and consider the following result.

Theorem 7: The tail distribution of M3 is a step-function:

Ḡ3(xn) := lim
T→∞

Ḡ3(xn, T ) =
GU (xn+1) − GU (xn)

GU (Δ)
. (40)

Proof: Notice from Fig. 12 that age samples collected
by M3 can be viewed as discrete versions of those in M1.
Indeed, the sample obtained by M3 at any download instance
sj is A+

U (sj). Since condition A+
U (sj) < xn is equivalent to

AU (sj) < xn for xn = nΔ, we obtain:

G3(xn, T ) =

∑NS(T )
j=1 1RU (sj)<Sj

1AU (sj)≤xn

∑NS(T )
j=1 1RU (sj)<Sj

, (41)

which is exactly the same as G1(xn, T ) in (11). Therefore,
the tail of G3(xn, T ) converges to the result in (12), with
S replaced by Δ. Doing so produces (40). Since G3(x)
has no information between discrete points xn, it must be
constant in each interval [xn, xn+1), which means it is a
step-function.

Define a random variable D3 ∼ G3(x). With the result
above, its average becomes readily available.

Theorem 8: The expectation of D3 is given by:

E[D3] =
Δ

GU (Δ)
. (42)

Proof: It is well-known that the mean of a non-negative
lattice random variable can be obtained by summing up its tail
distribution:

E[D3] = Δ
∞∑

n=0

Ḡ3(xn). (43)

Expanding Ḡ3(xn) using (40) and canceling all but two
remaining terms leads to the desired result.

Given the discussion in the proof of Theorem 7, consistency
and limitations of method M3 are pretty similar to those of M1.

Corollary 1: Exponential is the only update distribution
that allows M3 to be Δ-consistent with respect to FU (x)
for all Δ. Furthermore, Δ-consistency with GU (x) can be
achieved using λ → 0 and with FU (x) using λ → ∞.
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C. Method M4

Using the rationale behind M2, we now propose another
new method, which we call M4. At each sampling point sj ,
the obtained value is:

aj :=

{
Δ Qj−1,j = 1
aj−1 + Δ otherwise

. (44)

For the example in Fig. 11, this method observes Δ in point
sj+1, 2Δ in sj+2, 3Δ in sj+3 and 4Δ in sj+4, resetting back
to Δ in sj+5. Denote by:

G4(x, T ) =
1

NS(T )

NS(T )∑

j=1

1aj≤x (45)

the distribution generated by M4 in [0, T ]. Then, we have the
following result.

Theorem 9: Method M4 is Δ-consistent with respect to the
age distribution:

G4(xn) := lim
T→∞

G4(xn, T ) = GU (xn). (46)

Proof: It is not difficult to see that M4 collects samples
A+

U (sj) in all points sj , where x+ = Δ	x/Δ
 as before.
Therefore,

G4(xn, T ) =

∑NS(T )
j=1 1A+

U (sj)≤xn
,

NS(T )
(47)

Since the CDF is computed only in discrete points xn, the
above can be written as:

G4(xn, T ) =

∑NS(T )
j=1 1AU (sj)≤xn

NS(T )
= G2(xn, T ), (48)

which converges to GU (xn) using (34).
Define a random variable D4 ∼ G4(x), where G4(x) is

a right-continuous step-function taking jumps at each xn.
Interestingly, even though M3 keeps the largest age sample in
each detected update interval [ui, ui+1], the mean of its values
E[D3] is not necessarily larger than that of D4. For example,
with Pareto updates and Δ = 1, we get E[D4] = 1.63
and E[D3] = 1.33. This can be explained by our previ-
ous discussion showing that under NWU update intervals
the tail Ḡ3(x) is upper-bounded by Ḡ4(x), which implies
E[D4] ≥ E[D3]. Note that if U is NBU, this relationship
is again reversed.

