
Multi-Hop Probing Asymptotics in Available Bandwidth Esti mation:
Stochastic Analysis

Xiliang Liu
City University of New York

xliu@gc.cuny.edu

Kaliappa Ravindran
City College of New York
ravi@cs.ccny.cuny.edu

Dmitri Loguinov
Texas A&M University
dmitri@cs.tamu.edu

Abstract

This paper analyzes the asymptotic behavior of packet-train
probing over a multi-hop network pathP carrying arbitrar-
ily routed bursty cross-traffic flows. We examine the sta-
tistical mean of the packet-train output dispersions and its
relationship to the input dispersion. We call this relation-
ship theresponse curveof pathP . We show that the real
response curveZ is tightly lower-bounded by itsmulti-hop
fluid counterpartF , obtained when every cross-traffic flow
on P is hypothetically replaced with a constant-rate fluid
flow of the same average intensity and routing pattern. The
real curveZ asymptotically approaches its fluid counter-
part F as probing packet size or packet train length in-
creases. Most existing measurement techniques are based
upon the single-hop fluid curveS associated with the bot-
tleneck link inP . We note that the curveS coincides with
F in a certain large-dispersion input range, but falls below
F in the remaining small-dispersion input ranges. As an
implication of these findings, we show that bursty cross-
traffic in multi-hop paths causes negative bias (asymptotic
underestimation) to most existing techniques. This bias can
be mitigated by reducing the deviation ofZ from S using
large packet size or long packet-trains. However, the bias
is not completely removable for the techniques that use the
portion ofS that falls belowF .

1 Introduction

End-to-end estimation of the spare capacity along a net-
work path using packet-train probing has recently become
an important Internet measurement research area. Several
measurement techniques such as TOPP [14], Pathload [6],
IGI/PTR [5], Pathchirp [16], and Spruce [17] have been de-
veloped. Most of the current proposals use a single-hop
path with constant-rate fluid cross-traffic to justify their
methods. The behavior and performance of these tech-
niques in a multi-hop path with general bursty cross-traffic
is limited to experimental evaluations. Recent work [9] ini-

tiated the effort of developing an analytical foundation for
bandwidth measurement techniques. Such a foundation is
important in that it helps achieve a clear understanding of
both the validity and the inadequacy of current techniques
and provides a guideline to improve them. However, the
analysis in [9] is restricted to single-hop paths. There is
still a void to fill in understanding packet-train bandwidth
estimation over a multi-hop network path.

Recall that the available bandwidth of a network hop is
its residual capacity after transmitting cross-traffic within a
certain time interval. This metric varies over time as well
as a wide range of observation time intervals. However, in
this paper, we explicitly target the measurement of along-
term averageavailable bandwidth, which is a stable metric
independent of observation time instances and observation
time intervals [9]. Consider anN -hop network pathP =
(L1, L2, . . . , LN ), where the capacity of linkLi is denoted
by Ci and the long-term average of the cross-traffic arrival
rate atLi is given byλi, which is assumed to be less than
Ci. The hop available bandwidth ofLi is Ai = Ci − λi.
The path available bandwidthAP is given by

AP = min
1≤i≤N

(Ci − λi). (1)

The hopLb, which carries the minimum available band-
width, is called thetight link or the bottleneck link1. That
is,

b = arg min
1≤i≤N

(Ci − λi). (2)

The main idea of packet-train bandwidth estimation is
to inferAP from the relationship between the inter-packet
dispersions of the output packet-trains and those of the in-
put packet-trains. Due to the complexity of this relationship
in arbitrary network paths with bursty cross-traffic flows,
previous work simplifies the analysis using a single-hop
path with fluid2 cross-traffic, while making the following
two assumptions without formal justification: first, cross-
traffic burstiness only causes measurement variability that
can be smoothed out by averaging multiple probing sam-
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ples and second, non-bottleneck links have negligible im-
pact on the proposed techniques.

The validity of the first assumption is partially addressed
in [9], where the authors use a single-hop path with bursty
cross-traffic to derive the statistical mean of the packet-
train output dispersions as a function of the input prob-
ing dispersion, referred to as the single-hop response curve.
Their analysis shows that besides measurement variability,
cross-traffic burstiness can also causemeasurement bias
to the techniques that are based on fluid analysis. This
measurement biascannotbe reduced even when an infinite
number of probing samples are used, but can be mitigated
using long packet-trains and/or large probing packet size.

This paper addresses further the two assumptions that
current techniques are based on. To this end, we extend
the asymptotic analysis in [9] to arbitrary network paths
and uncover the nature of the measurement bias caused by
bursty cross-traffic flows in amulti-hopnetwork path. This
problem is significantly different from previous single-hop
analysis due to the following reasons. First, unlike single-
hop measurements, where the input packet-trains have de-
terministic and equal inter-packet separation formed by the
probing source, the input packet-trains at any hop (ex-
cept the first one) along a multi-link path are output from
the previous hop and have random structure. Second and
more importantly, the multi-hop probing asymptotics are
strongly related to the routing pattern of cross-traffic flows.
This issue never arises in a single-hop path and it has re-
ceived little attention in prior investigation. However, as
we show in this paper, it is one of the most significant fac-
tors that affect the accuracy of bandwidth measurement in
multi-hop paths.

To characterize packet-train bandwidth estimation in its
most general settings, we derive the probing response curve
Z of a multi-hop pathP assuming arbitrarily routed bursty
cross-traffic flows. We compareZ with its multi-hop fluid
counterpartF , which is a response curve obtained when
every cross-traffic flow inP is hypothetically replaced with
a fluid flow of the same average intensity and routing pat-
tern. We show, under an ergodic stationarity assumption
for each cross-traffic flow, that the real curveZ is tightly
lower bounded by its fluid counterpartF and that the curve
Z asymptotically approaches its fluid boundF in the entire
input range as probing packet size or packet-train length in-
creases.

Most of the existing techniques are based on the single-
hop fluid response curveS associated with the bottleneck
link in P . Therefore, any deviation of the real curveZ from
the single-hop curveS can potentially cause measurement
bias in bandwidth estimation. Note that the deviationZ−S
can be decomposed as

Z − S = (Z − F) + (F − S). (3)

The first termZ −F is always positive and causes asymp-

totic underestimation ofAP for most of the existing tech-
niques. This deviation term and its resulting measurement
bias are “elastic” in the sense that they can be reduced to
a negligible level using packet-trains of sufficient length3.
For the second deviation termF − S, we note that bothS
andF are piece-wise linear curves. The first two linear seg-
ments inF associated with large input dispersions coincide
with S (i.e.,F − S = 0). The rest of the linear segments
in F associated with small input dispersions appear above
S (i.e., F − S > 0). The amount of deviation and the
additional negative measurement bias it causes are depen-
dent on the routing patterns of cross-traffic flows, and are
maximized when every flow traverses only one hop along
the path (which is often calledone-hop persistentcross-
traffic routing [4]). Furthermore, the curve deviationF−S
is “non-elastic” and stays constant with respect to probing
packet size and packet-train length at any given input rate.
Therefore, the measurement bias it causes cannot be over-
come by adjusting the input packet-train parameters.

Among current measurement techniques, pathload and
PTR operate in the input probing range whereF coincides
with S, and consequently are only subject to the measure-
ment bias caused by the first deviation termZ −F . Spruce
may use the probing range whereF − S > 0. Hence it
is subject to both elastic and non-elastic negative measure-
ment biases. The amount of bias can be substantially more
than the actual available bandwidth in certain common sce-
narios, leading to negative results by the measurement al-
gorithm and a final estimate of zero by the tool.

