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Abstract tiated the effort of developing an analytical foundation fo

, ) i bandwidth measurement techniques. Such a foundation is
This paper analyzes the asymptotic behavior of p""Cke"'tr"’“important in that it helps achieve a clear understanding of

probing overa multi-hop ne_twork path carrying_arbitrar— both the validity and the inadequacy of current techniques
|I_y _routed bursty cross-traffic f_IOWS' We €xamine the St"?"and provides a guideline to improve them. However, the
tistical mean of the packet-train output dispersions asd it analysis in [9] is restricted to single-hop paths. There is

relationship to the input dispersion. We call this relation gy 5 yoig to fill in understanding packet-train bandwidth
ship theresponse curvef path’P. We show that the real estimation over a multi-hop network path.

response curve istightl_y lower-bounded by itsnulti—hop Recall that the available bandwidth of a network hop is
fluid c_ounterpart?_-‘, obtained when_every cross-iraffic f'°"_V its residual capacity after transmitting cross-traffichiita
on’P is hypothetically rep_laced_wnh a con_stant-rate fluid certain time interval. This metric varies over time as well
flow of the same average intensity and ro.utlng _pattern. Th%s a wide range of observation time intervals. However, in
real curveZ asymptotically approaches its fluid counter- this paper, we explicitly target the measurement tfrag-

part 7 as probing packet size or packet train length in-yo.y ayeragavailable bandwidth, which is a stable metric

Creases. MOSt emstmg_measurement_ techmques are basﬁ‘u‘?iependent of observation time instances and observation
upon the single-hop fluid curwg associated with the bot- time intervals [9]. Consider ai-hop network pattP —
tleneck link in?. We note that the curv& coincides with (L1, Lo Ly) 'Where the capacity of link, is denoted

3 LA 1 K3

F Ina certain I.arge-dlspers!on mput range, but falls belowby C; and the long-term average of the cross-traffic arrival
F in the remaining small-dispersion input ranges. As a

o o Nrate atL; is given by);, which is assumed to be less than
implication of these findings, we show that bursty cross-~ 1 hop available bandwidth df, is A, — C; — A;.

traffic in multi-hop paths causes negative bias (asymptotiel-ae path available bandwidthy is given by

underestimation) to most existing techniques. This bias ca
be mitigated by reducing the deviation 8ffrom S using Ap = min (C; — \;). (1)
large packet size or long packet-trains. However, the bias <i<

is not completely removable for the techniques that use th

portion of S that falls below ﬁ\“he hopL;, which carries the minimum available band-

width, is called theight link or the bottleneck link. That

is,

1 Introduction b=arg min (C; — \;). ()
1<i<N

End-to-end estimation of the spare capacity along a net- The main idea of packet-train bandwidth estimation is
work path using packet-train probing has recently becoméo infer Ap from the relationship between the inter-packet
an important Internet measurement research area. Sevedispersions of the output packet-trains and those of the in-
measurement techniques such as TOPP [14], Pathload [§ut packet-trains. Due to the complexity of this relatidpsh
IGI/PTR [5], Pathchirp [16], and Spruce [17] have been de-in arbitrary network paths with bursty cross-traffic flows,
veloped. Most of the current proposals use a single-hoprevious work simplifies the analysis using a single-hop
path with constant-rate fluid cross-traffic to justify their path with fluic® cross-traffic, while making the following
methods. The behavior and performance of these techwo assumptions without formal justification: first, cross-
nigues in a multi-hop path with general bursty cross-traffictraffic burstiness only causes measurement variability tha
is limited to experimental evaluations. Recent work [9} ini can be smoothed out by averaging multiple probing sam-



ples and second, non-bottleneck links have negligible imtotic underestimation ofi» for most of the existing tech-
pact on the proposed techniques. nigues. This deviation term and its resulting measurement
The validity of the first assumption is partially addressedbias are “elastic” in the sense that they can be reduced to
in [9], where the authors use a single-hop path with burstya negligible level using packet-trains of sufficient lerfgth
cross-traffic to derive the statistical mean of the packetfor the second deviation terffi — S, we note that botks
train output dispersions as a function of the input prob-and.F are piece-wise linear curves. The firsttwo linear seg-
ing dispersion, referred to as the single-hop responsecurvments inF associated with large input dispersions coincide
Their analysis shows that besides measurement variabilityith S (i.e., 7 — & = 0). The rest of the linear segments
cross-traffic burstiness can also causeasurement bias in F associated with small input dispersions appear above
to the techniques that are based on fluid analysis. Thi§ (i.e., 7/ — S > 0). The amount of deviation and the
measurement biasnnotbe reduced even when an infinite additional negative measurement bias it causes are depen-
number of probing samples are used, but can be mitigatedent on the routing patterns of cross-traffic flows, and are
using long packet-trains and/or large probing packet size. maximized when every flow traverses only one hop along
This paper addresses further the two assumptions thate path (which is often calledne-hop persistentross-
current techniques are based on. To this end, we extendaffic routing [4]). Furthermore, the curve deviatién- S
the asymptotic analysis in [9] to arbitrary network pathsis “non-elastic” and stays constant with respect to probing
and uncover the nature of the measurement bias caused packet size and packet-train length at any given input rate.
bursty cross-traffic flows in enulti-hopnetwork path. This  Therefore, the measurement bias it causes cannot be over-
problem is significantly different from previous singlegho come by adjusting the input packet-train parameters.
analysis due to the following reasons. First, unlike single Among current measurement techniques, pathload and
hop measurements, where the input packet-trains have de-TR operate in the input probing range whéteoincides
terministic and equal inter-packet separation formed by thwith S, and consequently are only subject to the measure-
probing source, the input packet-trains at any hop (exient bias caused by the first deviation tefm- F. Spruce
cept the first one) along a multi-link path are output frommay use the probing range whefe— S > 0. Hence it
the previous hop and have random structure. Second arid subject to both elastic and non-elastic negative measure
more importantly, the multi-hop probing asymptotics arement biases. The amount of bias can be substantially more
strongly related to the routing pattern of cross-traffic Bow than the actual available bandwidth in certain common sce-
This issue never arises in a single-hop path and it has rerarios, leading to negative results by the measurement al-
ceived little attention in prior investigation. Howeveg a gorithm and a final estimate of zero by the tool.
we show in this paper, it is one of the most significant fac- The rest of the paper is organized as follows. Section 2
tors that affect the accuracy of bandwidth measurement iderives the multi-hop response cutfeassuming arbitrar-
multi-hop paths. ily routed fluid cross-traffic flows and examines the devi-
To characterize packet-train bandwidth estimation in itsation termF — S. In Section 3 and 4, we derive the real
most general settings, we derive the probing response curvesponse curvg€ of a multi-hop path and show its relation-
Z of a multi-hop pathP assuming arbitrarily routed bursty ship to its fluid counterparf. We provide practical evi-
cross-traffic flows. We compar® with its multi-hop fluid ~ dence for our theoretical results using testbed experisnent
counterpartF, which is a response curve obtained whenand real Internet measurements in Section 5. We examine
every cross-traffic flow irP is hypothetically replaced with  the impact of these results on existing techniques in Sec-
a fluid flow of the same average intensity and routing pattion 6 and summarize related work in Section 7. Finally,
tern. We show, under an ergodic stationarity assumptionve briefly discuss future work and conclude in Section 8.
for each cross-traffic flow, that the real curgeis tightly Due to limited space, most of the proofs in this paper are
lower bounded by its fluid counterpaftand that the curve omitted, and we refer interested readers to [10] for more
Z asymptotically approaches its fluid boudn the entire  technical details.
input range as probing packet size or packet-train length in