D. Method M5

From the last two subsections, we learned that M4 was
Δ-consistent with respect to GU (x), while M3 was biased
unless U was exponential or the sampling rate was impos-
sible (i.e., zero or infinity). However, a significant amount
of previous effort went into measurement of the Internet
using M3 [6], [10], [26], [37], [41]. This raises the question
of whether an existing collection of M3 samples could be
processed to remove the bias. To this end, define:

G5(xn, T ) :=
1
T

T/Δ∑

j=1

min(xn, A+
U (sj))Qj,j+1 (49)

to be an estimator that takes samples of M3, i.e., A+
U (sj)

conditioned on Qj,j+1 = 1, passes them through the min
function, and normalizes the resulting sum by window size T .
Note that the number of terms in the summation is K(∞, T ),
i.e., the number of detected updates.

Theorem 10: Estimator M5 is Δ-consistent with respect to
the age distribution:

G5(xn) := lim
T→∞

G5(xn, T ) = GU (xn). (50)

Proof: We start with an auxiliary result:

n−1∑

k=0

1AU (sj)>xk
=

n−1∑

k=0

1A+
U (sj)>xk

=
n−1∑

k=0

1�AU (sj)Δ�>k

= min(n, 	AU (sj)Δ
)
=

min(xn, A+
U (sj))

Δ
. (51)

Next, applying this to expansion of (49):

G5(xn, T ) =
Δ
T

T/Δ∑

j=1

Qj,j+1

n−1∑

k=0

1AU (sj)>xn

=
Δ
T

n−1∑

k=0

T/Δ∑

j=1

1AU (sj)>xn
Qj,j+1

=
K(∞, T )
NS(T )

n−1∑

k=0

Ḡ3(xn, T ), (52)

where K(x, T ) is given by (10) and Ḡ3(xn, T ) by (41). Since
K(∞, T )/NS(T ) converges to p, we get after applying (40)
to Ḡ3(xn, T ):

G5(xn) = p
GU (xn)
GU (Δ)

= GU (xn),

where we use the fact that p = GU (Δ).
Fig. 13 shows that M5 accurately obtains the tail of GU (x),

even for Δ bounded away from zero. We next compare M5

with M4 to see if the reduction in the number of samples has a
noticeable impact on accuracy. The first metric under consid-
eration is the Weighted Mean Relative Difference (WMRD),
often used in networking [15]. Assuming H(x, T ) is some
empirical CDF computed in [0, T ], the WMRD between
H(x, T ) and GU (x) is:

wT :=
∑

n |H(xn, T ) − GU (xn)|∑
n(H(xn, T ) + GU (xn))/2

. (53)

The second metric is the Kolmogorov-Smirnov (KS)
statistic, which is the maximum distance between two dis-
tributions:

κT := sup
1≤n≤T/Δ

|H(xn, T ) − GU (xn)|. (54)

Simulations results of (53)-(54) are shown in Table I.
Observe that M4 performs slightly better for T ≤ 103, but
then the two methods become identical.
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Fig. 13. Verification of (50) under Pareto U (μ = 2). (a) λ = 1. (b) λ = 4.

TABLE I

CONVERGENCE OF BOTH Δ-CONSISTENT METHODS

UNDER PARETO U (μ = 2, λ = 1)

VI. COMPARISON SAMPLING: RANDOM INTERVALS

Although M4 and M5 are consistent estimators of GU (x),
they do not generally guarantee recovery of FU (x).
Furthermore, constant S may not always be achievable in
practice. For instance, search engine juggle trillions of pages,
whose download rate is dynamically adjusted based on real-
time ranking and budgeting. It may thus be difficult to ensure
constant return delays to each page. Additional problems stem
from lattice update processes, where constant S fails to satisfy
Assumption 2, rendering measurements arbitrarily inaccurate.

In this section, we consider comparison sampling with ran-
dom intervals. We first show that extending M4 to this scenario
delivers surprisingly biased results. Then, we present our new
method M6 and verify its correctness using simulations.

A. Straightforward Approaches

Our first attempt is to generalize M4 to random S, which
we call G-M4. For a given sj , define the most-recent sample
point after which an update has been detected as:

s∗j := max
k<j

{sk : Qkj = 1}. (55)

Then, G-M4 rounds age AU (sj) up to sj − s∗j . An example
is shown in Fig. 14, where the measured value is sj − sj−2.
For constant S, this method is identical to M4, which we
know is consistent. The main difference with random S is
that the amount of round-off error in G-M4 varies from
interval to interval. This issue has a profound impact on the
result, as shown in Fig. 15. Observe that the exponential
case becomes somewhat consistent only for xn � 0 and the
Pareto case produces a tail that is completely different from
the actual ḠU (x). This motivates us to search for another
approach.