The rest of the paper is organized as follows. Section 2
derives the multi-hop response curveF assuming arbitrar-
ily routed fluid cross-traffic flows and examines the devi-
ation termF − S. In Section 3 and 4, we derive the real
response curveZ of a multi-hop path and show its relation-
ship to its fluid counterpartF . We provide practical evi-
dence for our theoretical results using testbed experiments
and real Internet measurements in Section 5. We examine
the impact of these results on existing techniques in Sec-
tion 6 and summarize related work in Section 7. Finally,
we briefly discuss future work and conclude in Section 8.

Due to limited space, most of the proofs in this paper are
omitted, and we refer interested readers to [10] for more
technical details.

2 Multi-Hop Fluid Analysis

It is important to first thoroughly understand the response
curveF of a network path carrying fluid cross-traffic flows,
since as we show later, the fluid curveF is anapproachable
bound of the real response curveZ. Initial investigation of
the fluid curves is due to Melandaret al. [13] and Dovrolis
et al. [3]. However, prior work only considers two spe-
cial cross-traffic routing cases (one-hop persistent routing
and path persistent routing). In this section, we formulate

2



and solve the problem for arbitrary cross-traffic routing pat-
terns, based on which, we discuss several important prop-
erties of the fluid response curves that allow us to obtain
the path available bandwidth information.

2.1 Formulating A Multi-Hop Path

We first introduce necessary notations to formulate a multi-
hop path and the cross-traffic flows that traverse along the
path.

An N -hop network pathP = (L1, L2, . . . , LN) is
a sequence ofN interconnectedFirst-Come First-Served
(FCFS) store-and-forwardhops. For each forwarding hop
Li in P , we denote its link capacity byCi, and assume
that it has infinite buffer space and a work-conserving queu-
ing discipline. Suppose that there areM fluid cross-traffic
flows traversing pathP . The rate of flowj is denoted byxj

and the flow rate vector is given byx = (x1, x2, . . . , xM ).
We impose two routing constraints on cross-traffic flows

to simplify the discussion. The first constraint requires ev-
ery flow to have a different routing pattern. In the case of
otherwise, the flows with the same routing pattern should
be aggregated into one single flow. The second routing con-
straint requires every flow to have only one link where it
enters the path and also have only one (downstream) link
where it exits from the path. In the case of otherwise, the
flow is decomposed into several separate flows that meet
this routing constraint.

Definition 1 A flow aggregation is a set of flows, repre-
sented by a “selection vector”p = (p1, p2, . . . , pM )T ,
wherepj = 1 if flow j belongs to the aggregation and
pj = 0 if otherwise. We usefj to represent the selection
vector of the aggregation that contains flowj alone.

There are several operations between flow aggregations.
First, the common flows to aggregationsp andq form an-
other aggregation, whose selection vector is given byp⊙q,
where the operator⊙ represents “element-wise multiplica-
tion.” Second, the aggregation that contains the flows inp

but not inq is given byp − p ⊙ q. Finally, note that the
traffic intensity of aggregationp can be computed from the
inner productxp.

We now define several types of flow aggregation fre-
quently used in this paper. First, the traversing flow ag-
gregation at linkLi, denoted by its selection vectorri, in-
cludes all fluid flows that pass throughLi. The M × N
matrix R = (r1, r2, . . . , rN ) becomes the routing matrix
of pathP . For convenience, we define an auxiliary selec-
tion vectorr0 = 0.

The second type of flow aggregation, denoted byei, in-
cludes all flows entering the path at linkLi, which can be
expressed asei = ri − ri ⊙ ri−1 given the second rout-
ing constraint stated previously. The third type of flow
aggregation, which includes flows that enter the path at

link Lk and traverse the downstream linkLi, is denoted
asΓk,i = ek ⊙ ri, wherek ≤ i.

The cross-traffic intensity at linkLi is denoted byλi. We
assumeλi < Ci for 1 ≤ i ≤ N . Since none of the links
in P is congested, the arrival rate of flowj at any link it
traverses isxj . Consequently, we have

λi = xri < Ci, 1 ≤ i ≤ N. (4)

We further define thepath configurationof P as the fol-
lowing 2 × N matrix

H =

(

C1 C2 . . . CN

λ1 λ2 . . . λN

)

. (5)

The hop available bandwidth ofLi is given byAi =
Ci − λi. We assume that every hop has different available
bandwidth, and consequently that the tight link is unique.
Sometimes, we also need to refer to the second minimum
hop available bandwidth and the associated link, which we
denote asAb2 = Cb2 − λb2 andLb2, respectively. That is

b2 = arg min
1≤i≤N,i6=b

(Ci − λi), (6)

whereb is the index of the tight hop.

2.2 Fluid Response Curves

We now consider a packet-train of input dispersion (i.e.,
inter-packet spacing)gI and packet sizes that is used to
probe pathP . We are interested in computing the output
dispersion of the packet train and examining its relation to
gI . Such a relation is called thegap response curveof path
P . It is easy to verify that under fluid conditions, the re-
sponse curve does not depend on the packet-train lengthn.
Hence, we only consider the case of packet-pair probing.
We denote the output dispersion at linkLi asγi(gI , s) or
γi for short, and again for notational convenience we let
γ0 = gI . Note thatγN (gI , s) corresponds to the notation
F we have used previously.

Based on our formulations, the gap response curve of
pathP has a recursive representation given below.

Theorem 1 When a packet-pair with input dispersiongI

and packet sizes is used to probe anN -hop fluid path with
routing matrixR and flow rate vectorx, the output disper-
sion at linkLi can be recursively expressed as

γi =







gI i = 0

max

(

γi−1,
s + Ωi

Ci

)

i > 0
, (7)

whereΩi is 4

Ωi =

i
∑

k=1

[

γk−1xΓk,i

]

. (8)
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Proof: Assumes that the first probing packet arrives
at link Li at time instancea1. It gets immediate transmis-
sion service and departs ata1+s/Ci. The second packet ar-
rives ata1+γi−1. The server ofLi needs to transmits+Ωi

amount of data before it can serve the second packet. If this
is done before time instancea1 + γi−1, the second packet
also gets immediate service andγi = γi−1. Otherwise, the
sever undergoes a busy period between the departure of the
two packets, meaning thatγi = (s + Ωi)/Ci. Therefore,
we have

γi = max

(

γi−1,
s + Ωi

Ci

)

. (9)

This completes the proof of the theorem.
As a quick sanity check, we verify the compatibility be-

tween Theorem 1 and the special one-hop persistent routing
case, where every flow that enters the path at linkLi will
exit the path at linkLi+1. For this routing pattern, we have

Γk,i =

{

0 i 6= k

ri i = k
. (10)

Therefore, equation (8) can be simplified as

Ωi = γi−1xri = γi−1λi, (11)

which agrees with previous results [3], [13].

2.3 Properties of Fluid Response Curves

Theorem 1 leads to several important properties of the fluid
response curveF , which we discuss next. These properties
tell us how bandwidth information can be extracted from
the curveF , and also show the deviation ofF , as one
should be aware of, from the single-hop fluid curveS of
the tight link.

Property 1 The output dispersionγN (gI , s) is a continu-
ous piece-wise linear function of the input dispersiongI in
the input dispersion range(0,∞).

Let 0 = αK+1 < αK < . . . < α1 < α0 = ∞ be the
input dispersion turning points that split the gap response
curve toK + 1 linear segments5. Our next result discusses
the turning points and linear segments that are of major im-
portance in bandwidth estimation.