creases. . . .
Most of the existing techniques are based on the single2 Multi-Hop Fluid Analysis

hop fluid response curg associated with the bottleneck | is jmportant to first thoroughly understand the response

link n P. Therefore, any deV|at|o_n of the real curgerom curveF of a network path carrying fluid cross-traffic flows,
th_e sllngle-hop_) curvé’. can potentially cause measurementginca 55 we show later, the fluid cur?ds anapproachable
bias in bandwidth estimation. Note that the deviaioRS  p5nd of the real response curge Initial investigation of

can be decomposed as the fluid curves is due to Melandet al. [13] and Dovrolis
Z-S=(Z-F)+(F-8). 3) e_t al [3]. Hov_vever,_prior work only consider_s two spe-
cial cross-traffic routing cases (one-hop persistent nguti
The first termZ — F is always positive and causes asymp-and path persistent routing). In this section, we formulate



and solve the problem for arbitrary cross-traffic routing pa link L; and traverse the downstream litdk, is denoted

terns, based on which, we discuss several important pro@sl'y ; = e; © r;, wherek < i.

erties of the fluid response curves that allow us to obtain The cross-traffic intensity at link; is denoted by;. We

the path available bandwidth information. assume\; < C; for1 < ¢ < N. Since none of the links
in P is congested, the arrival rate of floyat any link it

2.1 Formulating A Multi-Hop Path traverses ig;;. Consequently, we have

We first introduce necessary notations to formulate a multi- Ai =xr; <Cj, 1<i<N. (4)

hop path and the cross-traffic flows that traverse along th9Ve further define th@ath configurationof P as the fol-

path. lowing 2 x N matrix
An N-hop network path? = (Li,Ls,...,Ly) IS
a sequence olV interconnectedrirst-Come First-Served C; Cy ... Cy
(FCFS) store-and-forwartiops. For each forwarding hop H= ( M A AN ) )

L; in P, we denote its link capacity bg;, and assume _ _ T
that it has infinite buffer space and a work-conserving queu- The hop available bandwidth df; is given by A; =
ing discipline. Suppose that there arefluid cross-traffic ~ Ci — A:. We assume that every hop has different available

flows traversing patW The rate of ﬂovw is denoted bwg bandWldth, and Consequently that the tlght link is Unique.
and the flow rate vector is given by= (1,2, ..., za). Sometimes, we also need to refer to the second minimum

We impose two routing constraints on cross-traffic f|owsh0p available bandwidth and the associated link, which we

to simplify the discussion. The first constraint requires ev denote asdys = Cpa — Ap2 @and Ly, respectively. That is
ery flow to have a different routing pattern. In the case of .

otherwise, the flows with the same routing pattern should b2 = arg 19%1&#(@ = Ai), (6)
be aggregated into one single flow. The second routing con- , i ,

straint requires every flow to have only one link where it WNereb is the index of the tight hop.

enters the path and also have only one (downstream) link

where it exits from the path. In the case of otherwise, the2.2 Fluid Response Curves

flow is decomposed into several separate flows that me

this routing constraint %e now consider a packet-train of input dispersion (i.e.,

inter-packet spacing); and packet size that is used to
Definition 1 A flow aggregation is a set of flows, repre- probe pathP. We are interested in computing the output
sented by a “selection vectorp = (pi1,p2,...,pum)7, dispersion of the packet train and examining its relation to
wherep; = 1 if flow j belongs to the aggregation and g:- Such arelation is called thgap response curvef path
p; = 0 if otherwise. We us€; to represent the selection P It is easy to verify that under fluid conditions, the re-

vector of the aggregation that contains flgwalone. sponse curve does not depend on the packet-train length
Hence, we only consider the case of packet-pair probing.

There are several operations between flow aggregationgve denote the output dispersion at lifik asvy;(gr,s) or
First, the common flows to aggregatiopsindq form an-  ~; for short, and again for notational convenience we let
other aggregation, whose selection vectoris givepbyy,  ~, = g;. Note thatyy (g, s) corresponds to the notation
where the operatab represents “element-wise multiplica- F we have used previously.
tion.” Second, the aggregation that contains the floms in  Based on our formulations, the gap response curve of
but not inq is given byp — p © q. Finally, note that the path? has a recursive representation given below.
traffic intensity of aggregatiop can be computed from the
inner produckp. Theorem 1 When a packet-pair with input dispersigm

We now define several types of flow aggregation fre-and packet size is used to probe atv-hop fluid path with
quently used in this paper. First, the traversing flow ag-routing matrixR and flow rate vectox, the output disper-
gregation at linkZ;, denoted by its selection vectsy, in- ~ Sion atlinkL; can be recursively expressed as
cludes all fluid flows that pass throudgh. The M x N
matrix R = (r1,re,...,ry) becomes the routing matrix
of path’P. For convenience, we define an auxiliary selec- 7=\ max (%._17 ﬂ) i>0’ Y
tion vectorry = 0. Ci

The second type of flow aggregation, denoted:hyin-
cludes all flows entering the path at lidk, which can be
expressed as; = r; — r; ® r;_; given the second rout- i
ing constraint stated previously. The third type of flow Q= i’}/kflxrk,ii- 8
aggregation, which includes flows that enter the path at k=1

gr 1=0

where(; is*



Proof: Assumes that the first probing packet arrivesThese facts are irrespective of the routing matrix.
atlink L; at time instance,;. It gets immediate transmis- _ _ _ _
sion service and departsat+s/C;. The second packetar- It helps to find the expression for the turning point
rives ata; +7;_1. The server of; needs to transmit+¢2; SO that we can identify the exact range for the second lin-
amount of data before it can serve the second packet. If thigar segment. However, unlike, the turning point; is
is done before time instaneg + ~;_1, the second packet dependent on the routing matrix. In fact, all other turn-
also gets immediate service angd= ~;_,. Otherwise, the ing points are dependent on the routing matrix and can not
sever undergoes a busy period between the departure of thé computed based on the path configuration matrix alone.
two packets, meaning that = (s + Q;)/C;. Therefore, Therefore, we only provide a bound fas.
we have

s+ Q Property 3 For any routing matrix, the terms/as is no
v; = max (%1, T) (9)  less thand,,, which is the second minimum hop available
! bandwidth of patiP.

