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Abstract— Although packet-pair probing has been used as one this paper, we provide a more accurate, yet concise characte
of the primary mechanisms to measure bottleneck capacityross-  jzation of packet-pair probing in the context of a singlgzho
traffic intensity, and available bandwidth of end-to-end Internet path and non-fluid cross-traffic. We identify three stocicast

paths, there is still no conclusive answer as to what informtéon lated t traffi ival and show tha
about the path is contained in the output packet-pair dispesions processes related 1o cross-traimc arrival and show gtac

and how it is encoded. In this paper, we address this issue Pair probing essentially inspects the sample-paths ofethes
by deriving closed-form expression of packet-pair dispeiien three processes and constructs the output dispersionl signa

in the context of a single-hop path and general bursty cross- pased on their random sampling. We derive several closed-
traffic arrival. Under the assumptions of cross-traffic staionarity form expressions to describe this construction procedode a

and ASTA sampling, we examine the statistical properties of - - . .
the information encoded in inter-packet spacings and derie Call Our characterization of packet-pair probing the “sénip

the asymptotic average of the output packet-pair dispersios as and constructing” model.
a closed-form function of the input dispersion. We show that  Under the assumption of cross-traffic stationarity, we ex-

this result is different from what was obtained in prior work  amine the statistical properties of the probing signalsdad
using fluid cross-traffic models and that this discrepancy ha ;, inter-packet spacing and derive the asymptotic averdge o
a significant impact on the accuracy of packet-pair bandwidh . . . .
estimation. the output dispersion as a closed-form function of the input
dispersion. We show that the result deviates from what was
previously obtained using constant-rate fluid cross-tratfid
that this deviation has a significant adverse impact on gacke
pair bandwidth estimation techniques.
I. INTRODUCTION We list the terminology used in the paper in Table I. In

Sending probing packets to measure network path charggetion Il, we summarize related work of packet-pair analys
teristics has been a common practice in the Internet sir@@d report our earlier modeling attempt. In section I, we
the late 1980's. There are two categories of probing-bas@¢roduce our “sampling-and-constructing” model to cloéea
measurements: delay based and dispersion based. In the fgiPacket-pair probing. Based on our model, we examine the
category, path characteristics such as per-hop capauiyjng statistical charactenstlcs of gncoded probing &gna@rmon_
delay, and link utilization are inferred based on the RTHV. We derive the asymptotic average of output dispersions
or one-way delay ofndividual packets [1], [6], [11], [14], D section V and show that its deviation from the fluid result
[20]. In the second category, the dispersion of packetspal?as an adversg impact on packet-pair bandwidth estima’gion
is traditionally used to infer bottleneck capacity [3], [45], N Section VI. Finally, we present our concluding remarks in
[7], [10], [13], [22], [23]; however, recent approachesaalsSection VIl.
use packet-pairs/trains to measure cross-traffic andadlail
bandwidth of an end-to-end path [2], [8], [9], [12], [18], [l. BACKGROUND
[25], [26]. It is straightforward to identify the informa@th A Related Work
encoded in the delay of individual probing packets. Hence
delay-based estimation techniques are theoreticallylatdl
and measurement difficulties are mostly due to practicakiss
[20], [24]. On the other hand, it is far more difficult to

Index Terms— Stochastic Process, Queuing Theory, Active
Measurement, Bandwidth Estimation.

'The earliest packet-pair analysis dated back to 1988, when
Jacobson [10] examined the packet-pair spacing in the absen
of cross-traffic and obtained the following result

characterize the information contained in the output disipe 55 < 5
of probing packet-pairs. Consequently, apart from thetpralc §=10C (; ) (1)
issues, dispersion-based measurement techniques aceheet t o 0> ol

fully justified for general cross-traffic conditions.
There has been a fair amount of research effort to charact¥fieres andé” are the input and output spacings of the packet-
ize the information encoded in packet-pair spacing. Howev®al, respectivelys is the probing packet size, ard is the
previous analysis either relied on constant-rate fluid srodottleneck capacity of the path. Note that when the input
traffic models [5], [17], or provided answers only partiall;?pac'ngfs is small, the output spacing contains information

suitable for generic bursty cross-traffic [3], [9], [21]5R In @boutC'. o o
In real networks, cross-traffic is often non-negligible. To

tSupported by NSF grants CCR-0306246, ANI-0312461, CN1948.  take into account the effect of cross-traffic, Dovraisal. [5]



