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Abstract— Although packet-pair probing has been used as one
of the primary mechanisms to measure bottleneck capacity, cross-
traffic intensity, and available bandwidth of end-to-end Internet
paths, there is still no conclusive answer as to what information
about the path is contained in the output packet-pair dispersions
and how it is encoded. In this paper, we address this issue
by deriving closed-form expression of packet-pair dispersion
in the context of a single-hop path and general bursty cross-
traffic arrival. Under the assumptions of cross-traffic stationarity
and ASTA sampling, we examine the statistical properties of
the information encoded in inter-packet spacings and derive
the asymptotic average of the output packet-pair dispersions as
a closed-form function of the input dispersion. We show that
this result is different from what was obtained in prior work
using fluid cross-traffic models and that this discrepancy has
a significant impact on the accuracy of packet-pair bandwidth
estimation.

Index Terms— Stochastic Process, Queuing Theory, Active
Measurement, Bandwidth Estimation.

I. I NTRODUCTION

Sending probing packets to measure network path charac-
teristics has been a common practice in the Internet since
the late 1980’s. There are two categories of probing-based
measurements: delay based and dispersion based. In the first
category, path characteristics such as per-hop capacity, queuing
delay, and link utilization are inferred based on the RTT
or one-way delay ofindividual packets [1], [6], [11], [14],
[20]. In the second category, the dispersion of packet-pairs
is traditionally used to infer bottleneck capacity [3], [4], [5],
[7], [10], [13], [22], [23]; however, recent approaches also
use packet-pairs/trains to measure cross-traffic and available
bandwidth of an end-to-end path [2], [8], [9], [12], [18],
[25], [26]. It is straightforward to identify the information
encoded in the delay of individual probing packets. Hence,
delay-based estimation techniques are theoretically validated
and measurement difficulties are mostly due to practical issues
[20], [24]. On the other hand, it is far more difficult to
characterize the information contained in the output dispersion
of probing packet-pairs. Consequently, apart from the practical
issues, dispersion-based measurement techniques are yet to be
fully justified for general cross-traffic conditions.

There has been a fair amount of research effort to character-
ize the information encoded in packet-pair spacing. However,
previous analysis either relied on constant-rate fluid cross-
traffic models [5], [17], or provided answers only partially
suitable for generic bursty cross-traffic [3], [9], [21], [25]. In
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this paper, we provide a more accurate, yet concise character-
ization of packet-pair probing in the context of a single-hop
path and non-fluid cross-traffic. We identify three stochastic
processes related to cross-traffic arrival and show that packet-
pair probing essentially inspects the sample-paths of these
three processes and constructs the output dispersion signal
based on their random sampling. We derive several closed-
form expressions to describe this construction procedure and
call our characterization of packet-pair probing the “sampling
and constructing” model.

Under the assumption of cross-traffic stationarity, we ex-
amine the statistical properties of the probing signals encoded
in inter-packet spacing and derive the asymptotic average of
the output dispersion as a closed-form function of the input
dispersion. We show that the result deviates from what was
previously obtained using constant-rate fluid cross-traffic and
that this deviation has a significant adverse impact on packet-
pair bandwidth estimation techniques.

We list the terminology used in the paper in Table I. In
section II, we summarize related work of packet-pair analysis
and report our earlier modeling attempt. In section III, we
introduce our “sampling-and-constructing” model to character-
ize packet-pair probing. Based on our model, we examine the
statistical characteristics of encoded probing signals insection
IV. We derive the asymptotic average of output dispersions
in section V and show that its deviation from the fluid result
has an adverse impact on packet-pair bandwidth estimation
in section VI. Finally, we present our concluding remarks in
section VII.

II. BACKGROUND

A. Related Work

The earliest packet-pair analysis dated back to 1988, when
Jacobson [10] examined the packet-pair spacing in the absence
of cross-traffic and obtained the following result

δ′ =







s

C
δ ≤

s

C

δ δ >
s

C

. (1)

whereδ andδ′ are the input and output spacings of the packet-
pair, respectively,s is the probing packet size, andC is the
bottleneck capacity of the path. Note that when the input
spacingδ is small, the output spacingδ′ contains information
aboutC.

In real networks, cross-traffic is often non-negligible. To
take into account the effect of cross-traffic, Dovroliset al. [5]
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TABLE I

TERMINOLOGY

Term Definition
Network path Sequence of interconnected FIFO store and forward hops
Hop capacity Transmission speed of the hop in bits per second
Bottleneck capacity The minimum hop capacity along a network path
Narrow hop The hop with the smallest capacity along a networkpath
Cross-traffic intensity The average arrival rate of cross-traffic in some time interval
Hop available bandwidth The hop’s residual capacity after transmitting cross-traffic in some time interval
Path available bandwidth The minimum hop available bandwidth along the path
Tight hop The hop with the minimum available bandwidth alonga path
Encoded probing signal The information contained in packet-pair output dispersions

and Melanderet al. [17] studied the relationship between the
packet-pair input and output rate using a constant-rate fluid
cross-traffic model. In a single-hop path, their results canbe
summarized as follows
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
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, (2)

wherer = s/δ andr′ = s/δ′ are the input and output rates of
packet-pairs, respectively,λ is the cross-traffic intensity, and
C is again the hop capacity. Translating (2) into its spacing
version, we get
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This shows that when the input rate is higher than hop avail-
able bandwidth, there will be a deterministic multiplicative
signal λ/C and a deterministic additive signals/C encoded
in the output spacingδ′. Again note that this result embraces
(1) as a special case whenλ = 0.

Applying mathematical induction to all hops along the path,
we get the following relation between the input and output rate
for an arbitrary multi-hop path
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
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

C
r

r + λ
b ≥ r ≥ C − λ

r r < C − λ
, (4)

where b is the second minimum hop-available-bandwidth
along the path,C is the capacity of the tight hop, andλ is the
cross-traffic intensity at the tight hop. This relation leads to
the recent measurement proposal TOPP [18], [16], which is a
technique to infer available bandwidth and tight-link capacity.

Realistic cross-traffic is always bursty and its intensity is
never a time-invariant constant. Therefore, a natural question
becomes how to generalize results (1)-(4) to accommodate
bursty cross-traffic. We summarize the main results of previous
studies next.

To interpret his Internet measurement observations of the
probing packet RTT phase plot, Bolot (1993) [3] adopted a
single-hop path with bursty cross-traffic in his analysis. Bolot
showed that the packet-pair dispersion reflects the amount of
traffic workload arrived at the router between the pair when
the router does not idle between their arrivals.

Hu et al. (2003) [9] did a similar analysis and proposed
a spacing formula under the condition when the packet-pair

share the same queueing period (the same condition used in
Bolot’s analysis)

δ′ =
s

C
+

yδ

C
, (5)

where y is a random variable reflecting the cross-traffic
intensity in the duration between the arrivals of the probing
pairs.

Both Bolot and Hu pointed out that when the input spacing
δ is large enough, the output spacingδ′, although random,
becomes equal toδ on average. In other words, the input
spacing is only contaminated by some additive zero-mean
signal.

