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ProblemProblemProblem

• Measuring path avail-bw using probing streams:

• Basic question: the relationship between input, 
output, and the measurement goal: avail-bw

Internet path

Input cross-traffic Output cross-traffic

Input probing streams Output probing streams
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Single-Hop Fluid Model 1SingleSingle--Hop Fluid Model 1Hop Fluid Model 1

• Assuming Constant-rate Fluid Cross-traffic
━ Constant Cross-traffic intensity λ in any time-interval
━ Constant Avail-bw A = C — λ in any time-interval

• Probing rate/gap of packet train
━ Probing gap: g
━ Probing rate: r = s/g

• Fluid models:

P1Pn P3 P2

(n—1)g
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Single-Hop Fluid Model 2SingleSingle--Hop Fluid Model 2Hop Fluid Model 2
g O

gIs/(C-λ) C-λ rI

r O
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How Existing Techniques Relate to  
Fluid Models
How Existing Techniques Relate to  How Existing Techniques Relate to  
Fluid ModelsFluid Models

Is this model still valid in general bursty cross-traffic ?
- The answer is NOT EXACTLY

PTR

C

TOPP uses the sub linear 

segment

Spruce

C-λ rI

rO
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Extending to Bursty Cross-TrafficExtending to Bursty Extending to Bursty CrossCross--TrafficTraffic

• For the gap model, we adapt it to

• gO now varies, we change it to the asymptotic 
average

• Cross-traffic rate is no longer a constant, λ is 
interpreted as its long-term average.
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Real Asymptotic Model Real Asymptotic Model Real Asymptotic Model 

• With proof, we offer the following gap model 
in bursty cross-traffic:

• The two additional terms are zero in fluid 
traffic, but are often POSITIVE in bursty 
cross-traffic.
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What is the term E[Rn(t)]/(n-)What is the term What is the term EE[[RRnn((tt)]/()]/(nn--))
Q

ue
ui

ng
 d

el
ay

timet t+gI

R(t)

•E[Rn(t)] is the asymptotic time average of Rn(t)

• Rn(t) is the additional queuing delay imposed on the last packet 
Pn by the first n- packets in the same probing train when the train 
arrives into the hop at time t. It is called intrusion residual.
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What is the termWhat is the termWhat is the term

Asymptotic time average of the 
hop idle time within the 
measurement interval of a 
packet train.

The amount of  hop idle time in 
that measurement interval after 
the hop is visited by the packet 
train at time t.

The measurement interval of a 
packet train when it arrives to 
the hop at time t.
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What is the termWhat is the termWhat is the term
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Measurement interval  [t, t+gI]
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Probing BiasProbing BiasProbing Bias

•The following two terms, called probing bias, 
are the difference between fluid model and real 
asymptotic model.

•The closed-form expression of probing bias is 
given in the paper.



14

Probing Bias VS. Input Gap gIProbing Bias VS. Input Gap gProbing Bias VS. Input Gap gII

gI
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Bi
as

s/C s/A

In (0, s/C), bias=0

In (s/C, s/A), bias monotonically increasing, but slope <1

When gI>s/A, bias monotonically decreases and asymptotically converges to 0. 
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Gap Model in Bursty Cross-trafficGap Model in Bursty CrossGap Model in Bursty Cross--traffictraffic

gI

E
[g
O
]

Fluid gap model is the lower bound of the real gap model

also identified a upper bound of the gap model

In (0,s/C), real model=fluid model

From s/C beyond, real model starts deviating the fluid model

At s/A, real model reaches the max deviation 

After s/A, the real model asymptotically approaches the fluid model

s/C s/A
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Rate Model in Bursty Cross-trafficRate Model in Bursty CrossRate Model in Bursty Cross--traffictraffic

rI

s/
E

[g
O
]

Fluid rate model becomes an upper bound of the real model

The onset point of deviation is the turning point, smaller then A

Avail-bw point A, where deviation is maximized

Capacity rate C, end of deviation

C-λ C
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Impact of Packet-train ParametersImpact of PacketImpact of Packet--train Parameterstrain Parameters

• Larger packet size pushes the real model 
closer to the fluid model
━ Sampling interval increases, cross-traffic variance 

decreases, cross-traffic is more like fluid.

• Longer packet train also pushes the real model 
closer to the fluid model.
━ Non-intuitive, the paper offers an explanation using 

random walk theory.