TABLE |
TERMINOLOGY

Term Definition

Network path Sequence of interconnected FIFO store andafdniiops
Hop capacity Transmission speed of the hop in bits per second
Bottleneck capacity The minimum hop capacity along a netwath

Narrow hop The hop with the smallest capacity along a netvpatk
Cross-traffic intensity The average arrival rate of croaffit in some time interval

Hop available bandwidth ~ The hop’s residual capacity aft@ngmitting cross-traffic in some time interval
Path available bandwidth  The minimum hop available bantiwidong the path

Tight hop The hop with the minimum available bandwidth al@engath

Encoded probing signal The information contained in papldt output dispersions

and Melandeet al. [17] studied the relationship between theshare the same queueing period (the same condition used in
packet-pair input and output rate using a constant-rate fluBolot's analysis)

cross-traffic model. In a single-hop path, their results ban 5 =2 yo )
summarized as follows c C’
where y is a random variable reflecting the cross-traffic
o= C,, A rzC-2A 7 ) intensity in the duration between the arrivals of the prgbin
r r<C-—2X\ pairs.

] Both Bolot and Hu pointed out that when the input spacing
wherer = s/0 andr’ = s/¢" are the input and output rates ofy g large enough, the output spacidf although random,
packet-pairs, respectively, is the cross-traffic intensity, andpecomes equal té on average. In other words, the input
C'is again the hop capacity. Translating (2) into its spacingyacing is only contaminated by some additive zero-mean

version, we get signal.
Y s Pasztoret al. (2002) [21] identified several types of signals
, I8, + Kol 0 < O encoded in the packet dispersions. They differentiateéigiac
0" = 5 5 s - ®) pairs falling into the same router busy period from those tha
>

C—\ do not. In the former case, a multiplicative signal related t

This shows that when the input rate is higher than hop avaf oSS traffic call.edji.stri_bution signatureis encoded into the
able bandwidth, there will be a deterministic multipliati OUPUt SPACINgs; while in the latter case, an additive zeean
signal \/C and a deterministic additive signa/C' encoded white noise signal calledccumulation signaturés encoded.
in the output spacing’. Again note that this result embraces
(1) as a special case when= 0. B. Our Earlier Attempt

Applying mathematical induction to all hops along the path, We now report our earlier attempt of packet-pair probing
we get the following relation between the input and outpte ramodeling inspired by conventional wisdom. Although it teidn

for an arbitrary multi-hop path out to be of little success, a comparison of this approach
r with the one presented later in this paper helps understand
o CT Y b2r=>C-=A 4) the problem better.
r r<C—\ ’ Based on previous insights, we tried to interpret packet-pa

probing in single-hop path with general cross-traffic udimeg
where b is the second minimum hop-available-bandwidtfpllowing signal model

along the path(’ is the capacity of the tight hop, andis the

cross-traffic intensity at the tight hop. This relation Isad 5 — l + U—d JQ 6
the recent measurement proposal TOPP [18], [16], which is a - 50+ ¢ DQ ’ 6)
w

technique to infer available bandwidth and tight-link ceipa

Realistic cross-traffic is always bursty and its intens#ty iwhere w is a zero-mean random variablg, is a A-mean
never a time-invariant constant. Therefore, a natural tipres random variable, andl is the long-term average of cross-traffic
becomes how to generalize results (1)-(4) to accommodatéensity. JQ (Joint Queuing) and DQ (Disjoint Queuing) are
bursty cross-traffic. We summarize the main results of pievi the conditions under which a packet-pair share the samemout
studies next. busy period or fall into different queueing period respedi.

To interpret his Internet measurement observations of theThis characterization can accommodate the fluid model as a
probing packet RTT phase plot, Bolot (1993) [3] adopted special case where both random variahleandy degenerate
single-hop path with bursty cross-traffic in his analysisld to deterministic constants. Also note that, in the fluid mpde
showed that the packet-pair dispersion reflects the amduntagpacket-pair falls into the same queuing period if and ohly i
traffic workload arrived at the router between the pair wheh< s/(C — X). In bursty cross-traffic, it is easy to verify that
the router does not idle between their arrivals. whend < s/C, the JQ condition is always satisfied. However,

Hu et al (2003) [9] did a similar analysis and proposedvhend > s/C, there is usually no deterministic relationship
a spacing formula under the condition when the packet-paietweens and the JQ condition. For any givén> s/C, JQ