Pasztoret al. (2002) [21] identified several types of signals
encoded in the packet dispersions. They differentiated packet-
pairs falling into the same router busy period from those that
do not. In the former case, a multiplicative signal related to
cross-traffic calleddistribution signatureis encoded into the
output spacings; while in the latter case, an additive zero-mean
white noise signal calledaccumulation signatureis encoded.

B. Our Earlier Attempt

We now report our earlier attempt of packet-pair probing
modeling inspired by conventional wisdom. Although it turned
out to be of little success, a comparison of this approach
with the one presented later in this paper helps understand
the problem better.

Based on previous insights, we tried to interpret packet-pair
probing in single-hop path with general cross-traffic usingthe
following signal model

δ′ =


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

s

C
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yδ

C
JQ

δ + w DQ
, (6)

where w is a zero-mean random variable,y is a λ-mean
random variable, andλ is the long-term average of cross-traffic
intensity. JQ (Joint Queuing) and DQ (Disjoint Queuing) are
the conditions under which a packet-pair share the same router
busy period or fall into different queueing period respectively.

This characterization can accommodate the fluid model as a
special case where both random variablesw andy degenerate
to deterministic constants. Also note that, in the fluid model,
a packet-pair falls into the same queuing period if and only if
δ < s/(C −λ). In bursty cross-traffic, it is easy to verify that
whenδ < s/C, the JQ condition is always satisfied. However,
when δ > s/C, there is usually no deterministic relationship
betweenδ and the JQ condition. For any givenδ > s/C, JQ
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Fig. 1. Our unifying signal model inspired by previous work.

becomes a random event that occurs with certain probability.
This can be schematically illustrated using a unifying signal
model in Fig. 1.

The unifying model shows that the forwarding hop can be
viewed as a stochastic mixture of two independent random
systems. With probabilityp, the input signalδ passes through
the JQ system, where multiplicative random signaly/C and
additive deterministic signals/C are stamped onδ. With
probability 1 − p, the input signalδ passes through the DQ
system, where additive white noise signalw is stamped onδ.
Although this characterization makes intuitive sense, we found
that it is not accurate. We discuss the explanation in Section
IV.

III. T HE “SAMPLING AND CONSTRUCTING” NATURE OF

PACKET-PAIR PROBING

A. Formulation of Cross-Traffic Arrival

In this paper, we focus on single-hop packet-pair probing.
We assume infinite buffer capacity, FIFO queuing, and a work-
conserving discipline for the forwarding hop. For the compos-
ite of cross-traffic and probing traffic, we assume simple traffic
arrival, i.e., at most one packet arrives at any time instance. For
cross-traffic alone, we identify three sample-paths which play
crucial roles in determining the nature of packet-pair probing.
They are the sample-paths of cross-traffic intensity process,
hop workload-difference process, and available bandwidth
process. We next present a rigorous formulation for these three
elements and show the basic relationship among them.

Definition 1: Cross-traffic is driven by the packet counting
process{N(t), 0 ≤ t < ∞} and the packet size process
{Sn, 1 ≤ n < ∞}. The cumulative traffic arrival{V (t), 0 ≤
t < ∞} is a random process counting the total volume of data
1 received by the hop up to time instancet

V (t) =

N(t)
∑

n=1

Sn.

Note thatV (t) and N(t) are right continuous, meaning that
the packet arriving att is counted inV (t).

Definition 2: We define{Yδ(t), 0 ≤ t < ∞} as the process
indicating the average cross-traffic arrival rate in the interval
(t, t + δ]

Yδ(t) =
V (t + δ) − V (t)

δ
.

and call it “δ-interval cross-traffic intensity process”.

1In this paper, packet size and data are measured in bits.

The second critical element is hop workload-difference
process.

Definition 3: Hop workload process{W (t), 0 ≤ t < ∞}
indicates the sum at time instancet of service times of all
packets in the queue and the remaining service time of the
packet in service.

Definition 4: We define{Dδ(t), 0 ≤ t < ∞} as the process
indicating the difference between the hop workload at timet
and t + δ

Dδ(t) = W (t + δ) − W (t),

and call it “δ-interval workload-difference process”.
The third important process is the available bandwidth

process.
Definition 5: Hop utilization process{U(t), 0 ≤ t < ∞} is

an on-off process associated with{W (t)}

U(t) =

{

1 W (t) > 0
0 W (t) = 0

(7)

andδ-interval hop idle process

I(t, t + δ) = Iδ(t) = δ −

∫ t+δ

t

U(x)dx (8)

is a process indicating the total amount of idle time of the
forwarding hop in[t, t+δ]. We further call time interval[t, t+
δ] a “hop busy period” ifIδ(t) = 0 and a “hop idle period”
if I(t + δ) − I(t) = δ.

Definition 6: We define{Bδ(t), 0 ≤ t < ∞} as the process
indicating the residual bandwidth in the time interval[t, t+ δ]

Bδ(t) = C

(

1 −
1

δ

∫ t+δ

t

U(x)dx

)

=
Iδ(t)C

δ
, (9)

and call it “δ-interval available bandwidth process”.
The following theorem describes the relationship among the

three important processes.
Theorem 1:For all positive t andδ, the following holds

Bδ(t) = C − Yδ(t) +
Dδ(t)C

δ
. (10)

Proof: Note that the total hop idle time within the time
interval [t, t + δ] is

Iδ(t) =
Bδ(t)δ

C
. (11)

The amount of data transmitted by the hop within the time
interval [t, t + δ] is

V (t + δ) − V (t) + (W (t) − W (t + δ))C

= Yδ(t)δ − Dδ(t)C.

Thus, the hop working time is

Yδ(t)δ

C
− Dδ(t). (12)

Sinceδ is the sum of hop working time and hop idle time.
Adding up (11) and (12), we get

δ =
Bδ(t)δ

C
− Dδ(t) +

Yδ(t)δ

C
. (13)

Rearranging (13), we get the desired result.
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Fig. 2. Illustration of the intrusion residual function.

Packet-pair probing is essentially interacting with the
sample-pathsof the processes we just formulated. To prepare
for the presentation of our main results, we next examine
certain details about this interaction.

B. Probing Intrusion of Packet-Pairs

We use the triple〈a1, δ, s〉 to denote a pair of probing
packetsp1 and p2 of the same size. The first elementa1 in
the triple is the arrival time of the packetp1 to the hop;δ is
the inter-packet spacing; ands is the probing packet size. The
arrival time of p2 is a2 = a1 + δ. The departure time of the
probing packets from the hop are denoted byd1 andd2. The
output spacing isδ′ = d2 − d1. In terms of rate, the input and
output probing rates arer = s/δ andr′ = s/δ′.

We useW̃ (t) and Ĩδ(t) to denote the workload sample-
path and the hop idle sample-path associated with the super-
position of cross-traffic and probing traffic. Note that traffic
composition only increases hop workload. That is, for allt,
W̃ (t) ≥ W (t). Therefore, we define the following function to
help understand this intrusion behavior of packet probing.