Fig. 14. Illustration of G-M4.

Fig. 15. Bias of G-M4 with Pareto updates (μ = 2, λ = 1). (a) exponen-
tial S. (b) Pareto S.

B. Method M6

Our rationale for this technique stems from the fact that
Qij = 1 if and only if AU (sj) < sj − si. Therefore, counting
the fraction of pairs (i, j) that sustain an update may lead
to GU (x). Define y◦ = h	y/h
 to be the rounded-up value
of y with respect to a user-defined constant h. Let yn = nh
and:

Wij(yn) :=

{
1 (sj − si)◦ = yn

0 otherwise
. (56)

Then, the number of inter-sample distances sj −si in [0, T ]
that round up to yn is given by:

W (yn, T ) :=
NS(T )∑

i=1

NS(T )∑

j=i+1

Wij(yn) (57)

and the number of them with an update is:

Z(yn, T ) :=
NS(T )∑

i=1

NS(T )∑

j=i+1

QijWij(yn). (58)

We can now define estimator M6 by its CDF:

G6(yn, T ) :=
Z(yn, T )
W (yn, T )

(59)

For a given λ, method M6 has the same network overhead
as the other methods; however, it utilizes Θ(n2) pairwise com-
parisons, significantly more than the other methods, which are
all linear in n. Despite a higher computational cost, M6 gains
significant accuracy advantages when distances si − sj are
allowed to sweep all possible points x ≥ 0. Combining
this with bins of sufficiently small size creates a continu-
ous CDF, which allows recovery of not only GU (x), but
also FU (x).

Theorem 11: Assume h → 0, NS is age-mixing, and
FS(x) > 0 for all x > 0. Then, method M6 is consistent
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Fig. 16. Simulations of M6 under Pareto updates (h = 0.05, μ = 2, λ = 1).
(a) exponential S. (b) Pareto S.

with respect to the age distribution:

G6(y) := lim
T→∞

G6(y, T ) = GU (y). (60)

Proof: First, it helps to observe that:

Qij = 1RU (si)≤(sj−si). (61)

Since the download process is renewal, it follows that:

sj − si ∼ F
∗(j−i)
S , (62)

where F ∗k(x) denotes a k-fold convolution of distribu-
tion F (x). Furthermore, the renewal nature of NS implies that
variable sj − si is independent of si. Now, let

Yk ∼ F ∗k
S (x) (63)

be a random variable with the same distribution as S1+. . .+Sk

and define the renewal function driven by FS(x) as [47]:

MS(t) = 1 +
∞∑

k=1

F ∗k
S (t). (64)

Then, renewal theory shows for x > h and n → ∞ that:

1
n

n∑

i=1

n∑

j=i+1

1RU (si)≤ (sj−si) 1sj−si∈(x−h,x] (65)

converges to
∞∑

k=1

P (RU ≤ Yk, Yk ∈ (x − h, x])

=
∞∑

k=1

∫ x

x−h

GU (y) dF ∗k
S (y) =

∫ x

x−h

GU (y) dMS(y).

(66)

Let n = NS(T ) and assume that h(T ) = T−δ, where
δ ∈ (0, 1) ensures that h diminishes to zero at some
appropriate rate. Since GU (x) is continuous, it follows that:

lim
T→∞

Z(yn, T )
W (yn, T )

= lim
h→0

∫ x

x−h
GU (y) dMS(y)

∫ x

x−h
dMS(y)

= GU (x)

(67)

for each x > 0.
The assumption that FS(x) contains non-zero mass in

the vicinity of zero is necessary for accurate estimation of
gU (x) at x = 0, which then leads to FU (x). This can
be accomplished by a number of continuous distributions,

TABLE II

CONVERGENCE OF M2 AND M6 UNDER PARETO U AND
EXPONENTIAL S (μ = 2, λ = 1)

Fig. 17. Wikipedia inter-update delay distribution FU (x). (a) all articles.
(b) George W. Bush.

e.g., exp(λ) or uniform in [0, 2/λ]. It should also be noted
that M6 can work for constant S, but in that case it offers no
benefits over M4. Fig. 16 compares the M6 estimator of GU (x)
under two sampling distributions FS(x), both satisfying
Theorem 11. Compared to Fig. 15, this result is overwhelm-
ingly better.