S = Z+ % The second critical element is hop workload-difference
process.
5 Definition 3: Hop workload procesgW (¢),0 < t < oo}
indicates the sum at time instan¢eof service times of all
§=0+w packets in the queue and the remaining service time of the
packet in service.
Definition 4: We define{D;(t),0 < t < oo} as the process

indicating the difference between the hop workload at time
Fig. 1. Our unifying signal model inspired by previous work. andt + 6

i

Qle
+

Qle

1-p +w

Ds(t) = W(t +8) — W(t),

becomes a random event that occurs with certain probabiligynd call it “o-interval workload-difference process”.
This can be schematically illustrated using a unifying algn The third important process is the available bandwidth
model in Fig. 1. process.

The unifying model shows that the forwarding hop can be Definition 5: Hop utilization proces$U (¢),0 < ¢t < oo} is
viewed as a stochastic mixture of two independent randam on-off process associated wighi/ (¢)}
systems. With probability, the input signab passes through L W) >0
the JQ system, where multiplicative random sigpaC' and Ut) = { 0 W(t)=0 @)
additive deterministic signak/C are stamped or. With
probability 1 — p, the input signald passes through the DQand éd-interval hop idle process
system, where additive white noise sigmalis stamped on.

t+46
Although this characterization makes intuitive sense, oul I(t,t+0)=I5(t) =6 — / U(zx)dx (8)
that it is not accurate. We discuss the explanation in Sectio ¢
IV. is a process indicating the total amount of idle time of the

forwarding hop inft, t+4]. We further call time intervalt, ¢ +

ll. THE “SAMPLING AND CONSTRUCTING' NATURE oF 9] & “hop busy period” if/;(¢) = 0 and a “hop idle period”

PACKET-PAIR PROBING if I(t+0) = I(t) = 6.
Definition 6: We define{ B5(t),0 < ¢t < oo} as the process

indicating the residual bandwidth in the time inter{tak + ¢)
In this paper, we focus on single-hop packet-pair probing. s

We assume infinite buffer capacity, FIFO queuing, and a work- Bsty=c[1- 1/ U(w)de | = Ls(t)C’ ©

conserving discipline for the forwarding hop. For the cosypo 0/, 0

ite of cross-traffic and probing traffic, we assume simpl#itra d call it “-i | ilable bandwidth y

arrival, i.e., at most one packet arrives at any time instaRor and call It -.|nterva availablé banawi t Process-.

cross-traffic alone, we identify three sample-paths whidly p The_ following theorem describes the relationship among the

crucial roles in determining the nature of packet-pair prgb threr(]a |mporta'nt pro;lzessgg. & the following hold

They are the sample-paths of cross-traffic intensity pmces Theorem 1:For all positive t and, the following holds

hop workload-difference process, and available bandwidth B Ds(t)C

process. We next present a rigorous formulation for theseth Bs(t) = C = ¥5(t) + 5 (10)

elements and show the basic relationship among them. Proof: Note that the total hop idle time within the time
Definition 1: Cross-traffic is driven by the packet countingnterval [t,t+ 0] is

process{N(t),0 < t < oo} and the packet size process

A. Formulation of Cross-Traffic Arrival

{Sn,1 < n < oo}. The cumulative traffic arriva{V (¢),0 < I5(t) = B5(t)5_ (11)
t < oo} is a random process counting the total volume of data c
! received by the hop up to time instance The amount of data transmitted by the hop within the time
interval [¢t,t + d] is
N(t)
V()= Sn. V(t+68) = V(t)+ (W(t) — W(t+9)C
n=1

=Y5(t)0 — Ds(t)C.
Note thatV(¢) and N(¢) are right continuous, meaning that

the packet arriving at is counted inV'(¢). Thus, the hop working time is

Definition 2: We define{Y;(¢),0 <t < oo} as the process Y5(t)o Ds(t) (12)
indicating the average cross-traffic arrival rate in therival C AN
(t,t + 0] Since s is the sum of hop working time and hop idle time.
Ys(t) = w Adding up (11) and (12), we get
and call it “d-interval cross-traffic intensity process”. 0= @ — Ds(t) + @ (13)

Lin this paper, packet size and data are measured in bits. Rearranging (13), we get the desired result. [ ]



asRs(aq)

Bslen) = lim =~ Walt) = Walas—)

= W(ay—) — W(az—) = W(az—) — W(ay).