Definition 7: The intrusive rangeof the probing traffic into
W (t) is the set{t : W̃ (t) > W (t)}. The intrusion residual
function is Wd(t) = W̃ (t) − W (t).

Let us next examine the properties of functionWd(t) to
understand the intrusion behavior of a single probing packet.
Before the arrival of the probing packet,Wd(t) = 0. It
gets an immediate increment ofs/C upon the packet arrival,
where s is the packet size. InW (t)’s busy periods,Wd(t)
remains unchanged. InW (t)’s idle periods,Wd(t) decreases
linearly with slope−1 until it becomes 0, which marks the
end of the intrusive range. Within the intrusive range,Wd(t) is
monotonically non-increasing. Fig. 2 illustrates this behavior,
from which we can infer that(t1, t2), (t3, t4) and (t5, t6)
are three busy periods inW (t), whereas(t2, t3), (t4, t5), and
(t6, t7) are three idle periods inW (t). Time instancet1 is the
arrival time of the probing packet, whereast7 marks the end
point of the intrusive range2.

When W (t) is probed by a packet-pair〈a1, δ, s〉, we are
interested in the left-hand limit ofWd(t) at timea2, denoted

2Note that the probing packet departs beforet7.

asRδ(a1)

Rδ(a1) = lim
t→(a1+δ)−

Wd(t) = Wd(a2−)

= W̃ (a2−) − W (a2−) = W̃ (a2−) − W (a2).

The last equality is due to the simple arrival assumption. Since
there is no cross-traffic packet arrival at timea2 when p2

arrives, we haveW (a2−) = W (a2).
The termRδ(a1) is the intrusion residual at timea2 caused

by the probing packetp1 and “experienced” by the packetp2.
In other words, the queuing delay ofp2 in the hop is given by

W̃ (a2−) = W (a1 + δ) + Rδ(a1). (14)

As a direct result of the observation illustrated by Fig. 2,
Rδ(a1) can be computed as follows3

Rδ(a1) =
( s

C
− Iδ(a1)

)+

=

(

s − Bδ(a1)δ

C

)+

. (15)

We are also interested in computing̃Iδ(a1) when the hop
is probed by packet-pair〈a1, δ, s〉, which, from the intrusion
behavior described in Fig. 2, can be expressed as following

Ĩδ(a1) =
(

Iδ(a1) −
s

C

)+

=

(

Bδ(a1)δ − s

C

)+

. (16)

Notice that between the two termsRδ(a1) and Ĩδ(a1),
there is at most one positive term for any givena1. When
Rδ(a1) > 0, the two packets in the pair share the same hop
busy period andĨδ(a1) = 0. When Ĩδ(a1) > 0, the two
packets fall into different hop busy period andRδ(a1) = 0.
Hence, the positiveness of the two terms corresponds to JQ
and DQ conditions respectively.

We are now ready to derive the relation between the input
spacingδ and the output spacingδ′ for any individual packet-
pair. This relation is a milestone of our packet-pair analysis.

C. Output Packet-Pair Dispersion

We first present a corollary, which is due to the work-
conserving assumption.

Corollary 1: For any packet arriving into the hop at time
t1 and departing from the hop at timet2, the time interval
[t1, t2] is a hop busy period.

This corollary immediately leads to the following lemma
Lemma 1:When a hop is probed by a packet-pair〈a1, δ, s〉,

we haveĨ(d1, d2) = Ĩ(a1, a2).
Proof: First, due to corollary 1, we have

Ĩ(a1, d1) = Ĩ(a2, d2) = 0. (17)

Further, notice that̃I(a1, d2) can be expressed in the following
two ways

Ĩ(a1, d2) = Ĩ(a1, d1) + Ĩ(d1, d2) = Ĩ(d1, d2) (18)

Ĩ(a1, d2) = Ĩ(a1, a2) + Ĩ(a2, d2) = Ĩ(a1, a2) (19)

Combining (18) and (19), we havẽI(d1, d2) = Ĩ(a1, a2).

3It is customary to denotemax(X, 0) usingX+ and call it the “ positive
part” of X.
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Our next theorem expresses the output spacing of a packet-
pair from two different angles.

Theorem 2:When W (t) is probed by a packet pair
〈a1, δ, s〉, the output spacingδ′ can be expressed as

δ′ =
Yδ(a1)δ

C
+

s

C
+

(

Bδ(a1)δ − s

C

)+

= δ + Dδ(a1) +

(

s − Bδ(a1)δ

C

)+

. (20)

Proof: We examine the hop activity with respect tõW (t)
within the time interval[d1, d2]. Notice thats/C time units
are spent on serving probing packetp2 and that

V (a2) − V (a1)

C
=

Yδ(a1)δ

C
(21)

time units are spent on serving the cross-traffic that has arrived
to the hop during the time interval(a1, a2). Thus, the total hop
working time in [d1, d2] is given by

Yδ(a1)δ

C
+

s

C
. (22)

Also notice thatĨ(d1, d2) is the total idle time of the hop
during this time interval. Since the sum of the hop working
time in (22) and hop idle time must be equal tod2 − d1, we
immediately have the following

δ′ = d2 − d1 =
Yδ(a1)δ

C
+

s

C
+ Ĩ(d1, d2). (23)

Further, due to Lemma 1 and (16), we get

Ĩ(d1, d2) = Ĩ(a1, a2) = Ĩδ(a1) =

(

Bδ(a1)δ − s

C

)+

. (24)

Substituting (24) back to (23), we proved the first equality in
(20). For the second part of (20), first notice that the total
delays ofp1 andp2 at the hop are given by

d1 − a1 = W (a1) +
s

C
(25)

d2 − a2 = Rδ(a1) + W (a2) +
s

C
. (26)

Subtracting (25) from (26), we get

δ′ = δ + Rδ(a1) + Dδ(a1). (27)

Substituting (15) into (27), we get the second half of (20).
The most salient feature of Theorem 2 is that the result

is almost unconditional, in the sense that it neither relieson
any assumption on cross-traffic arrival pattern nor imposesany
restriction on the input signalδ. In addition, this result enforces
such a conceptual idea that packet-pair probing can be viewed
as a “sampling-and-constructing” procedure as illustrated in
Fig. 3. The packet-pair〈a1, δ, s〉 is essentially sampling the
three sample-pathsYδ(t), Dδ(t), andBδ(t) at the time point
a1 and then constructing the output signalδ′ using the three
samples based on (20). Although (20) shows two different
ways of constructing the output signal, they both produce the
same result. We surely can take advantage of Theorem 1 and
rewrite (20) in a form involving only two processes (e.g.,Yδ(t)
andDδ(t)). However, the present version is more intuitive and
makes later analysis easier. Our characterization alreadysheds

〈a1, δ, s〉

a1

t

Yδ(t)

Dδ(t)

Bδ(t)

3 random samples construction
δ′

C, δ, s

Fig. 3. The “sampling-and-constructing” nature of packet pair probing.

light on what the encoded probing signals are and how they are
encoded. It also allows investigation of their statisticalnature
from an analytical angle rather than experimental observation.