Property 2 The first turning pointα1 corresponds to the
path available bandwidth in the sense thatAP = s/α1.
The first linear segment in the input dispersion range(α1 =
s/AP ,∞) has slope 1 and intercept 0. The second linear
segment in the input dispersion range(α2, α1) has slope
λb/Cb and intercepts/Cb, whereb is the index of the tight
link:

γN (gI , s) =







gI α1 ≤ gI ≤ ∞
gIλb + s

Cb

α2 ≤ gI ≤ α1

. (12)

These facts are irrespective of the routing matrix.

It helps to find the expression for the turning pointα2,
so that we can identify the exact range for the second lin-
ear segment. However, unlikeα1, the turning pointα2 is
dependent on the routing matrix. In fact, all other turn-
ing points are dependent on the routing matrix and can not
be computed based on the path configuration matrix alone.
Therefore, we only provide a bound forα2.

Property 3 For any routing matrix, the terms/α2 is no
less thanAb2, which is the second minimum hop available
bandwidth of pathP .

The slopes and intercepts for all but the first two linear
segments are related to the routing matrix. We skip the
derivation of their expressions, but instead provide both a
lower bound and an upper bound for the entire response
curve.

Property 4 For a given path configuration matrix, the gap
response curve associated with any routing matrix is lower
bounded by the single-hop gap response curve of the tight
link

S(gI , s) =











gI gI >
s

AP
s + gIλb

Cb

0 < gI <
s

AP

. (13)

It is upper bounded by the gap response curve associated
with one-hop persistent routing.

We now make several observations regarding the devia-
tion ofγN (gI , s) (i.e.,F ) fromS(gI , s). Combing (12) and
(13), we see thatγN(gI , s) − S(gI , s) = 0 whengI ≥ α2.
That is, the first two linear segments onF coincide with
S. WhengI < α2, Property 4 implies that the deviation
γN (gI , s) − S(gI , s) is positive. The exact value depends
on cross-traffic routing and it is maximized in one-hop per-
sistent routing for any given path configuration matrix.

Also note that there are three pieces of path information
that we can extract from the gap response curveF without
knowing the routing matrix. By locating the first turning
point α1, we can compute the path available bandwidth.
From the second linear segment, we can obtain the tight
link capacity and cross-traffic intensity (and consequently,
the bottleneck link utilization) information. Other partsof
the response curveF are less readily usable due to their
dependence on cross-traffic routing.

2.4 Rate Response Curves

To extract bandwidth information from the output disper-
sionγN , it is often more helpful to look at therateresponse
curve, i.e., the functional relation between the output rate
rO = s/γN and the input raterI = s/gI . However, since
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this relation is not linear, we adopt a transformed version
first proposed by Melanderet al. [14], which depicts the
relation between the ratiorI/rO andrI . Denoting this rate
response curve bỹF(rI), we have

F̃(rI) =
rI

rO

=
γN (gI , s)

gI

. (14)

This transformed version of the rate response curve is
also piece-wise linear. It is easy to see that the first turning
point in the rate curve iss/α1 = Ap and that the rate curve
in the input rate range(0, s/α2) can be expressed as

F̃(rI) =







1 rI ≤ AP

λb + rI

Cb

s

α2

≥ rI ≥ AP

. (15)

Finally, it is also important to notice that the rate re-
sponse curvẽF(rI) does not depend on the probing packet
sizes. This is because, for any given input raterI , both
γN (gI , s) andgI are proportional tos. Consequently, the
ratio between these two terms remains a constant for anys.

2.5 Examples

We use a simple example to illustrate the properties of the
fluid response curves. Suppose that we have a 3-hop path
with equal capacityCi = 10mb/s,i = 1, 2, 3. We consider
two routing matrices and flow rate settings that lead to the
same link load at each hop.

In the first setting, the flow rate vectorx = (4, 7, 8)
and the routing pattern isone-hoppersistent, i.e.,R =
diag(1, 1, 1). In the second setting, the flow rate vector
x = (4, 3, 1) and the routing pattern ispathpersistent. That
is,

R =





1 1 1
0 1 1
0 0 1



 . (16)

Both of the settings result in the same path configuration
matrix

H =

(

10 10 10
4 7 8

)

. (17)

The probing packet sizes is 1500 bytes. The fluid gap
response curves for the two routing patterns are plotted in
Fig. 1(a). In this example, both curves have 4 linear seg-
ments separated by turning pointsα1 = 6ms,α2 = 4ms,
and α3 = 2ms. Note that part of the curve for path-
persistent routing appears below the one for one-hop per-
sistent routing. The lower boundS identified in Property
4 is also plotted in the figure. This lower bound is the gap
response curve of the single-hop path comprising only the
tight link L3.

The rate response curves for the two examples are given
in Fig. 1(b), where the three turning points are2mb/s,
3mb/s, and6mb/s respectively. Due to the transformation
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Figure 1: An example of multi-hop response curves.

we adopted, the rate curve for one-hop persistent routing
still remains as an upper bound for the rate curves associ-
ated with the other routing patterns. From Fig. 1(b), we
also see that, similar to the gap curves, the two multi-hop
rate response curves and their lower boundS̃(rI) (i.e., the
transformed rate version ofS(gI , s)) share the same first
and second linear segments.

2.6 Discussion

We conclude this section by discussing several major chal-
lenges in extending the response curve analysis to a multi-
hop path carrying bursty cross-traffic flows. First, notice
that with bursty cross-traffic, even when the input disper-
sion and packet-train parameters remain constant, the out-
put dispersion becomes random, rather than deterministic
as in fluid cross-traffic. The gap response curveZ, defined
as the functional relation between the statistical mean of the
output dispersion and the input dispersion, is much more
difficult to penetrate than the fluid curveF . Second, un-
like in the fluid case, where both packet-train lengthn and
probing packet sizes have no impact on the rate response
curveF̃(rI), the response curves in bursty cross-traffic are
strongly related to these two packet-train parameters. Fi-
nally, a full characterization of a fluid flow only requires
one parameter – its arrival rate, while a full characteriza-
tion of a bursty flow requires several stochastic processes.
In what follows, we address these problems and extend our
analysis to multi-hop paths with bursty cross-traffic.

3 Basics of Non-Fluid Analysis

In this section, we present a stochastic formulation of the
multi-hop bandwidth measurement problem and derive a
recursive expression for the output dispersion random vari-
able. This expression is a fundamental result that the
asymptotic analysis in Section 4 is based upon.
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3.1 Formulating Bursty Flows

We keep most of the notations the same as in the previous
section, although some of the terms are extended to have a
different meaning, which we explain shortly. Since cross-
traffic flows now become bursty flows of data packets, we
adopt the definitions of several random processes (Defini-
tion 1-6) in [9] to characterize them. However, these defini-
tions need to be refined to be specific to a given router and
flow aggregation. In what follows, we only give the defi-
nitions of two random processes and skip the others. The
notations for all six random processes are given in Table
3.1.

Definition 2 The cumulative traffic arrival process of flow
aggregationp at linkLi, denoted as{Vi(p, t), 0 ≤ t < ∞}
is a random process counting the total amount of data (in
bits) received by hopLi from flow aggregationp up to time
instancet.

Definition 3 Hop workload process ofLi with respect to
flow aggregationp, denoted as{Wi(p, t), 0 ≤ t < ∞}
indicates the sum at time instancet of service times of all
packets in the queue and the remaining service time of the
packet in service, assuming that flow aggregationp is the
only traffic passing through linkLi.