The last equality is due to the simple arrival assumptionc&i
there is no cross-traffic packet arrival at timme when p,
arrives, we havéV (ax—) = W(az).

The termR;(aq) is the intrusion residual at time, caused
by the probing packet; and “experienced” by the packet.
In other words, the queuing delay pf in the hop is given by

time W(az—) = W(ay + 6) + Rs(ay). (14)

Fig. 2. lllustration of the intrusion residual function. As a direct result of the observation illustrated by Fig. 2,
Rs(ay) can be computed as follow's

Intrusion Residual Wy

i

Packet-pair probing is essentially interacting with the Rs(a;) = (% - L;(al))+ = (Lé(al)&) . (15)

sample-path®f the processes we just formulated. To prepare

for the presentation of our main results, we next examinewe are also interested in computinfg(al) when the hop

certain details about this interaction. is probed by packet-paifa;, §, s), which, from the intrusion
behavior described in Fig. 2, can be expressed as following

B. Probing Intrusion of Packet-Pairs

- s\t Bs(a1)0 +

We use the triple(a;,d,s) to denote a pair of probing Is(ar) = (I5(a1) - 5) - <%) - (18
packetsp; andp, of the same size. The first element in B
the triple is the arrival time of the packet to the hop;s is ~ Notice that between the two termBs(a:) and Is(a1),
the inter-packet spacing; ands the probing packet size. Thethere is at most one positive term for any given When
arrival time ofp, is as = a1 + 6. The departure time of the f2s(a1) > 0, the two packets in the pair share the same hop
probing packets from the hop are denoteddgyandds. The busy period andl;(a1) = 0. When I5(a1) > 0, the two
output spacing i$’ = d» — d;. In terms of rate, the input and Packets fall into different hop busy period at}(a:) = 0.
output probing rates are= s/ andr’ = s/§'. Hence, the positiveness of the two terms corresponds to JQ

We use WV (t) and I5(t) to denote the workload sample-2nd DQ conditions respectively.
path and the hop idle sample-path associated with the supe/Ve are now ready to derive the relation between the input
position of cross-traffic and probing traffic. Note that fimf SPpacings and the output spacing for any individual packet-
composition only increases hop workload. That is, fortall pair. This relation is a milestone of our packet-pair analys
W (t) > W(t). Therefore, we define the following function to
help understand this intrusion behavior of packet probing. c. Qutput Packet-Pair Dispersion

Definition 7: Theintrusive rangeof the probing traffic into
W(t) is the set{t : W (t) > W(t)}. Theintrusion residual
functionis Wy (t) = W (t) — W(t).

Let us next examine the properties of functitiy;(¢) to
understand the intrusion behavior of a single probing pack
Before the arrival of the probing packeW,(t) = 0. It
gets an immediate increment f C' upon the packet arrival,
where s is the packet size. IV (¢t)’s busy periodsWy(t)
remains unchanged. W (¢)’s idle periods,W,(t) decreases
linearly with slope—1 until it becomes 0, which marks the
end of th_e intrusive_range. _V\/ithin_ the i_ntrusive ran@_jé,,(t)_ is f(al’ dy) = j(a% dy) = 0. (17)
monotonically non-increasing. Fig. 2 illustrates this &ébr, .
from which we can infer tha(t,, t5), (ts,ts) and (ts, tg) Further, notice thaf (a1, d2) can be expressed in the following
are three busy periods ¥ (t), whereag(ts, t3), (t4,t5), and WO ways
(t6, t7) are three idle periods iV (1). Time instance; is the I(a1,dy) = I(ay,dy)+I(dy,dy)=1I(dy,dy) (18)
arrival time of the probing packet, wheregsmarks the end -
point of the intrusive rang@. I(a1,dy) = I(ar,a2) + (a2, dz) = I(ar,a2) (19)

When W (t) is probed by a packet-paiu;, J, s), we are Combining (18) and (19), we havid;, ds) = I(a1,a2). m
interested in the left-hand limit di’;(¢) at time a2, denoted

We first present a corollary, which is due to the work-
conserving assumption.

Corollary 1: For any packet arriving into the hop at time

and departing from the hop at timg, the time interval
t1,t2] is @ hop busy period.

This corollary immediately leads to the following lemma

Lemma 1:When a hop is probed by a packet-pgait, J, s),
we havel (dy,ds) = I(ay, as).