IV. T HE STATISTICS OFENCODED PROBING SIGNALS

We use 〈{Tn, 1 ≤ n < ∞}, δ, s〉 to denote an infinite
sequence of packet-pair probings driven by a point process
Λ(t) = max{n ≥ 0 : Tn ≤ t}. We useδ′n to denote
the output spacing of then-th packet-pair〈Tn, δ, s〉 in the
probing sequence. Adjacent packet-pairs are sufficiently sep-
arated, meaning that we neglect the cases where a packet-
pair falls into the intrusive range of the preceding pairs.
Consequently, the “sampling and constructing” model holds
for all pairs in the probing sequence. This is a practically
valid simplification because measurement tools [18], [26] all
devise the inter-probing delays much larger thanδ so as
to keep the average probing traffic intensity small. Given
this discussion, the packet-pair sequence will generate three
discrete-time sample-paths ofencoded probing signal(EPS)
samples:Yδ(Tn), Dδ(Tn), and Bδ(Tn). We now investigate
the statistical properties of these EPS sample-paths.

A. Basics

We introduce a concept similar to probability distribution
called frequency distributionto characterize sample-path
statistics. For the details of this concept, please refer to[19,
pages 46-50].

Definition 8: For continuous-time sample-pathX(t), define
indicator functionΨ(x, t)

Ψ(x, t) =

{

1 X(t) ≤ x
0 X(t) > x

. (28)

The frequency distribution functionP (x) of X(t) is defined
as follows (assuming the limit exists for∀x ∈ R)

P (x) = lim
τ→∞

1

τ

∫ τ

0

Ψ(x, t)dt. (29)

For discrete-time sample-pathXn, define indicator function
Ψ(x, n)

Ψ(x, n) =

{

1 Xn ≤ x
0 Xn > x

. (30)
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The frequency distribution functionP (x) of Xn is defined
similarly

P (x) = lim
k→∞

1

k

k
∑

n=1

Ψ(x, n). (31)

In the spirit of the probabilistic mean, we have continuous-
time and discrete-time sample-path means as follows4

E[X(t)] =

∫

∞

−∞

xdP (x) = lim
τ→∞

1

τ

∫ τ

0

X(t)dt,

E[Xn] =

∫

∞

−∞

xdP (x) = lim
k→∞

1

k

k
∑

i=1

Xi.

To examine the statistics of EPS sample-paths, we impose
the another ASTA (Arrivals Sees Time Averages) property on
the sampling process{Tn}. ASTA guarantees the equality of
the statistics (or frequency distribution) in sampled series to
the corresponding statistics in the continuous-time sample-
path being sampled [15]. With non-negligible ASTA bias,
sampling-based estimation usually fails to reach the measure-
ment target and not much is left for discussion. The fact
that quite a few current measurement techniques perform well
without factoring ASTA into their design suggests that ASTA
bias is either not present or is negligible in the studied Internet
environments.

B. Cross-traffic Assumptions and Implications

Under the ASTA assumption, our focus is now shifted to
the sample-path statistics ofYδ(t), Dδ(t), andBδ(t), which
again are dependent on the probabilistic properties of the
underlying cross-traffic arrival process. We make an ergodic
stationarity assumption on cross-traffic arrival and investigate
its implications on these sample-paths.

Assumption 1:The cumulative traffic arrival process
{V (t)} has ergodic stationary increments, i.e., for any positive
δ, the process{Yδ(t)} is an ergodic stationary process with
ensemble meanλ, which is less than the hop capacityC.

This assumption imposes two restrictions on the process
{Yδ(t)}. First, the stationarity assumption implies thatYδ(t)
has identical distribution for allt. Consequently,{Yδ(t)} is
also a wide sense stationary process5. Second, the ergodicity
assumption implies that, at any time instancet, the variance
of Yδ(t) decays to 0 asδ increases.

Due to Szczotka [27], [28], the hop workload process
{W (t)} will “inherit” the ergodic stationarity property from
the traffic arrival process. Also because of the definition of
workload-difference process and Theorem 1, this property is
further carried over to process{Dδ(t)} and {Bδ(t)}, whose
ensemble means are0 andC − λ respectively.

The following lemma states the implications of Assumption
1 on the three sample-paths under investigation. They are all
immediate consequences of ergodic stationarity.

4We useE[.] to denote the sample-path mean, or limiting time-average,
instead of the ensemble mean.

5Assuming second order moments exist.

Lemma 2:For any positiveδ, the sample-path means of
Yδ(t), Dδ(t), andBδ(t) are given by

E[Yδ(t)] = lim
τ→∞

1

τ

∫ τ

0

Yδ(t)dt = λ (32)

E[Dδ(t)] = lim
τ→∞

1

τ

∫ τ

0

Dδ(t)dt = 0 (33)

E[Bδ(t)] = lim
τ→∞

1

τ

∫ τ

0

Bδ(t)dt = C − λ. (34)

Finally, ergodicity also implies that the variance ofBδ(t)
decays when the observation intervalδ becomes large and that
this decaying variance will be reflected on the sample-path
frequency distribution. Hence, we have the following lemma,
which is intuitive and we skip the formal proof.

Lemma 3:Under the assumptions of the paper, the fre-
quency distribution functionPδ(x) of sample-pathBδ(t) ap-
proaches the following step function asδ gets large

P∞(x) =

{

0 x < C − λ
1 x ≥ C − λ

. (35)

We point out that the ergodic stationarity assumption is not
a necessary condition for these sample-path properties. We
conjecture that traffic with asymptotic stationarity also exhibits
the same properties (including traffic driven by regenerative
on-off arrival processes). However, the main goal of the paper
is not to identify the weakest traffic condition that gives usthe
desirable sample-path properties, but rather to make a realistic
traffic assumption and study its implications on bandwidth
measurement techniques. A recent study showed that Internet
traffic can be well modeled as a stationary process on the
timescale of hours [29]. Therefore, we started by assuming
traffic stationarity; however, later results in this paper are
all derived based on the sample-path properties. They are
expected to have broader applicability than those limited to
stationary cross-traffic.

C. Unifying Signal Model Revisited

Thanks to ASTA, the three discrete-time sample-paths gen-
erated by packet-pair sampling have the following limiting
time-averages







E[Yδ(Tn)] = λ
E[Dδ(Tn)] = 0
E[Bδ(Tn)] = C − λ

. (36)

Also recall that a large observation intervalδ reduces the
spread of the frequency distributions forYδ(Tn) andBδ(Tn)
6. We now revisit the unifying model presented in Section II
and explain why it is not valid.