We next make several modeling assumptions on cross-
traffic flows. First, we assume that all flows have stationary
arrivals.

Assumption 1 For any cross-traffic flowj that enters the
path from linkLi, the cumulative traffic arrival process
{Vi(fj , t)} has ergodic stationary increments. That is,
for any δ > 0, the δ-interval traffic intensity process
{Yi,δ(fj , t)} is a mean-square ergodic process with time-
invariant distribution and ensemble meanxj .

We explain this assumption in more details. First, the
stationary increment assumption implies that the incre-
ment process of{Vi(fj , t)} for any given time intervalδ,
namely{Vi(fj , t + δ) − Vi(fj , t) = δYi,δ(fj , t)}, has a
time-invariant distribution. This further implies that the
δ-interval traffic intensity process{Yi,δ(fj , t)} is identi-
cally distributed, whose marginal distribution at any time
instancet can be described by the same random variable
Yi,δ(fj). Second, the mean-square ergodicity implies that,
as the observation intervalδ increases, the random variable
Yi,δ(fj) converges toxj in the mean-square sense. In other
words, the variance ofYi,δ(fj) decays to 0 asδ → ∞, i.e.,

lim
δ→∞

E

[

(

Yi,δ(fj) − xj

)2
]

= 0. (18)

Our next assumption states the independent relationship
between different flows that enter pathP at the same link.

{Vi(p, t)} Cumulative arrival process atLi w.r.t. p
{Yi,δ(p, t)} Cross-traffic intensity process atLi w.r.t. p
{Wi(p, t)} Hop workload process atLi w.r.t. p
{Di,δ(p, t)} Workload-difference process atLi w.r.t. p
{Ui(p, t)} Hop utilization process atLi w.r.t. p
{Bi,δ(p, t)} Available bandwidth process atLi w.r.t. p

Table 1: Random process notations

Assumption 2 For any two flowsj and l that enter the
path at linkLi, the two processes{Vi(fj , t)} and{Vi(fl, t)}
are independent. Specifically, for any two time instancest1
and t2, the two random variablesVi(fj , t1) andVi(fl, t2)
are independent.

As a consequence of the two assumptions we made, the
ergodic stationary property also holds for any flow aggre-
gations at their entering link.

Corollary 1 For any flow aggregationp that enters the
path at linkLi, i.e., p ⊙ ei = p, the process{Vi(p, t)}
has ergodic stationary increments. Consequently, the traf-
fic intensity random variableYi,δ(p) converges toxp in
the mean-square sense

lim
δ→∞

E

[

(

Yi,δ(p) − xp
)2
]

= 0. (19)

Due to Szczotka [18], [19], the workload process
{Wi(p, t)} will “inherit” the ergodic stationarity property
from the traffic arrival process{Vi(p, t)}. This property
is further carried over to theδ-interval workload-difference
process{Di,δ(p, t)} and the available bandwidth process
{Bi,δ(p, t)}. This distributional stationarity allows us
to focus on the corresponding random variablesWi(p),
Di,δ(p), andBi,δ(p). It is easy to get, from their defini-
tions, that the statistical means ofDi,δ(p) andBi,δ(p) are
0 andCi − xp, respectively6. Further, the ergodicity prop-
erty leads to the following result.

Lemma 1 For any flow aggregationp that enter the path
at link Li, the random variableBi,δ(p) converges in the
mean-square sense toCi − xp asδ → ∞, i.e.,

lim
δ→∞

E

[

(

Bi,δ(p) − (Ci − xp)
)2
]

= 0. (20)

On the other hand, notice that unlike{Yi,δ(p, t)} and
{Bi,δ(p, t)}, the workload-difference process{Di,δ(p, t)}
is not a moving average process by nature. Consequently,
the mean-square ergodicity of{Di,δ(p, t)} does not cause
the variance ofDi,δ(p) to decay with respect to the in-
crease ofδ. Instead, we have the following lemma.

Lemma 2 The variance of the random variableDi,δ(p)
converges to2V ar[Wi(p)] asδ increases:

lim
δ→∞

E

[

(

Di,δ(p) − 0
)2
]

= 2V ar [Wi(p)] . (21)
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To obtain our later results, not only do we need to know
the asymptotic variance ofYi,δ(p), Di,δ(p) and Bi,δ(p)
whenδ approaches infinity, but also we often rely on their
variance being uniformly bounded (for anyδ) by some con-
stant. This condition can be easily justified from a prac-
tical standpoint. First note that cross-traffic arrival rate
is bounded by the capacities of incoming links at a given
router. Suppose that the sum of all incoming link capaci-
ties at hopLi is C+, thenYi,δ(p) is distributed in a finite
interval [0, C+] and its variance is uniformly bounded by
the constantC2

+ for any observation intervalδ. Similarly,
the variance ofBi,δ(p) is uniformly bounded by the con-
stantC2

i . The variance ofDi,δ(p) is uniformly bounded by
the constant4V ar[Wi(p)] for anyδ, which directly follows
from the definition ofDi,δ(p).

Finally, we remind that some of the notations introduced
in Section 2.1 now are used with a different meaning. The
rate of the bursty cross-traffic flowj, denoted byxj , is the
probabilistic mean of the traffic intensity random variable
Yi,δ(fj), which is also thelong-term averagearrival rate of
flow j at any link it traverses. The termλi = xri becomes
the long-term average arrival rate of the aggregated cross-
traffic at link Li. The termAi = Ci − λi is the long-
term average hop available bandwidth at linkLi. Again
recall that we explicitly target the measurement of long-
term averages of available bandwidth and/or cross-traffic
intensity, instead of the corresponding metrics in a certain
time interval.

3.2 Formulating Packet Train Probing

We now consider an infinite series of packet-trains with in-
put inter-packet dispersiongI , packet sizes, and packet-
train lengthn. This series is driven to pathP by a point
processΛ(t) = max{m ≥ 0 : Tm ≤ t} with sufficient
large inter-probing separation. Letd1(m, i) anddn(m, i)
be the departure time instances from linkLi of the first and
last probing packets in themth packet-train. We define the
sampling intervalof the packet-train as the total spacing
∆ = dn(m, i) − d1(m, i), and theoutput dispersionas the
average spacingG = ∆/(n − 1) of the packet-train. Both
∆ andG are random variables, whose statistics might de-
pend on several factors such as the input dispersiongI , the
packet-train parameterss andn, the packet-train indexm
in the probing series, and the hopLi that the output disper-
sionG is associated with. Therefore, a full version ofG is
written asGi(gI , s, n, m). However, for notation brevity,
we often omit the parameters that have little relevance to
the topic under discussion.

We now formally state the questions we address in this
paper. Note that a realization of the stochastic process
{GN (gI , s, n, m), 1 ≤ m < ∞} is just a packet-train prob-
ing experiment. We examine the sample-path time-average
of this process and its relationship togI when keepings

andn constant. This relationship, previously denoted by
Z, is called the gap response curve of pathP .

Notice that the ergodic stationarity of cross-traffic ar-
rival, as we assumed previously, can reduce our response
curve analysis to the investigation of a single random vari-
able. This is because each packet-train comes to see a
multi-hop system of the same stochastic nature and the out-
put dispersion process{GN(m), 1 ≤ m < ∞} is anidenti-
cally distributedrandom sequence, which can be described
by the output dispersion random variableGN . The sample-
path time average of the output dispersion process coin-
cides with the mean of the random variableGN

7. There-
fore, in the rest of the paper, we focus on the statistics of
GN and drop the indexm.

In our later analysis, we compare the gap response curve
of P with that of thefluid counterpartof P and prove that
the former is lower-bounded by the latter.