This completes the proof of the theorem. ]
As a quick sanity check, we verify the compatibility be-  The slopes and intercepts for all but the first two linear
tween Theorem 1 and the special one-hop persistent routirgegments are related to the routing matrix. We skip the

case, where every flow that enters the path at fipkuill derivation of their expressions, but instead provide both a
exit the path at link_; ;. For this routing pattern, we have lower bound and an upper bound for the entire response
curve.
0 i#k
Lyi = o=k (10) Property 4 For a given path configuration matrix, the gap
’ response curve associated with any routing matrix is lower
Therefore, equation (8) can be simplified as bounded by the single-hop gap response curve of the tight
link
Qi = yi1Xr = Yi—1 i, (11)
> 5
which agrees with previous results [3], [13]. g1 9T = AL
Sors) = s+ah s - (13
o, T A

2.3 Properties of Fluid Response Curves

dt is upper bounded by the gap response curve associated

Theorem 1 leads to several important properties of the fluid" . i X
with one-hop persistent routing.

response curvé&, which we discuss next. These properties

tell us how bandwidth information can be extracted from We now make several observations regarding the devia-

the curveF, and also show th_e deviation d%’ as one gy of v (g1, 5) (i.e.,F) fromS(gr, s). Combing (12) and
should be aware of, from the single-hop fluid cu&vef (13), we see thaty (g1, 5) — S(g1,s) = 0 wheng; > a.

the tight link. That is, the first two linear segments ghcoincide with
Property 1 The output dispersiony (g7, s) is a continu- S. Wheng; < as, F_’roper.ty 4 implies that the deviation
ous piece-wise linear function of the input dispersigrin v (91, 5) — S(g1, 5) is positive. The exact value depends

the input dispersion rang@, cc). on cross-traffic routing and it is maximized in one-hop per-
sistent routing for any given path configuration matrix.
Let0 = agi1 < ag < ... < a1 < ag = oo be the Also note that there are three pieces of path information

input dispersion turning points that split the gap responsghat we can extract from the gap response cufrwaithout
curve toK + 1 linear segments Our next result discusses knowing the routing matrix. By locating the first turning
the turning points and linear segments that are of major impoint «;, we can compute the path available bandwidth.
portance in bandwidth estimation. From the second linear segment, we can obtain the tight
link capacity and cross-traffic intensity (and consequentl
the bottleneck link utilization) information. Other padf

the response curvg are less readily usable due to their
dependence on cross-traffic routing.

Property 2 The first turning pointy; corresponds to the
path available bandwidth in the sense théb = s/as.
The firstlinear segment in the input dispersion rafge =
s/Ap,0) has slope 1 and intercept 0. The second linear
segment in the input dispersion range., o;) has slope
\y/Cy, and intercepts /C,, whereb is the index of the tight 2.4 Rate Response Curves

link: To extract bandwidth information from the output disper-

g1 a1 < g1 < 00 sion~y, itis often more helpful to look at theate response
YN (91,8) =< grhe + s . (12) curve, i.e., the functional relation between the outpu rat
0, Q2 S gr < aq ro = s/yn and the input rate; = s/g;. However, since



this relation is not linear, we adopt a transformed version , % © @ 5 Sasks sl
first proposed by Melandest al. [14], which depicts the =~ _ | onehoppersisient —
relation between the ratie /7o andr;. Denoting this rate lower bound
response curve h§ (r;), we have

25 one—‘hop‘ persistent -
path persistent
single-hop curve

output dispersion yy (ms
niro

~ T S
F(r) = T M (14) )
ro g1
0 0.5
This transformed version of the rate response curve is  °  udmesong e P e
also piece-wise linear. It is easy to see that the first tgrnin (a) gap response curve (b) rate response curve
point in the rate curve is/a; = A, and that the rate curve
in the input rate ranggd, s/ a2 ) can be expressed as Figure 1: An example of multi-hop response curves.
~ 1 Tr S Ap
Frr) =< A . 15 . .
(rr) bg R >r; > Ap (15) we adopted, the rate curve for one-hop persistent routing
b Qe

still remains as an upper bound for the rate curves associ-
Finally, it is also important to notice that the rate re- ated with the other routing patterns. From Fig. 1(b), we

sponse CUI‘Vé'-(T]) does not depend on the probing packeta|80 see that, similar to the gap curves, Ehe two multi-hop

sizes. This is because, for any given input ratg both ~ rate response curves and their lower bostid;) (i.e., the

v~ (g1, s) andg; are proportional ta. Consequently, the transformed rate version &(g;, s)) share the same first

ratio between these two terms remains a constant fosany and second linear segments.

2.5 Examples

We use a simple example to illustrate the properties of thg'6 Discussion
fluid response curves. Suppose that we have a 3-hop p
with equal capacity’; = 10mb/s,i = 1,2, 3. We consider
two routing matrices and flow rate settings that lead to th
same link load at each hop.

In the first setting, the flow rate vectsr = (4,7,8)
and the routing pattern isne-hoppersistent, i.e.R =
diag1,1,1). In the second setting, the flow rate vector
x = (4, 3,1) and the routing pattern gathpersistent. That
is,

a{;\}e conclude this section by discussing several major chal-
lenges in extending the response curve analysis to a multi-
%op path carrying bursty cross-traffic flows. First, notice
that with bursty cross-traffic, even when the input disper-
sion and packet-train parameters remain constant, the out-
put dispersion becomes random, rather than deterministic
as in fluid cross-traffic. The gap response cutyalefined
as the functional relation between the statistical meaheof t
output dispersion and the input dispersion, is much more
(16) difficult to penetrate than the fluid curvE. Second, un-
like in the fluid case, where both packet-train lengtand
probing packet size have no impact on the rate response
Both of the settings result in the same path configuratiourve 7 (r;), the response curves in bursty cross-traffic are
matrix strongly related to these two packet-train parameters. Fi-
H= ( 140 170 180 ) ) (17)  nally, a full characterization of a fluid flow only requires
one parameter — its arrival rate, while a full characteriza-
The probing packet sizeis 1500 bytes. The fluid gap tion of a bursty flow requires several stochastic processes.
response curves for the two routing patterns are plotted iftn what follows, we address these problems and extend our
Fig. 1(a). In this example, both curves have 4 linear seganalysis to multi-hop paths with bursty cross-traffic.
ments separated by turning points = 6Ms, as = 4ms,
and a3 = 2ms. Note that part of the curve for path-
persistent routing appears below the one for one-hop per- . . .
sistent routing. The lower bouns identified in Property 3 Basics of Non-Fluid Analysis
4 is also plotted in the figure. This lower bound is the gap
response curve of the single-hop path comprising only thén this section, we present a stochastic formulation of the
tight link L. multi-hop bandwidth measurement problem and derive a
The rate response curves for the two examples are giverecursive expression for the output dispersion random vari
in Fig. 1(b), where the three turning points aab/s, able. This expression is a fundamental result that the
3mb/s, andsmb/s respectively. Due to the transformation asymptotic analysis in Section 4 is based upon.

1
R=1]0
0
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3.1 Formulating Bursty Flows {Vi(p,t)}  Cumulative arrival process & w.r.t. p
) ] ] {Y.s(p,t)}  Cross-traffic intensity process &t w.r.t. p
We keep most of the notations the same as in the previous {;(p,¢)}  Hop workload process dt; w.r.t. p

section, although some of the terms are extended to have a {D, s(p,t)} Workload-difference process &t w.r.t. p
different meaning, which we explain shortly. Since cross- {Ui(p,t)} Hop utilization process at; w.r.t. p
traffic flows now become bursty flows of data packets, we {Bis(p,t)} Available bandwidth process &t w.r.t. p
adopt the definitions of several random processes (Defini-
tion 1-6) in [9] to characterize them. However, these defini-
tions need to be refined to be specific to a given router and
flow aggregation. In what follows, we only give the defi- Assumption 2 For any two flowsj and( that enter the
nitions of two random processes and skip the others. Theath at linkZ;, the two processed/;(f;, t)} and{V;(f;, t)}
notations for all six random processes are given in Tablare independent. Specifically, for any two time instartges
3.1 andt,, the two random variable¥;(f;, t1) and V;(f;, t2)

_ ) . _ are independent.
Definition 2 The cumulative traffic arrival process of flow

aggregatiorp atlink L;, denoted agV; (p, t),0 < ¢ < oo} As a consequence of the two assumptions we made, the
is a random process counting the total amount of data (in€rdodic stationary property also holds for any flow aggre-
bits) received by hop; from flow aggregatiop up to time ~ 9ations at their entering link.