Proof: First, due to corollary 1, we have

81t is customary to denotenax(X,0) using X* and call it the “ positive
2Note that the probing packet departs before part” of X.



Our next theorem expresses the output spacing of a pac
pair from two different angles.

Theorem 2:When W(t) is probed by a packet pair
(a1, 4, s), the output spacing’ can be expressed as

, Ys(a1)d s Bs(a1)d —s\ ™"
© = ¢ tat C
— Bs(a1)d\ ™"
~ 5 Dyfay) + (200 (20)
Proof: We examine the hop activity with respectiio(t)

within the time interval[d;, d2]. Notice thats/C time units
are spent on serving probing packetand that
V(ag) — V(al) _ Y};(al)&

C C
time units are spent on serving the cross-traffic that hageairr
to the hop during the time intervéd, a2). Thus, the total hop
working time in[d;, ds] is given by
Ys(ar)d | s
C C’
Also notice thatf(dl,dg) is the total idle time of the hop

(21)

S

(22)

ket-

constructiol

?

C,o,s

3 random samples

Fig. 3. The “sampling-and-constructing” nature of packair probing.

light on what the encoded probing signals are and how they are
encoded. It also allows investigation of their statisticature
from an analytical angle rather than experimental obsinvat

IV. THE STATISTICS OFENCODED PROBING SIGNALS

during this time interval. Since the sum of the hop working we use ({T,,,1 < n < ~},d,s) to denote an infinite

time in (22) and hop idle time must be equaldeo— d;, we
immediately have the following

Ys(a1)d

S ~
6/=d2—d1=T+6+I(d1,d2). (23)
Further, due to Lemma 1 and (16), we get
- ~ ~ Bs(a1)d — s\ T
I(dl,dg) :I(al,ag) :Ig(al) = (%) . (24)

Substituting (24) back to (23), we proved the first equality

sequence of packet-pair probings driven by a point process
A(t) = max{n > 0 : T,, < t}. We used, to denote

the output spacing of the-th packet-pair(7,,,d,s) in the
probing sequence. Adjacent packet-pairs are sufficiemty s
arated, meaning that we neglect the cases where a packet-
pair falls into the intrusive range of the preceding pairs.
Consequently, the “sampling and constructing” model holds
for all pairs in the probing sequence. This is a practically
valid simplification because measurement tools [18], [2B6] a
devise the inter-probing delays much larger tharso as

(20). For the second part of (20), first notice that the tOt% keep the average probing traffic intensity small. Given

delays ofp; andp. at the hop are given by

d—a1 = Wi(a)+ % (25)

dy —as = Rs(ar)+Wi(az)+ % (26)
Subtracting (25) from (26), we get

' =0 + Rs(a1) + Ds(ar). (27)

Substituting (15) into (27), we get the second half of (2@).
The most salient feature of Theorem 2 is that the res
is almost unconditional, in the sense that it neither retins
any assumption on cross-traffic arrival pattern nor impesss
restriction on the input signal In addition, this result enforces

such a conceptual idea that packet-pair probing can be diewe

as a “sampling-and-constructing” procedure as illusttate
Fig. 3. The packet-paifas, 0, s) is essentially sampling the
three sample-pathg;(¢), Ds(t), and B;s(t) at the time point
a1 and then constructing the output sig@alusing the three

samples based on (20). Although (20) shows two different
ways of constructing the output signal, they both produee th

same result. We surely can take advantage of Theorem 1
rewrite (20) in a form involving only two processes (e (t)

andD;(t)). However, the present version is more intuitive and

makes later analysis easier. Our characterization alrelaegs

this discussion, the packet-pair sequence will generateth
discrete-time sample-paths ehcoded probing signalEPS)
samples:Ys(T,,), Ds(T,), and Bs(T,,). We now investigate
the statistical properties of these EPS sample-paths.

A. Basics

We introduce a concept similar to probability distribution
called frequency distributionto characterize sample-path
ﬁttatistics. For the details of this concept, please refdd @

u
pages 46-50].