Recall that when the input signalδ is very large, the
distribution of Bδ(Tn) is concentrated aroundC − λ. The
positive-part termRδ(Tn) in the second equality of model
(20) becomes almost constantly0. Hence, the additive zero-
mean termDδ(Tn) becomes easily detected from the output
signal samplesδ′n. However, this does not mean that there is

6Unlike Bδ(Tn) and Yδ(Tn), Dδ(Tn) is not a moving average process
by nature. Consequently, the frequency distribution ofDδ(Tn) gradually
becomes insensitive to the increase ofδ.
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no cross-traffic intensity information captured inδ′n. The first
equality of (20) shows thatYδ(Tn) is always sampled by the
packet-pair. It is only because of the strong noise termĨδ(Tn)
that the desired signal is undetectable based on the observation
of δ′n.

When input signalδ < s/C, the positive-part term̃Iδ(Tn)
in the first equality of model (20) is0. Hence, additive signal
s/C and multiplicativeλ-mean signalYδ(Tn) can be easily
detected from the statistics ofδ′n . However, the additive zero-
mean signalDδ(Tn) does not escape packet-pair sampling. It
only becomes undetectable from the statistics ofδ′n due to the
strong noise termRδ(Tn).

Whenδ is neither large nor small, both positive-part terms
become prominent noise. Neither the additive zero-mean sig-
nal nor the multiplicativeλ-mean signal can be easily detected.
However, they are always captured by probing sampling and
encoded in the output spacingδ′. This is exactly the subtlety
that escaped the unifying model (6). The unifying model shows
that δ′n carries a sample of the zero-mean signal only under
DQ condition (wheñI(Tn) > 0). However, the truth is that the
output spacing always carries a sample ofDδ(Tn) regardless
of the condition it is under. It is thewhole set of samples
Dδ(Tn) that exhibits additive zero-mean nature,not the set of
samples under the DQ condition. Similarly, it is the whole set
of samplesYδ(Tn) that has a mean equal toλ, not just the
set of samples under the JQ condition. This explains why the
unifying signal model is not accurate.

V. A SYMPTOTICSIN PACKET-PAIR SAMPLING

One important application of our packet-pair probing model
(20) is that it allows immediate derivation of the asymptotic
average of probing output spacingδ′ as a closed-form function
of the input spacingδ. This functional relation, which we call
the gap response curve, serves as a theoretical foundation for
bandwidth measurement tools such as TOPP [18] and Spruce
[26]. Previous derivations assumed constant-rate fluid cross-
traffic and the results given in (2)-(3). In this section, we revisit
this problem under the condition of ergodic stationary cross-
traffic arrival, which is clearly more realistic than fluid traffic.

A. Asymptotic Average ofδ′

Note that the output spacings also form a discrete-time
sample-pathδ′n. The asymptotic average ofδ′ is just the
sample-path mean ofδ′n. That is,

E[δ′n] = lim
n→∞

n
∑

i=1

δ′i. (37)

Our next theorem provides a closed-form expression for
E[δ′n].

Theorem 3:When a hop is probed by ASTA packet-pair
sequence〈{Tn}, δ, s〉 and assuming thatδ-interval available
bandwidth sample-pathBδ(t) has frequency distribution func-
tion Pδ(x), then the following holds

E[δ′n] =
δλ + s

C
+

∫ C

s/δ

xδ − s

C
dPδ(x)

= δ +

∫ s/δ

0

s − xδ

C
dPδ(x). (38)

E[Ĩδ(t)]

E[Rδ(t)]

s
C

s
C−λ α δ

Fig. 4. The evolving trend ofE[Ĩδ(t)] andE[Rδ(t)] with respect toδ while
keepings constant.

Proof: Recall Theorem 2 and notice that due to ASTA
property, the frequency distribution ofBδ(Tn) is alsoPδ(x).
Also note thatBδ(Tn) is only distributed in[0, C]. Therefore,

E

[

(

Bδ(Tn)δ − s

C

)+
]

=

∫ C

s/δ

xδ − s

C
dPδ(x)

E

[

(

s − Bδ(Tn)δ

C

)+
]

=

∫ s/δ

0

s − xδ

C
dPδ(x)

Combining these results with (20) and (36), we have the
statement of the theorem.

To help understand this result, we examine the two integral
termsE[Ĩδ(t)] andE[Rδ(t)] in (38). Fig. 4 plots the evolving
trend of the two terms with respect toδ while keepings con-
stant. As seen in the figure,E[Rδ(t)] shows a monotonically
decreasing tend asδ increases and at some pointα it becomes
0 or practically negligible. The other termE[Ĩ(t)] remains
0 for δ ≤ s/C and then shows a monotonically increasing
trend, asymptotically approaching a linear function ofδ. The
two curves intersect at the pointδ = s/(C −λ). These results
can be summarized into the following two set of formulas



















E[Ĩδ(t)] = 0 δ <
s

C
E[Ĩδ(t)] = E[Rδ(t)] δ =

s

C − λ

E[Rδ(t)] =
s

C
−

C − λ

C
δ δ <

s

C

. (39)











limδ→∞ E[Ĩδ(t)] =
C − λ

C
δ −

s

C
limδ→∞ E[Rδ(t)] = 0

limδ→s/C E[Ĩδ(t)] = 0

. (40)

All these properties are provable based on the lemmas we
had in the previous section. We next prove one of them and
leave the verification of the others to the reader.

Theorem 4:The termE[Rδ(t)] is a continuous and mono-
tonic decreasing function ofδ in the range(0,∞). It converges
to 0 asδ increases.

Proof: First, note that for any∆ > 0 and t, we have

0 ≤ Rδ(t) − Rδ+∆(t) ≤ ∆. (41)
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This difference defines a new sample-path, whose time-
average can be computed as following

0 ≤ E[Rδ(t) − Rδ+∆(t)] ≤ ∆, (42)

which can be rewritten as

0 ≤ E[Rδ(t)] − E[Rδ+∆(t)] ≤ ∆. (43)

This shows thatE[Rδ(t)] is a monotonic decreasing function
of δ. Further, by taking the limit of (43) when∆ → 0, we
have

lim
∆→0

(E[Rδ(t)] − E[Rδ+∆(t)]) = 0. (44)

This proves the continuity ofE[Rδ(t)] with respect toδ in
the range(0,∞). Next, we show its convergence to 0 asδ
increases.

First, note that

lim
δ→∞

E[Rδ(t)] = lim
δ→∞

∫ s/δ

0

s − xδ

C
dPδ(x)

= lim
δ→∞

∫ s/δ

0

s

C
dPδ(x) − lim

δ→∞

∫ s/δ

0

xδ

C
dPδ(x).(45)

Note that the first item in (45) is zero7

lim
δ→∞

∫ s/δ

0

s

C
dPδ(x) = lim

δ→∞

s

C
Pδ(

s

δ
) =

s

C
P∞(0) = 0,

(46)
and the second item in (45) is also zero

0 ≤ lim
δ→∞

∫ s/δ

0

xδ

C
dPδ(x) < lim

δ→∞

∫ s/δ

0

s
δ δ

C
dPδ(x)

= lim
δ→∞

s

C
Pδ(

s

δ
) =

s

C
P∞(0) = 0. (47)

Hence, the limit ofE[Rδ(t)] whenδ → ∞ is zero.