The error of M6 is contrasted against that of M2 in Table II
using exponential S and different interval lengths T . While
the former is indeed converging slower than the latter, this
was expected. Also notice that M2 performs slightly worse
with random S than with constant in Table I.

VII. DISCUSSION

Our remaining task in the paper is to compare the proposed
methods on real traces and provide a recommendation of
which approach to employ in what situation. We also take
this opportunity to examine the Poisson assumption and how
often it may hold under user-driven update processes.

A. Poisson Assumption

Wikipedia [45] is one of the most frequently visited websites
on the Internet, with over 10B hits per month and 26M
users participating in collaborative editing of encyclopedia-
style articles. It can be argued that the properties of its user-
driven update process is not only realistic, but also similar to
those in other Internet scenarios (e.g., Facebook and Twitter
posts, congestion updates in Google maps, news reports).
What makes Wikipedia interesting is that it offers dumps of
all modification timestamps {ui} across the entire collection
of pages. Unlike other studies [4], [6], [11], [21], [27], [37],
[41], [44], which relied on web or P2P crawling, usage of
Wikipedia allows reconstruction of the ground-truth update
process NU .
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TABLE III

TOP 10 MOST MODIFIED WIKIPEDIA ARTICLES

Fig. 18. Wikipedia pages with approximately exponential FU (x).
(a) distribution. (b) correlation ρ(h).

We use March 2011 traces of n = 3.6 million English
Wikipedia articles [45] and compute inter-update intervals
{Uij} across all pages i and all updates j. Fig. 17(a) displays
the tail distribution of the aggregate result. Curve fitting on
the data shows a good match to Weibull tail e−(x/ν)k

with
ν = 400 and k = 0.5. This plot is as a mixture of n update
distributions, or equivalently the expected FU (x) for a random
page pulled from the Wikipedia database, where selection is
made with a bias proportional to the number of updates in
each page. If articles are downloaded by users (and thus need
to be sampled) in correlation with their modification rate,
the mixture CDF sheds light on the expected update dynamics
faced by a sampling process. Needless to say, it is far from
Poisson.

Focusing on individual pages, it is not surprising that the
average number of updates per article is low (i.e., 71), making
the corresponding FU (x) uninteresting for the majority of
pages. However, the top 10 most-modified articles have a
rich history (i.e., 6 − 10 years) and boast over 20K updates
each, as shown in Table III. As their distribution FU (x) is
similarly heavy-tailed, we show F̄U (x) only for the #1 page
“George W. Bush.” The result in Fig. 17(b) fits a Pareto tail
(1 + x/β)−α with α = 1.4 and β = 0.93 pretty well.

To further investigate existence of pages that are modified by
Poisson processes, we use a well-known fact that exponential
U exhibits coefficient of variation v =

√
V ar[U ]/E[U ] equal

to 1. First, we extract all pages with at least 100 updates
and obtain 444K results. Among these, we seek articles with
|v − 1| ≤ 0.1, which yields a mere 202 pages. As shown
in Fig. 18(a) for one of them, the tail of FU (x) matches
exponential pretty well. However, to establish a Poisson NU ,

Fig. 19. Yelp inter-update delay distribution FU (x). (a) all businesses.
(b) most-reviewed business.

TABLE IV

UNBIASED-METHOD COMPARISON ON WIKIPEDIA USING wT (λ = 2)

we must additionally verify independence between updates.
To this end, we plot the page’s auto-correlation function
ρ(h) in Fig. 18(b), which has a power-law trend h−0.25.
This suggests long-range dependence (LRD) with Hurst para-
meter 0.87, which is incompatible with the Poisson assump-
tion. The remaining 201 pages produce analogous conclusions.