Instancet. Corollary 1 For any flow aggregatiorp that enters the
path at link L;, i.e.,p ® e; = p, the procesqV;(p,t)}
has ergodic stationary increments. Consequently, the traf
fic intensity random variabl&’; ;(p) converges tap in

tehe mean-square sense

Table 1: Random process notations

Definition 3 Hop workload process of; with respect to
flow aggregationp, denoted agW;(p,t),0 < t < oo}
indicates the sum at time instancef service times of all
packets in the queue and the remaining service time of th
packet in service, assuming that flow aggregatiois the lim E | (v B 2 —0 19
only traffic passing through link ;. 500 ( is(P) XP) ' (19)

We next make several modeling assumptions on cross:- Due to S.zc“z.otka. ,[,18]’ [19], . the yvorklpad process
traffic flows. First, we assume that all flows have stationar \Wi(p, 1)} will “inherit” the ergodic stationarity property

arrivals yfrom the trafﬁc arrival proce_s$%(p,t)}. This property

' is further carried over to th&interval workload-difference
Assumption 1 For any cross-traffic flowj that enters the Process{Dis(p,¢)} and the available bandwidth process
path from link L;, the cumulative traffic arrival process {Bi.s(P;1)}. This distributional stationarity allows us
{Vi(£;,t)} has ergodic stationary increments. That is, © focus on the corresponding random variablegp),
for any & > 0, the d-interval traffic intensity process Dis(P), @ndBi;s(p). Itis easy to get, from their defini-
{Yi.s(f;,1)} is a mean-square ergodic process with time- tions, that the statistical means bf ;(p) and B; ;(p) are

invariant distribution and ensemble mean 0 andC; — xp, respecti_vel‘;'?. Further, the ergodicity prop-
erty leads to the following result.

We explain this assumption in more details. First, theLemma 1 For any flow aggregatiom that enter the path
stationary increment assumption implies that the incre-; jink L, the random variableB; s(p) converges in the
ment process ofV;(f;,¢)} for any given time intervad, mean-square sense @ — xp ass — 0. i.e.
namely {V;(f;,t + ) — Vi(f;,t) = 0Yis(f;,¢)}, has a
time-invariant distribution. This further implies thateth im E [(Bi S(p) — (s xp))z] 0. (0)
d-interval traffic intensity proces$Y; s(f;,¢)} is identi- d—00 ’
cally distributed whose marginal distribution at any time 5 the other hand, notice that unliK&’ s (p, )} and

instancet can be described by the same random variabI%B} 5(p. 1)}, the workload-difference proce$®; 5(p, t)}

Y;5(f;). Second, the mean-square ergodicity implies thatis ot a moving average process by nature. Consequently,
as the observation intervalincreases, the random variable {,, mean-square ergodicity 6D; 5 (p, )} does not cause

Y 5(£5) converges ta:; in the mean-square sense. _In otheria variance ofD; 5(p) to decay with respect to the in-
words, the variance df; ;(f;) decays to 0 aé — oo, i.e..  ¢rease of. Instead, we have the following lemma.

. 2l Lemma 2 The variance of the random variabl®; ;(p)
JILHQOE [(Yi"‘;(fj) B xj) } =0 (18) converges t@Var|[W;(p)] asd increases:

Our next assumption states the independent relationship iy E |:(Dz 5(p) — 0)2] =2Var [Wi(p)]. (21)
between different flows that enter pghat the same link. 6—00 ’



To obtain our later results, not only do we need to knowandn constant. This relationship, previously denoted by
the asymptotic variance af; s(p), D; s(p) and B; s(p) Z, is called the gap response curve of path
whend approaches infinity, but also we often rely on their Notice that the ergodic stationarity of cross-traffic ar-
variance being uniformly bounded (for asiyby some con- rival, as we assumed previously, can reduce our response
stant. This condition can be easily justified from a prac-curve analysis to the investigation of a single random vari-
tical standpoint. First note that cross-traffic arrivalerat able. This is because each packet-train comes to see a
is bounded by the capacities of incoming links at a givenmulti-hop system of the same stochastic nature and the out-
router. Suppose that the sum of all incoming link capaci-put dispersion proceqs v (m),1 < m < oo} is anidenti-
ties at hopL; is C, thenY; ;(p) is distributed in a finite  cally distributedrandom sequence, which can be described
interval [0, C+] and its variance is uniformly bounded by by the output dispersion random varialllg;. The sample-
the constanC? for any observation interval. Similarly,  path time average of the output dispersion process coin-
the variance ofB; 5(p) is uniformly bounded by the con- cides with the mean of the random varialdle;”. There-
stantC?. The variance oD; s(p) is uniformly bounded by ~ fore, in the rest of the paper, we focus on the statistics of
the constamtVar[W; (p)] for anyd, which directly follows Gy and drop the indexa.
from the definition ofD; 5(p). In our later analysis, we compare the gap response curve
Finally, we remind that some of the notations introducedof P with that of thefluid counterpartof P and prove that
in Section 2.1 now are used with a different meaning. Thehe former is lower-bounded by the latter.
rate of the bursty cross-traffic floyy denoted by, is the o . )
probabilistic mean of the traffic intensity random variable Definition 4 Suppose that patR has a routing matrb®
Y; 5(£;), which is also théong-term averagarrival rate of ~ @nd a flow rate vectox and that path?> has a routing
flow j at any link it traverses. The teriy = xr; becomes matrix R and a f_Iow rate vectok. P is called the_flu~|d
the long-term average arrival rate of the aggregated cros&ounterpart ofP> if 1) all cross-traffic flows traversing®
traffic at link L;. The termA; = C; — ), is the long- e constant—rgte flqld; 2) the two pathid and7_> have
term average hop available bandwidth at lifk Again the same conf|gurat|on matrix; and 3) there ex~|sts a row-
recall that we explicitly target the measurement of long-€xchange matrif’, such that’R = R andT'x = x.
term averages of available bandwidth and/or cross-traffic
intensity, instead of the corresponding metrics in a certai
time interval.

From this definition, we see that for every flgin P,
there is a corresponding fluid floyV in the fluid counter-
part of P such that flowj’ have the same average intensity
and routing pattern as those of flgiv Note that the third
3.2 Formulating Packet Train Probing condition in Definition 4 is made to allow the two flows
have differentindices, i.e., to alloyvz£ 5’.
We now consider an infinite series of packet-trains with in- -~ A second focus of this paper is to study the impact of
put inter-packet dispersiogy, packet sizes, and packet- packet-train parametersandn on the response curves.
train lengthn. This series is driven to path by a point  That is, for any given input rate; and other parameters
processA(t) = max{m > 0 : T, < t} with sufficient  fixed, we examine the convergence properties of the output

large inter-probing separation. Lét(m,i) andd,(m,i)  dispersion random variabt@y (s/r1, s, n) ass orn tends
be the departure time instances from libkof the firstand  to infinity.

last probing packets in the*" packet-train. We define the
sampling intervalof the packet-train as the total spacing . .
A =d,(m,i) — di(m, 1), and theoutput dispersioras the 3.3 Recursive Expression oty

average spacing = A/(n — 1) of the packet-train. Both We keep input packet-train parametegfss, andn constant