B. Deviation From Fluid Model

Note that the real gap response curve (38) is different from
the fluid model (3). In fact, as schematically showed in Fig. 5,
the fluid model is a lower bound of the real curve. In the input
dispersion range(s/C, α), the real curve positively deviates

7Recall thatP∞ is the step function given in (35).

s/
E

[δ
’]

Input Rate r 

s/α, onset of deviation 

C, end point of deviation 

C-λ, maximum deviation point

Fluid Upper Bound
Rate Response Curve

Fig. 6. Illustration of the rate response curve.

from this lower bound and reaches the maximum deviation at
the pointδ = s/(C − λ), where the input rate is equal to the
available bandwidth. This deviation is also illustrated bythe
curve in the shadow area of Fig. 4 and can be expressed as



















∫ C

s/δ

xδ − s

C
dPδ(x) δ ≤

s

C − λ
∫ s/δ

0

s − xδ

C
dPδ(x) δ ≥

s

C − λ

. (48)

In contrast, note that using the unifying signal model (6),
we can not foresee such a deviation phenomenon. Especially
at the pointδ = s/(C − λ) where the amount of deviation
is maximized, the unifying model would, however, predict no
deviation at all.

It helps to identify the exact value ofα, which represents the
end point of the deviation range. Note thatα is the minimum
input spacing that causes a zero intrusion residual

α = inf{δ : E[Rδ(t)] = 0}

= inf{δ : Pδ(
s

δ
) = 0}. (49)

This requires thatBδ(t) be greater than the input probing
rates/δ for almost everyt along the time axis. In other words,
the input rates/δ must be smaller than the distribution lower
bound ofδ-interval available bandwidth. It is often not possible
to satisfy such a condition exactly8, since the convergence of
Pδ(x) to the step function in (35) might only be asymptotic
and Pδ(x) may remain positive for allx ∈ (0, C] regardless
of the observation intervalδ. In that case,α = ∞ and we
can only mark it approximately as a point where the deviation
becomes practically negligible.

It is often more informative to look at the rate version of
the response curve rather than the spacing version, because
the rate response curve has a direct association with cross-
traffic intensity and available bandwidth. Plottings/E[δ′n] with
respect tor = s/δ and comparing it with the fluid model (3),
we get Fig. 6. The fluid rate model becomes an upper bound of
the real response curve. The input rate range(s/α, C) becomes
the area where the real curve negatively deviates from the fluid
model.

8For instance, when cross-traffic arrival is Poisson.
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C. Impact of Probing Packet Size

How does the packet sizes affect the response curves or
the amount of deviation from fluid models? We first consider
the case when input rater < C − λ. Notice that the second
expression in (48) can be simplified to the following form

∫ s/δ

0

s − xδ

C
dPδ(x) =

∫ r

0

rδ − xδ

C
dPδ(x)

=
δ

C

(

r

∫ r

0

dPδ(x) −

∫ r

0

xdPδ(x)

)

. (50)

Applying integration by parts, we get
∫ r

0

xdPδ(x) = rPδ(r) −

∫ r

0

Pδ(x)dx. (51)

Substituting (51) back to (50), we get
∫ s/δ

0

s − xδ

C
dPδ(x) =

δ

C

∫ r

0

Pδ(x)dx. (52)

Whens → ∞ while keepingr constant, the sampling interval
δ = s/r approaches infinity proportionally. Hence, we have

lim
s→∞

∫ s/δ

0

s − xδ

C
dPδ(x) = lim

δ→∞

δ

C

∫ r

0

Pδ(x)dx. (53)

Dropping the constant1/C, we get a sufficient and necessary
condition for the amount of deviation at input rater < C −λ
to vanish whens → ∞

lim
δ→∞

δ

∫ r

0

Pδ(x)dx = 0. (54)

Similarly, for any input rater > A, a sufficient and
necessary condition for the deviation to vanish is

lim
δ→∞

δ

(

C − r −

∫ C

r

Pδ(x)dx

)

= 0. (55)

These conditions require the sample-path distribution of
Bδ(t) not only to exhibit decaying variance when the obser-
vation intervalδ becomes large, but also to show sufficient
decaying speed. Our experimental observation so far shows
that these properties are usually satisfied. The problem of
identifying cross-traffic types in which (54) or (55) is violated
remains open.

Even though large probing packet size usually implies less
deviation of the real response curves from the fluid models, we
point out the existence of such interesting cases where certain
probing packet size can lead to a response curve with no
derivation at all. This happens only when cross-traffic exhibits
periodic arrival pattern. Assuming the workload sample-path
W (t) is a periodic function that repeats itself everyT time
units, then setting probing packet size toT (C −λ) causes the
real response curves to coincide with the fluid models.

In practice, cross-traffic is rarely periodic and we have to
rely on large packet size to reduce the amount of response
curve deviation. However, due to the limit of path MTU and
the concern of packet fragmentation, probing packet sizes can
not be made arbitrarily large. The question becomes whether
the commonly used MTU of1500 bytes is enough to reduce
the amount of curve deviation to such an extent that its impact

on bandwidth measurement accuracy becomes insignificant? In
what follows, we show that even for relatively “smooth” (e.g.,
Poisson) cross-traffic, the deviation phenomenon still canhave
significant adverse impact on bandwidth estimation.

VI. T HE IMPACT OF RESPONSECURVE DEVIATION ON

BANDWIDTH MEASUREMENT

A. Computing Response Curves

We devise an off-line algorithm to compute the single-hop
response curves based on cross-traffic packet arrival trace,
the probing packet sizes, and the hop capacityC. The
trace file provides information regarding the arrival time and
packet size for every cross-traffic packet. Given a trace file
with sufficiently long time interval recorded, the frequency
distributions of the associated sample-paths (such asYδ(t),
Dδ(t), and Bδ(t)) in that finite time interval become good
approximations of their limiting frequency distributions. Our
off-line algorithm approximates the sample-path mean ofδ′n
for any given input spacingδ. Next, we briefly explain the
spirit of this algorithm.

We use Υτ
0 to denote a cross-traffic trace in the time

interval[0, τ ]. GivenΥτ
0 and hop capacityC, the hop workload

sample-pathW (t) in the interval [0, τ ], denoted asW (t)τ
0 ,

can be computed. The following corollary states the function
properties of workload sample-path.

Corollary 2: Hop workload sample-path consists of alter-
nating busy periods and idle periods. Any busy period com-
prises piece-wise linear segments with slope−1.

Taking advantage of these functional properties and using a
proper data structure, we can representW (t)τ

0 without losing
any information about the original process. FromW (t)τ

0 , we
are able to retrieveYδ(t), Dδ(t) and Bδ(t) for any t in
[0, τ − δ]. In other words, we keep the full information about
Yδ(t)

τ−δ
0 , Dδ(t)

τ−δ
0 , and Bδ(t)

τ−δ
0 in the data structure of

W (t)τ
0 .