Zipf and Pareto dynamics have been known to emerge
in many areas (e.g., web and AS graphs [5], [17], Internet
traffic [34], peer lifetimes [41], [44], citation networks [3]).
One of the theories [2] for this phenomenon lies in the
bursty (i.e., ON/OFF) behavior of human influence on various
data structures and traffic. It is therefore reasonable that social
interaction between users and flash-crowd activity in response
to events is likely to produce heavy-tailed FU (x) in a variety
of Internet systems outside Wikipedia. One such example
is the Yelp public-challenge dataset [49] that contains 2.2M
reviews of 77K anonymized businesses. Its top-10 list has
an order of magnitude fewer updates than the corresponding
values in Table III and timestamp granularity is 1 day instead
of 1 second; however, despite these differences, Fig. 19
shows that Yelp’s qualitative results (i.e., Weibull and Pareto
distributions) are remarkably similar to those in Fig. 17.

B. Method Comparison

Since all consistent methods first estimate GU (x) and then
apply numerical derivative to obtain FU (x), it suffices to assess
performance using GU (x). We sample each page in Table III
using E[S] = 0.5 hours (i.e., λ = 2) for its entire lifetime T .
We first consider all unbiased methods. For M2, as well as
M6 with age-mixing S, we compute the residual CDF using
bins of size h = 0.05 hours (i.e., 3 minutes). For M4-M5, as
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TABLE V

UNBIASED-METHOD COMPARISON ON WIKIPEDIA USING κT (λ = 2)

TABLE VI

BIASED-METHOD COMPARISON ON WIKIPEDIA (λ = 2)

Fig. 20. Residual distribution GU (x) for George W. Bush. (a) M3. (b) M4.

well as M6 with constant S, we linearly interpolate the step-
function GU (xn) to the granularity of h by adding 9 extra
points between each xn and xn+1. Both cases limit CDF error
computation to x ∈ [0, 1000] hours.

Tables IV-V show the result. For exponential S, both M2

and M6 are viable options; however, the former achieves
significantly lower error due to the higher accuracy of the
information it receives (i.e., age). Although M6 is consistent,
its convergence speed is lower, which is consistent with our
previous findings in Table II. For constant S, the tables show
that M2 again easily beats the other alternatives, with M4

emerging in second place due to its simplicity. For biased
methods, the corresponding numbers are given in Table VI.
The error is not only high, but also insensitive to availability
of age and variance of S.

To visualize the difference between prior methods and
those derived in this paper, we offer graphical comparison
in Figs. 20-21 using M3 and M4 as representatives of each
class. We keep the sampling rate λ = 2 for Wikipedia
(i.e., E[S] = 30 minutes) and λ = 1 for Yelp (i.e., E[S] =
1 day). Combined with Tables IV-VI, this leaves no doubt that
the proposed framework achieves a significant improvement.

Fig. 21. Residual distribution GU (x) for the most-reviewed Yelp business.
(a) M3. (b) M4.

Fig. 22. Choosing among the proposed methods.

Summarizing the observations above, we have the final rec-
ommendation in Fig. 22. When age is available, M2 converges
the fastest and is always preferable. For comparison-based
methods under constant S, method M4 should be used for
new measurements, while M5 can be deployed to correct the
bias of existing traces collected by M3. Finally, when age is
unavailable and S is random, M6 is the only option among
those considered here.

VIII. CONCLUSION

This paper studied the problem of estimating the update dis-
tribution at a remote source under blind sampling. We analyzed
prior approaches in this area, showed them to be biased under
general conditions, introduced novel modeling techniques for
handling these types of problems, and proposed several unbi-
ased algorithms that tackled network sampling under a variety
of assumptions on the information provided by the server and
conditions at the observer. Simulations demonstrated that the
introduced methods were significantly better than the existing
state of the art in this field.

Future work includes derivation of convergence speed,
investigation of non-parametric smoothing techniques for den-
sity estimation, and EM-based iterative estimation of the
update distribution.
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