A andG are random variables, whose statistics might de-and next obtain a basic expression for the output dispersion
pend on several factors such as the input dispergipthe  random variable& .

packet-train parametegsandn, the packet-train index:

in the probing series, and the hdpthat the output disper- Lemma 3 Letting Go = g, the random variable; has
sionG is associated with. Therefore, a full version@fs  the following recursive expression

written asG;(gr, s,n, m). However, for notation brevity,

we often omit the parameters that have little relevance to . _ ZZ: Viae ,(Thi)Gr1 s I Ii
the topic under discussion. ’ Pt Ci Ci n-1
We now formally state the questions we address in this , ‘
. . . DZ,A»;7] (el) Rl
paper. Note that a realization of the stochastic process = Gi—1+ — — (22)

{Gn(91,8,m,m),1 <m < o} isjusta packet-train prob-
ing experiment. We examine the sample-path time-average@here the termR; is a random variable representing the
of this process and its relationship §¢ when keepings extra queuing deldy(besides the queuing delay caused by



the workload proces§WV; (e;, t) }) experienced ak; by the
last probing packet in the train. The tert is another
random variable indicating the hop idle time bf during
the sampling interval of the packet train.

Proof: We apply mathematical induction o When
i = 0, E[Go] = 70 = gr. Assuming that (25) holds for
0 < i < N, we next prove that it also holds fer= N.
Recalling (24), we have

. . _— . N
T NE|Gj—
This result is very similar to Lemma 5 in [9]. However, ElGy] > max(E[GN,l], Yoy XDe NE[Gr_1] + 5)
due to the random input packet-train structuré atall but Cn
the terms/C; in (22) become random variables. Some ijﬂ XL NYho1 + $
terms, such a®; a, ,(e;) andYy a,_, ('), even have > maX(WN—la Cn ) =N

two dimensions of randomness. To understand the behav-
ior of probing response curves, we need to investigate thevhere the second inequality is due to the induction hypoth-

statistical properties of each term in (22).

4 Response Curves in Bursty Cross-Traffic

In this section, we first show that the gap response curv

zZ E[Gn(g1,s,n)] of a multi-hop pathP is lower
bounded by its fluid counterpafl = yx(gr,s). We then
investigate the impact of packet-train parameterg€on

4.1 Relation Betweenz and F

Our next lemma shows that passing through a link can only

increase the dispersion random variable in mean.

Lemma4 For1 < ¢ < N, the output dispersion random
variableG; has a mean no less than that@f_;. That is,
E[G;] > E[Gi-1].

Using the first part of (22), our next lemma shows that4 .2

for any link L;, the output dispersion random varialdle

esis, and the last equality is because of Theorem 1. m
Theorem 2 shows that in the entire input gap range, the

piece-wise linear fluid gap response cuFealiscussed in

Section 2 is a lower bound of the real gap cug/eThe de-

viation between the real cun& and its fluid lower bound

9’-‘, which is denoted byn (g1, s,n) or Sy for short, can

be recursively expressed in the following, where we let

Bo = 0:

ER;
i1+ | 1] Vi = Yi-1
R I BE) -
a 2221 X[k Br—1 + - _11 Yi > Vi1
(26)

In what follows, we study the asymptotics of the curve
deviation 5y when input packet-train parameteror n
becomes large and show that the fluid lower boghid in
fact atight bound of the real response curge

Impact of Packet Train Parameters

is lower bounded in mean by a linear combination of the'Ve now demonstrate that for any input probing ratethe

output dispersion random variablé€s, wherek < i.

Lemma5 For1 < i < N, the output dispersion random
variable G; satisfies the following inequality

(i XFk,iE[Gk_l] + S) . (23)
k=1

From Lemma 4 and Lemma 5, we get

1
1> =
ElGi] > &

2

S XD E[Gro1] + s
Ci

E[G;] > max (E[Gi—l]a

(24)
This leads to the following theorem.

Theorem 2 For any input dispersiory;, packet-train pa-
rameterss andn, the output dispersion random variable

G n of pathP is lower bounded in mean by the output dis-

persionyy (g1, s) of the fluid counterpart oP:

E[Gn(g1,5,n)] >y~ (91,5). (25)

curve deviationy (s/rr, s,n) vanishes as probing packet
size s approaches infinity. We prove this result under the
condition of one-hop persistent cross-traffic routing. We
also justify this conclusion informally for arbitrary cr®s
traffic routing and point out the major difficulty in obtain-
ing a rigorous proof. First, we make an additional assump-
tion as follows.

Assumption 3 Denoting byP, s(x) the distribution func-
tion of the d-interval available bandwidth process
{Bis(e;,t)}, we assume that for all < ¢ < N, the fol-
lowing holds

Pis(r)=o <5i2>

P, s5(r) :1—0(5%) r > C; — xe;

r < C; —xe;
(27)

Recall that the mean-square ergodicity assumption we
made earlier implies that as the observation intefvgéts
large, the random variablB; s(e;) converges in distribu-
tion to C; — xe;. Assumption 3 further ensures that this
convergence ifastin the sense of (27). Even though this



condition appears cryptic at first, it is valid in a broad rang wether it enters the path froh; or some upstream link
of cross-traffic environments. The next theorem shows thef L;) exhibits ergodic stationary arrival &t. Under this
validity of this assumption under the condition of regener-assumption, which we call “stationary departure approx-
ative® link utilization. imation,” it becomes easy to extend Theorem 4 to cover
arbitrary cross-traffic routing patterns. We skip the dstai
Theorem 3 When hop utilization procedd/;(e;, t)} isre-  of this step and next apply the stationary departure approx-
generative, condition (27) holds. imation to examine the impact of packet-train lengtbn
the response cune.
Note that regenerative queue is very common both in
practice and in stochastic modeling literature. In fadt, al Theorem 5 Under the first two assumptions and the “sta-
the four traffic types used in [9] lead to regenerative hoptionary departure approximation", for anW-hop path’])
workload and consequently lead to regenerative link utiith arbitrary cross-traffic routing, for any input dispees
lization. We also Conjecture that (27) holds under a mucfbl c (O’ OO) and any probing packet SlZﬁ the random
milder condition, but we leave its identification as future yariable G converges to its fluid lower boungy in the
work. mean-square sense as— oo,
Our next theorem states formally the convergence
property of the output dispersion random variable lim E [(GN(QI, s,n) — (g1, s))2 —0 (30)
Gn(s/rr,s,n) whens increases. n—00

Theorem 4 Given one-hop persistent cross-traffic routing Let us make several commgnts on the conditions (.)f th'.s
esult. First note that Assumption 3 is not necessary in this

dthe th t dein th - fi input . {mpti ;
anarthe tree assumptions made In tne papet, for any inp tLeorem.AIso notice that in a single-hop path (ifé.= 1),

rate r7, the output dispersion random varialilgy of path ; .
P converges in mean to its fluid lower boung: the the(_)ren_1 can be proved_W|thout the_z stationary departure
approximation. However, in the multi-hop cases, the ap-

s s proximation is needed even when cross-traffic routing is
lim F {GN ( S n> — N (— s)} =0. (28)
T r