Definition 4 Suppose that pathP has a routing matrixR
and a flow rate vectorx and that pathP̃ has a routing
matrix R̃ and a flow rate vector̃x. P̃ is called the fluid
counterpart ofP if 1) all cross-traffic flows traversing̃P
are constant-rate fluid; 2) the two paths̃P and P have
the same configuration matrix; and 3) there exists a row-
exchange matrixT , such thatTR = R̃ andTx = x̃.

From this definition, we see that for every flowj in P ,
there is a corresponding fluid flowj′ in the fluid counter-
part ofP such that flowj′ have the same average intensity
and routing pattern as those of flowj. Note that the third
condition in Definition 4 is made to allow the two flows
have different indices, i.e., to allowj 6= j′.

A second focus of this paper is to study the impact of
packet-train parameterss and n on the response curves.
That is, for any given input raterI and other parameters
fixed, we examine the convergence properties of the output
dispersion random variableGN (s/rI , s, n) ass or n tends
to infinity.

3.3 Recursive Expression ofGN

We keep input packet-train parametersgI , s, andn constant
and next obtain a basic expression for the output dispersion
random variableGN .

Lemma 3 LettingG0 = gI , the random variableGi has
the following recursive expression

Gi =
i
∑

k=1

Yk,∆k−1
(Γk,i)Gk−1

Ci

+
s

Ci

+
Ĩi

n − 1

= Gi−1 +
Di,∆i−1

(ei)

n − 1
+

Ri

n − 1
, (22)

where the termRi is a random variable representing the
extra queuing delay8 (besides the queuing delay caused by
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the workload process{Wi(ei, t)}) experienced atLi by the
last probing packet in the train. The term̃Ii is another
random variable indicating the hop idle time ofLi during
the sampling interval of the packet train.

This result is very similar to Lemma 5 in [9]. However,
due to the random input packet-train structure atLi, all but
the terms/Ci in (22) become random variables. Some
terms, such asDi,∆i−1

(ei) andYk,∆k−1
(Γk,i), even have

two dimensions of randomness. To understand the behav-
ior of probing response curves, we need to investigate the
statistical properties of each term in (22).

4 Response Curves in Bursty Cross-Traffic

In this section, we first show that the gap response curve
Z = E[GN (gI , s, n)] of a multi-hop pathP is lower
bounded by its fluid counterpartF = γN (gI , s). We then
investigate the impact of packet-train parameters onZ.

4.1 Relation BetweenZ and F

Our next lemma shows that passing through a link can only
increase the dispersion random variable in mean.

Lemma 4 For 1 ≤ i ≤ N , the output dispersion random
variableGi has a mean no less than that ofGi−1. That is,
E[Gi] ≥ E[Gi−1].

Using the first part of (22), our next lemma shows that
for any link Li, the output dispersion random variableGi

is lower bounded in mean by a linear combination of the
output dispersion random variablesGk, wherek < i.

Lemma 5 For 1 ≤ i ≤ N , the output dispersion random
variableGi satisfies the following inequality

E[Gi] ≥
1

Ci

(

i
∑

k=1

xΓk,iE[Gk−1] + s

)

. (23)

From Lemma 4 and Lemma 5, we get

E[Gi] ≥ max

(

E[Gi−1],

∑i

k=1
xΓk,iE[Gk−1] + s

Ci

)

.

(24)
This leads to the following theorem.

Theorem 2 For any input dispersiongI , packet-train pa-
rameterss and n, the output dispersion random variable
GN of pathP is lower bounded in mean by the output dis-
persionγN (gI , s) of the fluid counterpart ofP :

E[GN (gI , s, n)] ≥ γN (gI , s). (25)

Proof: We apply mathematical induction toi. When
i = 0, E[G0] = γ0 = gI . Assuming that (25) holds for
0 ≤ i < N , we next prove that it also holds fori = N .
Recalling (24), we have

E[GN ] ≥ max
(

E[GN−1],

∑N
k=1

xΓk,NE[Gk−1] + s

CN

)

≥ max
(

γN−1,

∑N

k=1
xΓk,Nγk−1 + s

CN

)

= γN ,

where the second inequality is due to the induction hypoth-
esis, and the last equality is because of Theorem 1.

Theorem 2 shows that in the entire input gap range, the
piece-wise linear fluid gap response curveF discussed in
Section 2 is a lower bound of the real gap curveZ. The de-
viation between the real curveZ and its fluid lower bound
F , which is denoted byβN (gI , s, n) or βN for short, can
be recursively expressed in the following, where we let
β0 = 0:

βi =











βi−1 +
E[Ri]

n − 1
γi = γi−1

1

Ci

∑i

k=1
xΓk,iβk−1 +

E[Ĩi]

n − 1
γi > γi−1

.

(26)
In what follows, we study the asymptotics of the curve

deviationβN when input packet-train parameterss or n
becomes large and show that the fluid lower boundF is in
fact atight bound of the real response curveZ.

4.2 Impact of Packet Train Parameters

We now demonstrate that for any input probing raterI , the
curve deviationβN (s/rI , s, n) vanishes as probing packet
sizes approaches infinity. We prove this result under the
condition of one-hop persistent cross-traffic routing. We
also justify this conclusion informally for arbitrary cross-
traffic routing and point out the major difficulty in obtain-
ing a rigorous proof. First, we make an additional assump-
tion as follows.

Assumption 3 Denoting byPi,δ(x) the distribution func-
tion of the δ-interval available bandwidth process
{Bi,δ(ei, t)}, we assume that for all1 ≤ i ≤ N , the fol-
lowing holds















Pi,δ(r) = o

(

1

δ2

)

r < Ci − xei

Pi,δ(r) = 1 − o

(

1

δ2

)

r > Ci − xei

. (27)

Recall that the mean-square ergodicity assumption we
made earlier implies that as the observation intervalδ gets
large, the random variableBi,δ(ei) converges in distribu-
tion to Ci − xei. Assumption 3 further ensures that this
convergence isfast in the sense of (27). Even though this
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condition appears cryptic at first, it is valid in a broad range
of cross-traffic environments. The next theorem shows the
validity of this assumption under the condition of regener-
ative9 link utilization.

Theorem 3 When hop utilization process{Ui(ei, t)} is re-
generative, condition (27) holds.

Note that regenerative queue is very common both in
practice and in stochastic modeling literature. In fact, all
the four traffic types used in [9] lead to regenerative hop
workload and consequently lead to regenerative link uti-
lization. We also conjecture that (27) holds under a much
milder condition, but we leave its identification as future
work.

Our next theorem states formally the convergence
property of the output dispersion random variable
GN (s/rI , s, n) whens increases.

Theorem 4 Given one-hop persistent cross-traffic routing
and the three assumptions made in the paper, for any input
raterI , the output dispersion random variableGN of path
P converges in mean to its fluid lower boundγN :

lim
s→∞

E

[

GN

(

s

rI

, s, n

)

− γN

(

s

rI

, s

)]

= 0. (28)

The asymptotic variance ofGN whens increases is upper
bounded by some constantKN :

lim
s→∞

E

[

(

GN

(

s

rI

, s, n

)

− γN

(

s

rI

, s

))2
]

≤ KN .

(29)

Note that the bounded variance, as stated in (29), is an
inseparable part of the whole theorem. This is because
Theorem 4 is proved using mathematical induction, where
the mean convergence ofGN to γN can be obtained only
when the mean ofGN−1 converges toγN−1 and when the
variance ofGN−1 remains bounded, as probing packet size
s → ∞.