Instead of approximatingE[δ′n] using a finite number
of output dispersion samples, we approximateE[δ′(t)], the
corresponding continuous-time sample-path mean, using the
time average ofδ′(t) in a finite interval. Note that due to
the ASTA assumption,E[δ′n] = E[δ′(t)]. Hence, a good
approximation of the latter sample-path mean also serves as
a good approximation for the former. The continuous-time
sample pathδ′(t) also has certain “nice” properties as we
state in the next theorem. The proof is in constructive terms,
which provides a concrete idea of how our off-line algorithm
is designed.

Definition 9: Event-pointsare the time instances at which
the workload sample path switches from a busy period to an
idle period or undergoes a sudden increment due to packet
arrival. An epoch is a time interval between two adjacent
event-points.

Theorem 5:The sample-pathδ′(t) consists of piece-wise
linear segments with possible slops0, 1 and−1. For any two
time instances0 < t1 < t2, δ′(t) is continuous in the interval
(t1, t2) given thatt1 andt2 fall into the same epoch ofW (t),
and thatt1 + δ and t2 + δ also fall into the same epoch of
W (t).
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Proof: See the Appendix.
Our algorithm computesδ′(t)τ−δ

0 , the sample-pathδ′(t) in
time interval [0, τ − δ], based onΥτ

0 , C, s and δ. Taking
advantage of Theorem 5, we can represent the sample-path
information of δ′(t)τ−δ

0 to its full precision in a proper data
structure. We then compute the following9

δ′(t)τ−δ
0 =

1

τ − δ

∫ τ−δ

0

δ′(t)dt, (56)

and use it as an approximation to

E[δ′(t)] = lim
τ→∞

1

τ

∫ τ

0

δ′(u)du. (57)

It is clear that the precision of this approximation is mainly
decided byτ . Thus, we can pick a largeτ so that further
increase ofτ would make little difference. It could be some-
times impractical to have such a long trace. However, note
that even when (56) is not a good approximation ofE[δ′(t)],
it still represents the correct result in a hypothetical periodic
cross-traffic that repeats itself after everyτ time units. This is
due to the fact that in periodic cross-traffic, sample-pathδ′(t)
has a limiting time-average equal to its time average in one
period.

In our experiment, we use a single-hop path with capacity
C = 10 mb/s. We use Poisson cross-traffic with average arrival
rate of500 packets per second. The packet size is750 bytes.
Hence,λ = 3.0 mb/s. The probing packet size is chosen to
be1500 bytes. We computeE[δ′(t)] for 130 input values ofδ
in [0.86 ms, 12 ms], which corresponds to130 equally spaced
input rates in the range of[1.0 mb/s, 14 mb/s]. We generate a
100-second cross-traffic trace and find that the time average of
δ′(t) in time interval[0, 30s] has sufficiently converged. Even
for the smallest inputδ = 0.86 ms, doubling the trace interval
to 60 s does not produce more than1% difference.

To validate our algorithm, we also use the same setting in
NS2 simulation to measure the response curve. For every input
rate, the sender transmits1000 packet-pairs. The inter-probing
delay is controlled by an exponentially distributed random
variable to meet the ASTA sampling condition. The average

9Theorem 5 also allows an efficient computation of (56) with high accuracy.
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inter-probing delay is chosen to be10δ. We use the average
of the 1000 output dispersions to approximateE[δ′n].

Fig. 7 shows both the rate curve computed off-line and the
rate curve measured in NS2 simulation. The figure shows that
the two agree and non-negligibly deviate from the fluid upper
bound. The deviation is very clear even though we use the
largest probing packet size. The figure also shows that we can
obtain a much smoother curve using off-line computation than
using NS2 simulation.

Next, we discuss the implications of our findings on two
packet-pair bandwidth measurement techniques: TOPP and
Spruce.

B. TOPP

We first consider a single-hop path. TOPP uses the fluid
rate model (2) as its measurement rationale. It first collects the
output ratesr̄′ = s/δ̄′ 10 for a series of equally spaced input
rates in some interval[rmin, rmax]. TOPP then transforms the
measured rate response curve to a function betweenr/r̄′ and
r, which admits the following piece-wise linear relation in
fluid models:

r/r̄′ =

{

1 r < C − λ
r + λ

C
r ≥ C − λ

. (58)

TOPP identifies the second segment in the curve and applies
linear regression to calculate the capacityC and cross-traffic
intensityλ.

We transform both the computed and the measured rate
response curves in Fig. 7 to the form of (58). As showed
in Fig. 8, the deviation ranges appear as the second segments.
When applying linear regression on these segments, we get
estimation results in Table II. The table shows that even if
TOPP could manage to get the asymptotic rate curve, it would
not achieve an accurate measurement due to its unawareness
of the deviation phenomenon.

In a single-hop case, note that the real curve agrees with
fluid model whenr ≥ C. Therefore, linear regression can
be applied to this curve portion to extract the capacityC

10We use δ̄′ to denote a measurement ofE[δ′] using finite number of
samples ofδ′.
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TABLE II

TOPP ESTIMATION RESULTS(IN MB /S)

C λ C − λ

Real values 10 3.0 7.0
TOPP in ns2 simulation 35.97 32.33 3.64
TOPP in off-line computation 35.81 32.38 3.43

and cross-traffic intensityλ. In a multi-hop path, unlike what
can be easily derived from the fluid model as showed in (4),
the real curve becomes very complex and is not amenable
to closed-form analysis. However, based on the single-hop
results, we can predict that one necessary condition for the
curve portion that contains the information ofλ and C to
survive against multi-hop interference is that the available
bandwidth for all pre-tight linksmust be significantly higher
than the tight link capacity. Otherwise, when the input rate is
greater thanC, it falls into the deviation range of some pre-
tight link and the probing rate gets reduced on average before
the packet-pairs arrive at the tight hop.

C. Spruce

Spruce assumes a single bottleneck link whose capacityC
can be estimated beforehand. Spruce sends probing pairs with
intra-pair spacingδ set tos/C, which is the bottleneck link
transmission delay of the probing packet. Inter-pair delayis
controlled by an exponentially distributed random variable to
meet ASTA property. Each probing pair generates an available
bandwidth estimate by computing

An = C

(

1 −
δ′n − δ

δ

)

. (59)

Spruce averages the last 100 samples to obtain a final estimate
for the path available bandwidth. Our next theorem states the
unbiasedness of Spruce estimator

Theorem 6:Under the assumptions of this paper, in a
single-hop path, we have

E

[

C

(

1 −
δ′n − δ

δ

)]

= C − λ. (60)

Proof: Combining (38) and the first equality in (39), this
theorem is easily proved.

In a multi-hop path, the pre-bottleneck links introduce noise
to the input signalδ, which shifts it from a constant to a
random variable. The post-bottleneck links introduce noise
to δ′. This impact can be minimized if both noise signals
are zero-mean, which happens when the non-bottleneck hops
have available bandwidth significant higher than the bottleneck
capacity. A detailed analysis of spruce’s robustness to multi-
hop queueing interference requires future work, for which the
insights of this paper will be helpful.