§— 00

one-hop persistent. The reason is that whes large, the
probing packet-train is also viewed as a flow, whose arrival
The asymptotic variance &f whens increases is upper characteristics at all but the first hop are addressed by the
bounded by some constafity : stationary departure approximation.
Theorem 5 shows that when the packet-train length
S S 2 increases while keepingconstant, not only¥[G ] con-
(GN (E’ S’n) - (E’S)) < Kn. verges to its fluid boundy, but also the variance @y
(29) decaysto0. This means that we can expect almost the same
output dispersion in different probings.
Note that the bounded variance, as stated in (29), is an
inseparable. part of the_whole theore.m. .This i.s becausa_s Discussion
Theorem 4 is proved using mathematical induction, where
the mean convergence 6fy to vy can be obtained only Among the assumptions in this paper, some are critical in
when the mean off y_; converges toyy_; and when the leading to our results while others are only meant to sim-
variance of¢y _; remains bounded, as probing packet sizeplify discussion. We point out that the distributional sta-

5 — 00. tionarity assumption on cross-traffic arrivals can be dyeat
We further point out that by assuming one-hop persis+elaxed without harming our major results. However, this
tent cross-traffic routing, we have avoided analyzing thecomes at the expense of much more intricate derivations.
departure processes of cross-traffic flows. When a traversrhis is because when cross-traffic arrivals are allowed to
ing flow of link L; enters the path from some upstream link be only second-order stationary or even non-stationary,

of L;, the arrival process of the flow dt; is its departure the output dispersion proce$& y(m)} will no longer be
process af,; ;1. Unfortunately, in the queueing theory lit- identically distributed. Consequently, the analysis aitpr
erature, there is no exact result for departure processes ing response curves cannot be reduced to the investigation
FCFS queueing models if one goes beyond the assumptiaf a single output dispersion random variable. Moreover,
of Poisson arrivals. Motivated by the intractability ofghi we also have to rely on an ASTA assumption on packet-
problem, researchers have focused their attentions on agrain probing [9] to derive the results in this paper, which
proximations [12], [15]. we have avoided in the present setting.

To accommodate arbitrary cross-traffic routing patterns, Also note that the inter-flow independence assumption
we also need an approximation assumption which says thag made to maintain the distributional stationarity of &os
any cross-traffic flow that traverses lirk (regardless of traffic arrivals at a flow aggregation level. It only helps us

lim F

§—00




avoid unnecessary mathematical rigor and is insignificant B B
in supporting our major conclusions. 2 A 2 A
On the other hand, the mean-square ergodicity plays a
central role in the (omitted) proofs for Theorem 4 and The- gz 18
orem 5. A cross-traffic flow with mean-square ergodicity, £ 1s
when observed in a large timescale, has an almost constant 4
arrival rate. This “asymptotically fluid like” property, is S C <A
very common among the vast majority of traffic models in " 1020 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90 100
stochastic literature, and can be decoupled from any type of Proong It Rate 1 (bl Proong It Rate 1 (mble)
traffic stationarity. Consequently, our results have a throa
applicability in practice. . , .
Next, we provide experimental evidence for our theo-F'gure 2: Mgasured response curves using different packet
retical results using testbed experiments and real Interndr@in-length in the Emulab testbed.
measurement data.

2.2

1.8

16

NSEGY)

14

12

(a) one-hop persistent routing (b) path-persistent routing

for each input rate is evenly separated during the whole

5 Experimental Verification testing period.
This experiment not only allows us to measure the re-

In this section, we measure the response curves in botbponse curve fon = 65, but also for any packet-train
testbed and real Internet environments. The results ngt onllength & such that2 < k£ < n = 65, by simply taking
provide experimental evidence to our theory, but also givahe dispersions of the firétpackets in each train. Fig. 2(a)
quantitative ideas of the curve deviation given in (26). Toshows the rate response cutdér;, s, n) for k = 2,9,33
obtain the statistical mean of the probing output disper-and 65 respectively. For comparison purposes, we also plot
sions, we rely on direct measurements using a number dh the figure the multi-hop fluid curvé (r;), computed
probing samples. Even though this approach can hardlfrom Theorem 1, and the single-hop fluid cun@(arl) of
produce a smooth response curve, the bright side is thabe tight link Ls. The rate response curvégr;, s, n) is
it allows us to observe the output dispersion variance, redefined as follows
flected by the degree of smoothness of the measured re- N rr

sponse curve. 2 sm) = R (s frrsm)]

5.1 Testbed Experiments First note that the multi-hop fluid rate curve comprises
four linear segments separated by turning poitsb/s,

In our first experiment, we measure in the Emulab testbedsmb/s, and76mb/s. The last two linear segments have

[1] the response curves of a three-hop path with the follow~ery close slopes and they are not easily distinguishable

ing configuration matrix (all in mb/s) and one-hop persis-from each other in the figure. We also clearly see that the

(32)

tent cross-traffic routing rate curve asymptotically approaches its fluid lower bound
96 96 96 as packet-train length increases. The curves fer= 33
H= < 20 40 60 > . (31) andn = 65 almost coincide with the fluid bound. Also

note that the smoothness of the measurement curve reflects
We generate cross-traffic using three NLANR [2] traces.the variance of the output dispersion random variables. As
All inter-packet delays in each trace are scaled by a comthe packet train length increases, the measured curve be-
mon factor so that the average rate during the trace duratiocomes smoother, indicating the fact that the variance of the
becomes the desired value. The trace durations after scatutput dispersions is decaying. These observations are all
ing are 1-2 minutes. We measure the average output dispeir agreement with those stated in Theorem 5.
sions at 100 input rates, from 1mb/s to 100mb/s with 1mb/s Unlike single-hop response curves, which have no devi-
increasing step. For each input rate, we use 500 packeétion from the fluid bound when the input rateis greater
trains with packet size 1500 bytes. The packet train lengttthan the link capacity, multi-hop response curves usually
n is 65. The inter-probing delay is controlled by a randomdeviate from its fluid counterpart in the entire input range.
variable with sufficiently large mean. The whole experi- As we see from Fig. 2(a), even when the input rate is larger
ment lasts for about 73 minutes. All three traffic traces arghan 96mb/s, the measured curves still appear atfve
replayed at random starting points once the previous roundlso observe that the single-hop fluid curdeof the tight
is finished. By recycling the same traces in this fashion, wdink L3 coincides with the multi-hop fluid curvé& within
make the cross-traffic last until the experiment ends withouthe input rate rangé0, 56) but falls belowF in the input
creating periodicity. Also note that the packet-trainsinre rate rangé56, co).
jected with their input rates so arranged that the 500 trains Finally, we explain why we choose the link capacities to
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be96mbl/s instead of the fast ethernet capatiigmb/s. In

fact, we did set the link capacity to H80mb/s. However,

we noticed that the measured curves can not get arbitrarily

close to their fluid boundF computed based on the fast eth- ¢

ernet capacity. Using pathload to examine the true capamtyf

of each Emulab link, we found that their IP layer capaci-

ties are in fact 96mb/s, not the same as their nominal value -

100mb/S 20 /210 60 80 100 120 140 20 40 60 80 100 120 140
In our second experiment, we change the cross-traffic roono e et 1 Freono mpuL et (o)

routing to path-persistent while keeping the path configu- (@) lulea— CMU (b) pwh— NYU

ration matrix the same as given by (31). Therefore, the

flow rate vector now becomeg0, 20, 20). Figure 3: Measured response curves of two Internet paths
We repeat the same packet-train probing experiment an'(fl] RON testbed .