We further point out that by assuming one-hop persis-
tent cross-traffic routing, we have avoided analyzing the
departure processes of cross-traffic flows. When a travers-
ing flow of link Li enters the path from some upstream link
of Li, the arrival process of the flow atLi is its departure
process atLi−1. Unfortunately, in the queueing theory lit-
erature, there is no exact result for departure processes in
FCFS queueing models if one goes beyond the assumption
of Poisson arrivals. Motivated by the intractability of this
problem, researchers have focused their attentions on ap-
proximations [12], [15].

To accommodate arbitrary cross-traffic routing patterns,
we also need an approximation assumption which says that
any cross-traffic flow that traverses linkLi (regardless of

wether it enters the path fromLi or some upstream link
of Li) exhibits ergodic stationary arrival atLi. Under this
assumption, which we call “stationary departure approx-
imation,” it becomes easy to extend Theorem 4 to cover
arbitrary cross-traffic routing patterns. We skip the details
of this step and next apply the stationary departure approx-
imation to examine the impact of packet-train lengthn on
the response curveZ.

Theorem 5 Under the first two assumptions and the “sta-
tionary departure approximation”, for anyN -hop pathP
with arbitrary cross-traffic routing, for any input dispersion
gI ∈ (0,∞) and any probing packet sizes, the random
variableGN converges to its fluid lower boundγN in the
mean-square sense asn → ∞,

lim
n→∞

E
[

(GN (gI , s, n) − γN (gI , s))
2
]

= 0. (30)

Let us make several comments on the conditions of this
result. First note that Assumption 3 is not necessary in this
theorem. Also notice that in a single-hop path (i.e.,N = 1),
the theorem can be proved without the stationary departure
approximation. However, in the multi-hop cases, the ap-
proximation is needed even when cross-traffic routing is
one-hop persistent. The reason is that whenn is large, the
probing packet-train is also viewed as a flow, whose arrival
characteristics at all but the first hop are addressed by the
stationary departure approximation.

Theorem 5 shows that when the packet-train lengthn
increases while keepings constant, not onlyE[GN ] con-
verges to its fluid boundγN , but also the variance ofGN

decays to 0. This means that we can expect almost the same
output dispersion in different probings.

4.3 Discussion

Among the assumptions in this paper, some are critical in
leading to our results while others are only meant to sim-
plify discussion. We point out that the distributional sta-
tionarity assumption on cross-traffic arrivals can be greatly
relaxed without harming our major results. However, this
comes at the expense of much more intricate derivations.
This is because when cross-traffic arrivals are allowed to
be only second-order stationary or even non-stationary,
the output dispersion process{GN (m)} will no longer be
identically distributed. Consequently, the analysis of prob-
ing response curves cannot be reduced to the investigation
of a singleoutput dispersion random variable. Moreover,
we also have to rely on an ASTA assumption on packet-
train probing [9] to derive the results in this paper, which
we have avoided in the present setting.

Also note that the inter-flow independence assumption
is made to maintain the distributional stationarity of cross-
traffic arrivals at a flow aggregation level. It only helps us
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avoid unnecessary mathematical rigor and is insignificant
in supporting our major conclusions.

On the other hand, the mean-square ergodicity plays a
central role in the (omitted) proofs for Theorem 4 and The-
orem 5. A cross-traffic flow with mean-square ergodicity,
when observed in a large timescale, has an almost constant
arrival rate. This “asymptotically fluid like” property, is
very common among the vast majority of traffic models in
stochastic literature, and can be decoupled from any type of
traffic stationarity. Consequently, our results have a broad
applicability in practice.

Next, we provide experimental evidence for our theo-
retical results using testbed experiments and real Internet
measurement data.

5 Experimental Verification

In this section, we measure the response curves in both
testbed and real Internet environments. The results not only
provide experimental evidence to our theory, but also give
quantitative ideas of the curve deviation given in (26). To
obtain the statistical mean of the probing output disper-
sions, we rely on direct measurements using a number of
probing samples. Even though this approach can hardly
produce a smooth response curve, the bright side is that
it allows us to observe the output dispersion variance, re-
flected by the degree of smoothness of the measured re-
sponse curve.

5.1 Testbed Experiments

In our first experiment, we measure in the Emulab testbed
[1] the response curves of a three-hop path with the follow-
ing configuration matrix (all in mb/s) and one-hop persis-
tent cross-traffic routing

H =

(

96 96 96
20 40 60

)

. (31)

We generate cross-traffic using three NLANR [2] traces.
All inter-packet delays in each trace are scaled by a com-
mon factor so that the average rate during the trace duration
becomes the desired value. The trace durations after scal-
ing are 1-2 minutes. We measure the average output disper-
sions at 100 input rates, from 1mb/s to 100mb/s with 1mb/s
increasing step. For each input rate, we use 500 packet-
trains with packet size 1500 bytes. The packet train length
n is 65. The inter-probing delay is controlled by a random
variable with sufficiently large mean. The whole experi-
ment lasts for about 73 minutes. All three traffic traces are
replayed at random starting points once the previous round
is finished. By recycling the same traces in this fashion, we
make the cross-traffic last until the experiment ends without
creating periodicity. Also note that the packet-trains arein-
jected with their input rates so arranged that the 500 trains
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Figure 2: Measured response curves using different packet
train-length in the Emulab testbed.

for each input rate is evenly separated during the whole
testing period.

This experiment not only allows us to measure the re-
sponse curve forn = 65, but also for any packet-train
lengthk such that2 ≤ k < n = 65, by simply taking
the dispersions of the firstk packets in each train. Fig. 2(a)
shows the rate response curveZ̃(rI , s, n) for k = 2, 9, 33
and 65 respectively. For comparison purposes, we also plot
in the figure the multi-hop fluid curvẽF(rI), computed
from Theorem 1, and the single-hop fluid curveS̃(rI) of
the tight link L3. The rate response curves̃Z(rI , s, n) is
defined as follows

Z̃(rI , s, n) =
rI

s/E[GN(s/rI , s, n)]
. (32)

First note that the multi-hop fluid rate curve comprises
four linear segments separated by turning points36mb/s,
56mb/s, and76mb/s. The last two linear segments have
very close slopes and they are not easily distinguishable
from each other in the figure. We also clearly see that the
rate curve asymptotically approaches its fluid lower bound
as packet-train lengthn increases. The curves forn = 33
andn = 65 almost coincide with the fluid bound. Also
note that the smoothness of the measurement curve reflects
the variance of the output dispersion random variables. As
the packet train length increases, the measured curve be-
comes smoother, indicating the fact that the variance of the
output dispersions is decaying. These observations are all
in agreement with those stated in Theorem 5.

Unlike single-hop response curves, which have no devi-
ation from the fluid bound when the input raterI is greater
than the link capacity, multi-hop response curves usually
deviate from its fluid counterpart in the entire input range.
As we see from Fig. 2(a), even when the input rate is larger
than 96mb/s, the measured curves still appear aboveF̃ .
Also observe that the single-hop fluid curvẽS of the tight
link L3 coincides with the multi-hop fluid curvẽF within
the input rate range(0, 56) but falls belowF̃ in the input
rate range(56,∞).

Finally, we explain why we choose the link capacities to

10



be96mb/s instead of the fast ethernet capacity100mb/s. In
fact, we did set the link capacity to be100mb/s. However,
we noticed that the measured curves can not get arbitrarily
close to their fluid bound̃F computed based on the fast eth-
ernet capacity. Using pathload to examine the true capacity
of each Emulab link, we found that their IP layer capaci-
ties are in fact 96mb/s, not the same as their nominal value
100mb/s.