• Fluid models are tight bounds for real models
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Period Testing 1Period Testing 1Period Testing 1

• The deviation phenomena were first observed in 
periodic cross-traffic such as CBR

• E[gO] can be easily computed , since it is equal to  
the time average of gO(t) in one period:

━ Where gO(t) is the output gap of a packet train when it 
arrives at the hop at time t. 

━ Notice that gO(t) is also a periodic function of time with 
the same period T as that of the cross-traffic.
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Period Testing 2Period Testing 2Period Testing 2

• Period Testing approximates the time average 
of gO(t) in [0, T] 
━ By sampling it at a set of equally spaced time 

instances and taking the average of those samples.

• The number of samples is chosen so that
━ Using more samples makes little difference
━ Results agree with fluid model when 0<gI<s/C
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Packet-Pair Rate Curve in CBRPacketPacket--Pair Rate Curve in CBRPair Rate Curve in CBR
CBR cross-traffic with average intensity 2.5mb/s, Hop capacity C=10mb/s

As probe packet size increases, 
both the deviation range and 
deviation amplitude shrink.
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Packet-train Rate Curve in CBRPacketPacket--train Rate Curve in CBRtrain Rate Curve in CBR
Keep probing packet size to 50bytes, change packet-train length

As packet train length increases, the 
deviation  from fluid upper bound 
decreases.
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Trace-driven Testing TraceTrace--driven Testing driven Testing 

• Allows examining the asymptotic model in 
different types of cross-traffic

• Use time average of gO(t) in a finite time interval 
[0, α] to approximate E[gO]

• α is chosen so that the cross-traffic intensity in [0, 
α] is close to its long term average

• gO(t) can be computed based on cross-traffic 
trace and hop capacity C, when t+(n-1)gI< α
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Cross-traffic TracesCrossCross--traffic Tracestraffic Traces
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All 4 traces have long-term intensity 3mb/s 
Use 20s trace for Poisson traffic and 60s trace 
for Pareto on/off traffic
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Packet-Pair Rate CurvesPacketPacket--Pair Rate CurvesPair Rate Curves

•Probing packet size=750bytes.

•CBR rate curve overlap with 
Pareto on/off rate curve

•PUS (yellow) suffers slightly 
more bias then PCS
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Packet-Train Rate CurvesPacketPacket--Train Rate CurvesTrain Rate Curves

•Use 16-packet probing train, packet 
size=750bytes.

•CBR curve becomes almost unbiased.

•The other three overlap. 
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Probing bias VS. Cross-traffic BurstinessProbing bias VS. CrossProbing bias VS. Cross--traffic Burstinesstraffic Burstiness

• The results so far shows that:
━ As probing packet size or train length increases, 

probing bias vanishes.
━ The vanishing rate depends on cross-traffic 

burstiness. CBR>Poisson>Pareto on/off
━ Although Pareto on/off is more bursty than 

Poisson, at certain time interval, the traffic 
variance can be smaller than Poisson, causing 
less probing bias in its rate curve.

• More discussion is in the paper
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Implication to existing techniques 1Implication to existing techniques 1Implication to existing techniques 1

• TOPP use a transformed rate curve which is 
piece-wise linear in fluid cross-traffic 

• Real asymptotic curves are not the same as the 
fluid models. This can cause significant under  
estimation  of avail-bw even in a single-hop path
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Implication to existing techniques 2Implication to existing techniques 2Implication to existing techniques 2

Applying TOPP’s linear regression on the 
real curves will produce  avail-bw estimation:

5.023.283.436.67

POFPUSPCSCBR
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Implication to existing techniques 3Implication to existing techniques 3Implication to existing techniques 3

• Searching for the turning point (PTR) as 
available bandwidth causes negative bias
━ However, this bias can be mitigated to negligible 

level  using long packet train.

• Sampling cross-traffic (Spruce) with rI≥C is 
unbiased in single-hop path
━ At this input rate, the real model agrees with fluid 

model.
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ConclusionsConclusionsConclusions

• We developed an understanding of single-hop 
bandwidth estimation in busty cross-traffic that 
extends prior fluid models

• Cross-traffic burstiness implies bandwidth 
underestimation  to several existing techniques. 
The underestimation can be mitigated using long 
train and large packet size

• Future work is to extend our understanding to 
multi-hop bandwidth estimation
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