the results are plotted in Fig. 2(b). The multi-hop fluid

rate curveZ still coincides withS in the input rate range  curve approaches a piece-wise linear bound as packet-train
(0,56). When input rate is larger thad6mb/s, the curve |ength increases. At the same time, response curves mea-
F positively deviates fromS. However, the amount of sured using long trains are smoother than those measured
deviation is smaller than that in one-hop persistent routysing short trains, indicating the decaying variance of out
ing. The measured curve approaches the fluid lower boungut dispersions. In this experiment, the curve measured
J with decaying variance as packet-train length increasessing probing trains of 33-packet length exhibits suffitien
Forn = 33 andn = 65, the measured curves become smoothness and clear piece-wise linearity. We have ob-
hardly distinguishable fronf. served two linear segments from the figure. A further in-
We have conducted experiments using paths with morgestigation shows that the fluid bound of this 19-hop path
hops, with more complicated cross-traffic routing patternsonly has two linear segments.
and with various path configurations. Furthermore, we ex- Based on (15), we apply linear regression on the second
amined the impaCt of probing paCket size USing ns2 Simuﬁnear segment to compute the Capa(ﬂ}y and the cross-
lations, where the packet size can be set to any large vajraffic intensity \, of the tight link and get, = 96mb/s
ues. Results obtained (not shown for brevity) all supporignd \, = 2mb/s. Using these results, we retroactively

S/E[GN])

1 (SIE[GY])

our theory very well. plot the single-hop fluid bounds and observe that it almost
overlaps with the measured curve using packet-trains of 33-
5.2 Real Internet Measurements packet length. Notice that the bottleneck link is under very

light utilization during our 24-minute measurement period

We conducted packet-train probing experiments on severale can also infer based on our measurement that the avail-
Internet paths in the RON testbed to verify our analysis inable bandwidth of the path is constrained mainly by the
real networks. Since neither the path configuration nor theapacity of the bottleneck link and that the probing packet-
cross-traffic routing information is available for thesteln ~ trains have undergone significant interaction with cross-
net paths, we are unable to provide the fluid bounds. Therdraffic at non-bottleneck links. Otherwise, according to
fore, we verify our theory by observing the convergence ofTheorem 3 in [9], the response curves measured using short
the measured curves to a piece-wise linear curve as packdtain lengths would not have appeared above the single-hop
train length increases. fluid bound when the input rate is larger than the tight link

In the first experiment, we measure the rate responseapacity9émb/s. We believe that the tight link of the path
curve of the path from the RON node lulea in Sweden tois one of the last-mile lightly utilized fast-ethernet Ig&nd
the RON node at CMU. The path has 19 hops and a fastthat the backbone links are transmitting significant amount
ethernet minimum capacity, as we find out using traceroutef cross-traffic even though they still have available band-
and pathrate. We probe the path at 29 different input ratesyidth much more than the fast-ethernet capacity. Also no-
from 10mb/s to 150mb/s with a 5mb/s increasing step. Fotice that similar to our testbed experiments, fast-ethterne
each input rate, we use 200 packet-trains of 33 packetinks only havedémb/s IP-layer capacity.
each to estimate the output probing raiF[Gy]. The We repeat the same experiment on another path from the
whole experiment takes about 24 minutes. Again, the 20RON node pwh in Sunnyvale California to the NYU RON
packet-trains for each of the 29 input rates are so arrangetbde. This path has 13 hops and a fast-ethernet minimum
that they are approximately evenly separated during the 24capacity. Due to substantial cross-traffic burstinessgalon
minute testing period. The measured rate response curvéise path, we use packet-trains of 129-packet length in our
associated with packet-train length 2, 3, 5, 9, 17, and 33®robing experiment. The other parameters such as the in-
are plotted in Fig. 3(a), where we see that the responsput rates and the number of trains used for each rate are
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the same as in the previous experiment. The whole mea-
surement duration is abo6 minutes. The measured re-
sponse curves are plotted in Fig. 3(b). As we see, the
results exhibit more measurement variability compared to Non-elastic Deviati
the lulea~CMU path. However, as packet-train length in-
creases, the variability is gradually smoothed out and the
response curve converges to a piece-wise linear bound. We
again apply linear regression on the response curve with
packet-train length 129 to obtain the tight link informatio : ; : ;
We getC, = 80mb/s and)\, = 3mb/s, which does not : : : rr

agree with the minimum capacity reported by pathrate. We T O s T Cé —

believe that pathrate reported the correct information: Ou

underestimation is most probably due to the fact that there Figure 4: lllustration of two types of curve deviations.

are links along the path with very similar available band-

width. Consequently, the second linear segment become . ) . . .
too short to detect. The linear segment we are acting upon It is shown in [9] that the spruce estimator |s_unb|ased in
is likely to be a latter one. This experiment confirms ourSingle-hop paths regardless of the packet-train parameter
analysis, at the same time shows some of the potential diffig @1d7. This means that the statistical mean of (33) is

culties in exacting tight link information from the respens €dual toA» foranys > 0 and anyn > 2. In a multi-hop
pathP, a necessary condition to maintain the unbiasedness

A ri/ro Elastic Deviation

(N}

ot

Elastic Deviation

curves. ; i
property of the spruce estimator is
6 Implications Z(Cy, s,m) = ’\bg Co _ S(Cy). (34)
b

We now discuss the implications of our results on existingrpis means that at the input rate poffy, the real rate re-
measurement proposals. Except for pathChirp, all otheg onse of pattP must be equal to the single-hop fluid rate
techniques such as TOPP, pathload, PTR, and Spruce 3, sponse at the tight link g7

related to our analysis. This condition is usually not satisfied. Instead, due to
Theorem 2 and Property 4, we have

6.1 TOPP

TOPP is based on multi-hop fluid rate response cufve . ) ) . )

with one-hop persistent cross-traffic routing. TOPP used Nis implies that (33) is a negatively biased estimator of
packet-pairs to measure the real rate response ciymed ~ A»- The amount of bias is given by

assumes that the measured curve will be the samg as - - - -

when a large number of packet-pairs are used. However,Cb (Z(Obv s,n) _]:(Cb)) +C (]:(Cb) _S(Cb))- (36)
our analysis shows that the real cués different from#, _ o _ _ _
especially when packet-trains of short length are used, (e.g! "€ first additive term in (36) is the measurement bias
packet-pairs). Note that there is not much path informatiorf@used by the curve deviation &f from 7 at input rate

in Z that is readily extractable unless it is sufficiently close C»» Which vanishes as — oo due to Theorem 5. Hence
to its fluid counterpar. Hence, to put TOPP to work in we call itelastic bias Tr_le second additive term is thg por-
practice, one must use long packet-trains instead of packelion of measurement bias caused by the curve deviation of
pairs. F from S at input rateC},, which remains constant with

respect to the packet-train parametermndn. Therefore

it is non-elastic We illustrate the two types of curve devi-
6.2 Spruce ations in Fig. 4. Note that whefi, < s/as, non-elastic
bias is 0. Further recall thay as > Aye as stated in Prop-
erty 3. Hence, a sufficient condition for zero non-elastic
bias isC, < Ape. Conceptually, elastic deviation stems
Gn(s/Cy,5,n) —5/C from cross-traffic burstiness and non-elastic deviatioa is

C (1 - s/C, ) ’ (33) consequence of multi-hop effects.