In our second experiment, we change the cross-traffic
routing to path-persistent while keeping the path configu-
ration matrix the same as given by (31). Therefore, the
flow rate vector now becomes(20, 20, 20).

We repeat the same packet-train probing experiment and
the results are plotted in Fig. 2(b). The multi-hop fluid
rate curveF̃ still coincides withS̃ in the input rate range
(0, 56). When input rate is larger than56mb/s, the curve
F̃ positively deviates fromS̃. However, the amount of
deviation is smaller than that in one-hop persistent rout-
ing. The measured curve approaches the fluid lower bound
F̃ with decaying variance as packet-train length increases.
For n = 33 and n = 65, the measured curves become
hardly distinguishable from̃F .

We have conducted experiments using paths with more
hops, with more complicated cross-traffic routing patterns,
and with various path configurations. Furthermore, we ex-
amined the impact of probing packet size using ns2 simu-
lations, where the packet size can be set to any large val-
ues. Results obtained (not shown for brevity) all support
our theory very well.

5.2 Real Internet Measurements

We conducted packet-train probing experiments on several
Internet paths in the RON testbed to verify our analysis in
real networks. Since neither the path configuration nor the
cross-traffic routing information is available for these Inter-
net paths, we are unable to provide the fluid bounds. There-
fore, we verify our theory by observing the convergence of
the measured curves to a piece-wise linear curve as packet-
train length increases.

In the first experiment, we measure the rate response
curve of the path from the RON node lulea in Sweden to
the RON node at CMU. The path has 19 hops and a fast-
ethernet minimum capacity, as we find out using traceroute
and pathrate. We probe the path at 29 different input rates,
from 10mb/s to 150mb/s with a 5mb/s increasing step. For
each input rate, we use 200 packet-trains of 33 packets
each to estimate the output probing rates/E[GN ]. The
whole experiment takes about 24 minutes. Again, the 200
packet-trains for each of the 29 input rates are so arranged
that they are approximately evenly separated during the 24-
minute testing period. The measured rate response curves
associated with packet-train length 2, 3, 5, 9, 17, and 33
are plotted in Fig. 3(a), where we see that the response
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Figure 3: Measured response curves of two Internet paths
in RON testbed .

curve approaches a piece-wise linear bound as packet-train
length increases. At the same time, response curves mea-
sured using long trains are smoother than those measured
using short trains, indicating the decaying variance of out-
put dispersions. In this experiment, the curve measured
using probing trains of 33-packet length exhibits sufficient
smoothness and clear piece-wise linearity. We have ob-
served two linear segments from the figure. A further in-
vestigation shows that the fluid bound of this 19-hop path
only has two linear segments.

Based on (15), we apply linear regression on the second
linear segment to compute the capacityCb and the cross-
traffic intensityλb of the tight link and getCb = 96mb/s
and λb = 2mb/s. Using these results, we retroactively
plot the single-hop fluid bounds and observe that it almost
overlaps with the measured curve using packet-trains of 33-
packet length. Notice that the bottleneck link is under very
light utilization during our 24-minute measurement period.
We can also infer based on our measurement that the avail-
able bandwidth of the path is constrained mainly by the
capacity of the bottleneck link and that the probing packet-
trains have undergone significant interaction with cross-
traffic at non-bottleneck links. Otherwise, according to
Theorem 3 in [9], the response curves measured using short
train lengths would not have appeared above the single-hop
fluid bound when the input rate is larger than the tight link
capacity96mb/s. We believe that the tight link of the path
is one of the last-mile lightly utilized fast-ethernet links and
that the backbone links are transmitting significant amount
of cross-traffic even though they still have available band-
width much more than the fast-ethernet capacity. Also no-
tice that similar to our testbed experiments, fast-ethernet
links only have96mb/s IP-layer capacity.

We repeat the same experiment on another path from the
RON node pwh in Sunnyvale California to the NYU RON
node. This path has 13 hops and a fast-ethernet minimum
capacity. Due to substantial cross-traffic burstiness along
the path, we use packet-trains of 129-packet length in our
probing experiment. The other parameters such as the in-
put rates and the number of trains used for each rate are
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the same as in the previous experiment. The whole mea-
surement duration is about20 minutes. The measured re-
sponse curves are plotted in Fig. 3(b). As we see, the
results exhibit more measurement variability compared to
the lulea→CMU path. However, as packet-train length in-
creases, the variability is gradually smoothed out and the
response curve converges to a piece-wise linear bound. We
again apply linear regression on the response curve with
packet-train length 129 to obtain the tight link information.
We getCb = 80mb/s andλb = 3mb/s, which does not
agree with the minimum capacity reported by pathrate. We
believe that pathrate reported the correct information. Our
underestimation is most probably due to the fact that there
are links along the path with very similar available band-
width. Consequently, the second linear segment become
too short to detect. The linear segment we are acting upon
is likely to be a latter one. This experiment confirms our
analysis, at the same time shows some of the potential diffi-
culties in exacting tight link information from the response
curves.

6 Implications

We now discuss the implications of our results on existing
measurement proposals. Except for pathChirp, all other
techniques such as TOPP, pathload, PTR, and Spruce are
related to our analysis.

6.1 TOPP

TOPP is based on multi-hop fluid rate response curveF̃
with one-hop persistent cross-traffic routing. TOPP uses
packet-pairs to measure the real rate response curveZ̃, and
assumes that the measured curve will be the same asF̃
when a large number of packet-pairs are used. However,
our analysis shows that the real curveZ̃ is different fromF̃ ,
especially when packet-trains of short length are used (e.g.,
packet-pairs). Note that there is not much path information
in Z̃ that is readily extractable unless it is sufficiently close
to its fluid counterpart̃F . Hence, to put TOPP to work in
practice, one must use long packet-trains instead of packet-
pairs.

6.2 Spruce

Using the notations in this paper, we can write spruce’s
available bandwidth estimator as follows

Cb

(

1 −
GN (s/Cb, s, n) − s/Cb

s/Cb

)

, (33)

where the probing packet sizes is set to1500bytes, the
packet-train lengthn = 2, and the bottleneck link capacity
Cb is assumed known.

 

rI

rI/rO
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b
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F̃

S̃
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Non-elastic Deviation

Figure 4: Illustration of two types of curve deviations.

It is shown in [9] that the spruce estimator is unbiased in
single-hop paths regardless of the packet-train parameters
s and n. This means that the statistical mean of (33) is
equal toAP for anys > 0 and anyn ≥ 2. In a multi-hop
pathP , a necessary condition to maintain the unbiasedness
property of the spruce estimator is

Z̃(Cb, s, n) =
λb + Cb

Cb

= S̃(Cb). (34)

This means that at the input rate pointCb, the real rate re-
sponse of pathP must be equal to the single-hop fluid rate
response at the tight link ofP .

This condition is usually not satisfied. Instead, due to
Theorem 2 and Property 4, we have

Z̃(Cb, s, n) ≥ F̃(Cb) ≥ S̃(Cb). (35)

This implies that (33) is a negatively biased estimator of
AP . The amount of bias is given by

Cb

(

Z̃(Cb, s, n)−F̃(Cb)
)

+Cb

(

F̃(Cb)−S̃(Cb)
)

. (36)

The first additive term in (36) is the measurement bias
caused by the curve deviation of̃Z from F̃ at input rate
Cb, which vanishes asn → ∞ due to Theorem 5. Hence
we call it elastic bias. The second additive term is the por-
tion of measurement bias caused by the curve deviation of
F̃ from S̃ at input rateCb, which remains constant with
respect to the packet-train parameterss andn. Therefore
it is non-elastic. We illustrate the two types of curve devi-
ations in Fig. 4. Note that whenCb < s/α2, non-elastic
bias is 0. Further recall thats/α2 ≥ Ab2 as stated in Prop-
erty 3. Hence, a sufficient condition for zero non-elastic
bias isCb ≤ Ab2. Conceptually, elastic deviation stems
from cross-traffic burstiness and non-elastic deviation isa
consequence of multi-hop effects.