VII. C ONCLUDING REMARKS

In this paper, we identified three important sample-paths
related to cross-traffic arrival and established the “sampling-
and-constructing” model to characterize packet-pair probing.
This approach uncovers the full picture of encoded probing
signals and leads to a closed-form solution to the asymptotic

average of output packet-pair dispersions in a single-hop path,
which extends previous fluid models and serves as a theoretical
foundation for packet-pair bandwidth estimation. In our future
work, we will apply these results to analyze the robustness of
current available bandwidth measurement techniques to multi-
hop queuing interference.
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APPENDIX I
PROOF OFTHEOREM 5

Proof: We approach the proof in three steps. In the first
step, we prove the second statement in the theorem. That is,
we show thatδ′(t) is continuous in the time interval(t1, t2).
Recalling Theorem 2, we have

δ′(t) =
Yδ(t)δ

C
+

s

C
+ Ĩδ(t). (61)

The first two terms on the right hand side of (61) are constants
with respect tot because of the following

Yδ(t)δ = V (t + δ) − V (t)

= Yδ(t1)δ − (V (t) − V (t1)) + (V (t + δ) − V (t1 + δ)).

Since (t1, t] is within a workload epoch, there is no cross-
traffic arrival during this interval. HenceV (t) − V (t1) = 0.
The same is also true in the interval(t1 + δ, t + δ] and we
haveV (t + δ) − V (t1 + δ) = 0. Therefore,Yδ(t) = Yδ(t1)
is a constant with respect tot. The third termĨδ(t) on the
right hand side of (61) is obviously a continuous function of
t. Henceδ′(t) is continuous in(t1, t2).

In the second step, we show thatδ′(t)τ−δ
0 can be split into

a series of consecutive continuous segments. That is,

δ′(t)τ−δ
0 =

n
⋃

i=1

δ′(t)
ti+1

ti
, (62)

wheret1 = 0, tn+1 = τ − δ, andti < ti+1 for all 1 ≤ i ≤ n.
We now prove this result by constructing such a partition.

Let e1 be the first event-point inW (t) after t1 and e2 be
the the first event-point inW (t) after t1 + δ. Then δ′(t) is
continuous in the interval(t1, min(e1, e2−δ)) due to the result
proved in the first step. Suppose thatτ − δ ≤ min(e1, e2− δ),
then settingn = 1 and tn+1 = t2 = τ − δ, the partition is
accomplished. Otherwise, lett2 = min(e1, e2−δ) and proceed
with the partition ofδ′(t)τ−δ

t2 recursively. This eventually splits
δ′(t)τ−δ

0 into the form of (62).
In the third step, we show that in any continuous segment

δ′(t)
ti+1

ti
, δ′(t) is a piece-wise linear curve with possible slopes

0, 1, and−1. We prove this result by recursively identifying
all the linear segments in the interval(ti, ti+1). We denote
by e1 and e2 the first event-points inW (t) after ti and ti +
δ respectively. In what follows, we discuss the identification
procedure in six possible cases.

In the first case whenW (ti) > 0 and W (ti + δ) > 0, let
t′ = min(e1, e2 − δ, ti+1). Notice that for anyti < t < t′,
Iδ(ti) = Iδ(t) and consequentlỹIδ(ti) = Ĩδ(t). Combining
the proof in the first step, we haveδ′(ti) = δ′(t), which means
that δ′(t)t′

ti
is a linear segment with slope0.

In the second case whenW (ti) = 0 and W (ti + δ) = 0,
let t′ = min(e1, e2 − δ, ti+1). Using a similar argument, it is
easy to see thatδ′(t)t′

ti
is also a linear segment with slope0.

In the third case whenW (ti) > 0, W (ti + δ) = 0, and
Iδ(ti) ≥ s/C, let t′ = min(e1, e2 − δ, ti+1). Notice that for
any ti < t < t′, we have

Iδ(t) = Iδ(ti) + (t − ti). (63)

SinceIδ(ti) ≥ s/C, we getĨδ(ti) ≥ 0 and

Ĩδ(t) = Ĩδ(ti) + (t − ti). (64)

Combining (64) and the proof in the first step, which shows the
other two terms on the right hand side of (61) are constants,
we haveδ′(t) = δ′(ti) + (t − ti), which means thatδ′(t)t′

ti
is

a linear segment with slope1.
In the fourth case whenW (ti) > 0, W (ti + δ) = 0, and

Iδ(ti) < s/C, let t′ = min(e1, e2− δ, ti+1, ti +s/C− Iδ(ti)).
Notice that for anyti < t < t′, (63) still holds, and we also
haveĨδ(ti) = 0 due to the case condition

Ĩδ(ti) =
(

Iδ(ti) −
s

C

)+

= 0. (65)

Further recall thatt < t′ ≤ ti+s/C−Iδ(ti), and consequently
we also have

0 ≤ Ĩδ(t) =
(

Iδ(ti) + (t − ti) −
s

C

)+

≤ 0. (66)

Therefore,Ĩδ(ti) = Ĩδ(t) = 0. Combining this result with
(61), we haveδ′(t) = δ′(ti), which means thatδ′(t)t′

ti
is a

linear segment with slope0.
In the fifth case whenW (ti) = 0, W (ti + δ) > 0, and

Iδ(ti) > s/C, let t′ = min(e1, e2− δ, ti+1, ti + Iδ(ti)−s/C).
Notice that for anyti < t < t′, we have

Iδ(t) = Iδ(ti) − (t − ti) (67)

Ĩδ(ti) =
(

Iδ(ti) −
s

C

)+

= Iδ(ti) −
s

C
. (68)

Again recallt < t′ ≤ ti + Iδ(ti) − s/C , we have

Ĩδ(t) =
(

Iδ(t) −
s

C

)+

=
(

Iδ(ti) − (t − ti) −
s

C

)+

= Iδ(ti) − (t − ti) −
s

C
= Ĩδ(ti) − (t − ti). (69)

Combing (61) and (69), we haveδ′(t) = δ′(ti) − (t − ti),
which means thatδ′(t)t′

ti
is a linear segment with slope−1.

In the sixth case whenW (ti) = 0, W (ti + δ) > 0, and
Iδ(ti) ≤ s/C, let t′ = min(e1, e2 − δ, ti+1). Notice that for
any ti < t < t′, we have

Iδ(t) = Iδ(ti) − (t − ti) (70)

Ĩδ(t) =
(

Iδ(t) −
s

C

)+

= 0. (71)

Consequently, we also have

Ĩδ(t) = Ĩδ(ti) = 0. (72)

Combing (61) and (72), we haveδ′(t) = δ′(ti), which means
that δ′(t)t′

ti
is a linear segment with slope0.

Finally, if t′ = ti+1, we finished identifying all linear
segments. Otherwise, we recursively identify the remaining
linear segments inδ′(t)ti+1

t′ . Notice that the six cases we
discussed above cover all possibilities. Hence,δ′(t)

ti+1

t′ can
only contain piece-wise linear segments with possible slopes
1, 0, and−1.

Combining all three steps, we proved the theorem.