In Table 2, we give the amount measurement bias caused
where the probing packet sizeis set to1500bytes, the by the two types of curve deviations in both the Emulab
packet-train lengthh = 2, and the bottleneck link capacity testbed experiments and the real Internet probing measure-
Cy is assumed known. ment on the path from lulea to CMU. Note that in the

Z(Ch, 5,n) = F(Cy) = S(Cy). (35)

Using the notations in this paper, we can write spruce’
available bandwidth estimator as follows

12



experiment elastic bias  non-elastic bias  total Qias increasing trend within a packet-train, which is different
Emulab-1  0.56 x 96 0.315 x 96 74.4 from examining whether the rate respor&ér;, s, n) is
Emulab-2  0.28 x 96 0.125 x 96 38.8 greater than one [7]. However, since there is a strong sta-
lulea-cmu  0.25 x 96 0 24 tistical correlation between a high rate respogse;, s, 1)

and the one-way-delay increasing tend within packet-
Table 2: Spruce bias in Emulab and Internet experiment (ifrains, our analysis can explain the behavior of pathload to
mb/s). a certain extent. Recall that, as reported in [6], pathload
underestimates available bandwidth when there are mul-

testbed experiment using a 3-hop path with one-hop pe|1_ip|e tight links along the path. Our results demonstrate

sistent routing, spruce suffers abaumb/s measurement Lhat the deviation o2(rs, s,n) from 7" in the input rate

bias, which is twice as much as the actual path availabléange(o’ Ap) gives rise .to a pot.ential pngerestimation in
bandwidth36mb/s. In the second Emulab experiment us-Pathload. The underestimation is maximized and becomes

ing path-persistent cross-traffic, the measurement bias is C'e"%”y nouceablg when non_—bottleneck links have the same
duced t038.8mb/s. which however is still more than the available bandwidth adp, given that the other factors are

actual available bandwidth. In both cases, spruce estimz;jl(-ept the same. ) i i
tor converges to negative values. We used spruce to es- Even through multiple tight links cause one-way-delay

timate the two paths and it did in fact give Omb/s resu|,[S|ncreasing trend for packet-trains with input rate lessitha

in both cases. For the Internet path from lulea to CMU Ap, this isnotan indication that the network can not sus-
spruce suffer@4mbl/s negative bias and produces a meal@n SUCh an input rate. Rather, the increasing trend is
surement result less thaidmbr/s, while the real value is a transientphenomenon resulting from probing intrusion

around94mb/s. We also use pathload to measure the threéeSidual' and it disappears when the input packet-train is

paths and observe that it produces pretty accurate results.sumc'emly long. Hence, itis our new observation that by

The way to reduce elastic-bias is to use long packetf_urth_erincreasing the pac_k_et-train length, the undaresti
trains instead of packet-pairs. In the lule€MU exper- 10N in pathload can be mitigated.
iment, using packet-trains of 33-packet, spruce can almost
completely overcome th24mb/s bias and produce an ac- 7 Related Work
curate result. However, there are two problems of using

long packet-trains. First, there is not a deterministititra pegjges the measurement techniques we discussed earlier,

length that guarantees negligible measurement bias on agyeo|anderet al. [13] first discussed the rate response curve

network path. Second, when router buffer space is limy 5 miti-hop network path carrying fluid cross-traffic with

ited and packet-train length are too large, the later pigbin one-hop persistent routing pattern. Dovraitsal. [3], [4]

packets in each train may experience frequent loss, makc'onsidered the impact of cross-traffic routing on the output

Ing It |mp055|_ble to acﬁfuratﬁlyhmeasblﬂ(cb).hAf;efr a”’h dispersion rate of a packet-train. It was also pointed @it th
spruce uses input raté,, which can be too high for the o o,iput rate of a back-to-back input packet-train (input
bottleneck router to accommodatg Ior)g packelt—traw.]s. O'?atem — (4, the capacity of the first hop,) converges
the other hand, note that non-elastic bias is an |nher|t-prob[O a point they call “asymptotic dispersion rate (ADR)” as

lem for spruce. There is no way to overcome it by ad]us“ngpacket-train length increases. The authors provided an in-

packet-train parameters. formal justification as to why ADR can be computed using
fluid cross-traffic. They demonstrated the computation of
6.3 PTR and pathload ADR for several special path conditions. Note that using

) . o the notations in this paper, ADR can be expressed as
PTR searches the first turning point in the response curve pap P

Z(rr, s,n) and takes the input rate at the turning point as ) s s

the path available bandwidthy . This method can produce 7111_{20 Gn(s/Ch,s,n) - N (s/C1, ) (37)

accurate result when the real response cuhis close to

F, which requires packet-train lengthto be sufficiently ~ Our work not only formally explains previous findings, but

large. Otherwise, PTR is also negatively biased and undeglso generalizes them to such an extent that allows any in-

estimatesdp». The minimum packet-train length needed put rate and any path conditions.

is dependent on the path conditions. The current version Kanget al. [8] analyzed the gap response of a single-

of PTR use packet train length= 60, which is probably  hop path with bursty cross-traffic using packet-pairs. The

insufficient for the Internet path from pwh to CMU experi- paper had a focus on large input probing rate. é&fual.

mented in this paper. extended the single-hop analysis for packet-pairs [11] and
Pathload is in spirit similar to PTR. However, it searchespacket-trains [9] to arbitrary input rates and discussed th

the available bandwidth region by detecting one-way-delaympact of packet-train parameters.
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8 Conclusion [10] X. Liu, K. Ravindran, and D. Loguinov, “Multi-Hop
Probing Asymptotics in Available Bandwidth Estimation:
This paper provides a stochastic characterization of gacke ~ Stochastic Analysis,” Technical report, CUNY, Avail-
train bandwidth estimation in a multi-hop path with arbi- able at http://www.cs.gc.cuny.edu/tr/TR-2005010.pdf)- A
trarily routed cross-traffic flows. Our main contributions ~ 9ust 2005.
include derivation of the multi-hop fluid response curve as[11] X. Liu, K. Ravindran, and D. Loguinov, “What Signals Do
well as the real response curve and investigation of the con-  Packet-pair Dispersions CarryaEEE INFOCOM March
vergence properties of the real response curve with respect 2005
to packet-train parameters. The insights provided in thid12] W. Matragi, K. Sohraby, and C. Bisdikian, “Jitter Caicu
paper not only help understand and improve existing tech- ~ 1us in ATM Networks: Multiple Nodes,1EEE/ACM Tran-
nigues, but may also lead to a new technique that measures Sctions on Networking(1):122-133, 1997.
tight link capacity. [13] B. Melander, M. Bjorkman, and P. Gunningberg, “A New
There are a few unaddressed issues in our theoretical End-to-End Probing and Analysis Method for Estimating
framework. In our future work, we will identify how var- Bandwid_th Bottlenecks, IEEE Globecom Global Internet
ious factors, such as path configuration and cross-traffic SymposiumNovember 2_000' _
routing, affect the amount of deviation betwegrand 7. 1141 B. Melander, M. Bjorkman, and P. Gunningberg, )
We are also interested in investigating new approaches that . <c9ression-Based Available Bandwidth Measurements,

help detect and eliminate the measurement bias caused b}/ SPECTSJuly 2002. ) . )
bursty cross-traffic in multi-hop paths. [15] Y. Ohba, M. Murata, and H. Miyahara, “Analysis of Inter-

departure Processes for Bursty Traffic in ATM Networks,”
IEEE Journal on Selected Areas in CommunicatjoBs
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