In Table 2, we give the amount measurement bias caused
by the two types of curve deviations in both the Emulab
testbed experiments and the real Internet probing measure-
ment on the path from lulea to CMU. Note that in the
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experiment elastic bias non-elastic bias total bias
Emulab-1 0.56 × 96 0.315× 96 74.4
Emulab-2 0.28 × 96 0.125× 96 38.8
lulea-cmu 0.25 × 96 0 24

Table 2: Spruce bias in Emulab and Internet experiment (in
mb/s).

testbed experiment using a 3-hop path with one-hop per-
sistent routing, spruce suffers about74mb/s measurement
bias, which is twice as much as the actual path available
bandwidth36mb/s. In the second Emulab experiment us-
ing path-persistent cross-traffic, the measurement bias isre-
duced to38.8mb/s, which however is still more than the
actual available bandwidth. In both cases, spruce estima-
tor converges to negative values. We used spruce to es-
timate the two paths and it did in fact give 0mb/s results
in both cases. For the Internet path from lulea to CMU,
spruce suffers24mb/s negative bias and produces a mea-
surement result less than70mb/s, while the real value is
around94mb/s. We also use pathload to measure the three
paths and observe that it produces pretty accurate results.

The way to reduce elastic-bias is to use long packet-
trains instead of packet-pairs. In the lulea→CMU exper-
iment, using packet-trains of 33-packet, spruce can almost
completely overcome the24mb/s bias and produce an ac-
curate result. However, there are two problems of using
long packet-trains. First, there is not a deterministic train
length that guarantees negligible measurement bias on any
network path. Second, when router buffer space is lim-
ited and packet-train length are too large, the later probing
packets in each train may experience frequent loss, mak-
ing it impossible to accurately measurẽF(Cb). After all,
spruce uses input rateCb, which can be too high for the
bottleneck router to accommodate long packet-trains. On
the other hand, note that non-elastic bias is an inherit prob-
lem for spruce. There is no way to overcome it by adjusting
packet-train parameters.

6.3 PTR and pathload

PTR searches the first turning point in the response curve
Z̃(rI , s, n) and takes the input rate at the turning point as
the path available bandwidthAP . This method can produce
accurate result when the real response curveZ̃ is close to
F̃ , which requires packet-train lengthn to be sufficiently
large. Otherwise, PTR is also negatively biased and under-
estimatesAP . The minimum packet-train length needed
is dependent on the path conditions. The current version
of PTR use packet train lengthn = 60, which is probably
insufficient for the Internet path from pwh to CMU experi-
mented in this paper.

Pathload is in spirit similar to PTR. However, it searches
the available bandwidth region by detecting one-way-delay

increasing trend within a packet-train, which is different
from examining whether the rate responseZ̃(rI , s, n) is
greater than one [7]. However, since there is a strong sta-
tistical correlation between a high rate responseZ̃(rI , s, n)
and the one-way-delay increasing tend within packet-
trains, our analysis can explain the behavior of pathload to
a certain extent. Recall that, as reported in [6], pathload
underestimates available bandwidth when there are mul-
tiple tight links along the path. Our results demonstrate
that the deviation ofZ̃(rI , s, n) from F̃ in the input rate
range(0, AP) gives rise to a potential underestimation in
pathload. The underestimation is maximized and becomes
clearly noticeable when non-bottleneck links have the same
available bandwidth asAP , given that the other factors are
kept the same.

Even through multiple tight links cause one-way-delay
increasing trend for packet-trains with input rate less than
AP , this isnot an indication that the network can not sus-
tain such an input rate. Rather, the increasing trend is
a transientphenomenon resulting from probing intrusion
residual, and it disappears when the input packet-train is
sufficiently long. Hence, it is our new observation that by
further increasing the packet-train length, the underestima-
tion in pathload can be mitigated.

7 Related Work

Besides the measurement techniques we discussed earlier,
Melanderet al. [13] first discussed the rate response curve
of a multi-hop network path carrying fluid cross-traffic with
one-hop persistent routing pattern. Dovroliset al. [3], [4]
considered the impact of cross-traffic routing on the output
dispersion rate of a packet-train. It was also pointed out that
the output rate of a back-to-back input packet-train (input
raterI = C1, the capacity of the first hopL1) converges
to a point they call “asymptotic dispersion rate (ADR)” as
packet-train length increases. The authors provided an in-
formal justification as to why ADR can be computed using
fluid cross-traffic. They demonstrated the computation of
ADR for several special path conditions. Note that using
the notations in this paper, ADR can be expressed as

lim
n→∞

s

GN (s/C1, s, n)
=

s

γN (s/C1, s)
. (37)

Our work not only formally explains previous findings, but
also generalizes them to such an extent that allows any in-
put rate and any path conditions.

Kang et al. [8] analyzed the gap response of a single-
hop path with bursty cross-traffic using packet-pairs. The
paper had a focus on large input probing rate. Liuet al.
extended the single-hop analysis for packet-pairs [11] and
packet-trains [9] to arbitrary input rates and discussed the
impact of packet-train parameters.
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8 Conclusion

This paper provides a stochastic characterization of packet-
train bandwidth estimation in a multi-hop path with arbi-
trarily routed cross-traffic flows. Our main contributions
include derivation of the multi-hop fluid response curve as
well as the real response curve and investigation of the con-
vergence properties of the real response curve with respect
to packet-train parameters. The insights provided in this
paper not only help understand and improve existing tech-
niques, but may also lead to a new technique that measures
tight link capacity.

There are a few unaddressed issues in our theoretical
framework. In our future work, we will identify how var-
ious factors, such as path configuration and cross-traffic
routing, affect the amount of deviation betweenZ andF .
We are also interested in investigating new approaches that
help detect and eliminate the measurement bias caused by
bursty cross-traffic in multi-hop paths.
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Notes
1In general, the tight link can be different from the link withthe mini-

mum capacity, which we refer to as thenarrow link of P .
2We use the term “fluid” and “constant-rate fluid” interchangeably.
3The analysis assumes infinite buffer space at each router.
4The termΩi represents the volume of fluid cross-traffic buffered be-

tween the packet-pair in the outgoing queue of linkLi. For an analogical
understanding, we can view the packet-pair as a bus, the cross-traffic as
passengers, and the routers as bus stations. Then,Ωi is the amount of
cross-traffic picked up by the packet-pair at linkLi as well as all the up-
stream links ofLi. This cross-traffic will traverse over linkLi due to the
flows’ routing decision.

5Note that the turning points inF is indexed according to the decreas-
ing order of their values. The reason will be clear shortly when we discuss
the rate response curve.

6Note that the hop available bandwidth of linkLi that is of measure-
ment interest, given byAi = Ci − xri can be less thanCi − xp.

7Note that the output dispersion process can be correlated. However,
this does not affect the sample-path time average of the process.

8See section 3.2 in [9] for more discussions about this term ina single-
hop context, whereRi is referred to asintrusion residual.

9Refer to [20, pages 89] for the definition of regenerative processes.
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