Definition 8: For continuous-time sample-palf(¢), define
indicator function¥(z, t)

{ 0 X(t)>=z

The frequency distribution functio®(z) of X (¢) is defined
as follows (assuming the limit exists fof: € R)

! / U(x,t)dt.
0

@ discrete-time sample-pathi,,, define indicator function
V(z,n)

1 X)) <=z

U(x,t) (28)

(29)

1 X, <=z

0 X,>«x (30)

¥l = {



The frequency distribution functio®(x) of X,, is defined Lemma 2:For any positived, the sample-path means of

similarly Y;5(t), Ds(t), and Bs(t) are given by
k

.1 .17
P(zx) = Jim E;\P(x,n). (31) ElYs(t)] = lim ;/O Ys(t)dt = A (32)

In the spirit of the probabilistic mean, we have continuous- Y
time and discrete-time sample-path means as foltbws E[D;(t)] = Tlinéo F/O Ds(t)dt =0 (33)
- L E[Bs(t)] = lim l/ Bs(t)dt=C —X. (34)

T—00 T
EIX(t)] = / 2dP(z) = lim —/ X (t)dt, , . o vf .

L T—00 T Jo Finally, ergodicity also implies that the variance Bf(t)

oo 1> decays when the observation intervddecomes large and that
EX,] = / zdP(x) = klim EZXi' this decaying variance will be reflected on the sample-path
- M= frequency distribution. Hence, we have the following lemma
which is intuitive and we skip the formal proof.
To examine the statistics of EPS sample-paths, we imposd-emma 3:Under the assumptions of the paper, the fre-
the another ASTA (Arrivals Sees Time Averages) property aquency distribution functiorPs(z) of sample-pathB;(t) ap-
the sampling proces&T, }. ASTA guarantees the equality ofproaches the following step function agets large

the statistics (or frequency distribution) in sampled etio 0 z<C—)\
the corresponding statistics in the continuous-time sampl Py(z) = { 1 >0 -\ (35)

path being sampled [15]. With non-negligible ASTA bias, ) ) ) ) o
sampling-based estimation usually fails to reach the nreasu We point out that the ergodic stationarity assumption is not
ment target and not much is left for discussion. The faét Necessary condition for these sample-path properties. We
that quite a few current measurement techniques perforin wenjecture that traffic with asymptotic stationarity alsbieits
without factoring ASTA into their design suggests that ASTAN® same properties (including traffic driven by regeneeati

bias is either not present or is negligible in the studiedrmet On-off arrival processes). However, the main goal of thespap
environments. is not to identify the weakest traffic condition that givestiug

desirable sample-path properties, but rather to make etieal
traffic assumption and study its implications on bandwidth
B. Cross-traffic Assumptions and Implications measurement techniques. A recent study showed that Interne

Under the ASTA assumption, our focus is now shifted tgaffic can be well modeled as a stationary process on .the
the sample-path statistics of(¢), Ds(t), and Bs(t), which timescale of hours [29]. Therefore, we started by assuming

again are dependent on the probabilistic properties of tHaffic stationarity; however, later results in this papee a

underlying cross-traffic arrival process. We make an eigodt!! derived based on the sample-path properties. They are
stationarity assumption on cross-traffic arrival and itigege ©XPected to have broader applicability than those limied t
its implications on these sample-paths. stationary cross-traffic.

Assumption 1:The cumulative traffic arrival process
{V(t)} has ergodic stationary increments, i.e., for any positive. Unifying Signal Model Revisited

d, the procesqY;(t)} is an ergodic stationary process with Thanks to ASTA, the three discrete-time sample-paths gen-

ensemble mean, which is less than the hop capacity erated by packet-pair sampling have the following limiting
This assumption imposes two restrictions on the procegge-averages

{Ys(¢)}. First, the stationarity assumption implies tHat(t)

has identical distribution for alt. Consequently{Y;(t)} is E[Y5(T,)] = A
also a wide sense stationary procésSecond, the ergodicity E[Ds(T,)] =0 : (36)
assumption implies that, at any time instaricgéhe variance E[Bs(T,)] =C— A

of Y;(¢) decays to 0 a8 increases. Also recall that a large observation internvalreduces the
Due to Szczotka [27], [28], the hop workload procesgyread of the frequency distributions f&§(T},) and Bs(T,,)
{W(#)} will “inherit” the ergodic stationarity property from 6 \ye now revisit the unifying model presented in Section Il
the traffic arrival process. Also because of the definition gf,q explain why it is not valid.
workload-difference process and Theorem 1, this property i Recall that when the input signal is very large, the
further carried over to proces;(¢)} and {B;(t)}, whose gistribution of Bs(T},) is concentrated around” — \. The
ensemble means ateandC' — A respectively. positive-part termR;s(T,,) in the second equality of model
The following lemma states the implications of AssumptiO(Qo) becomes almost constantly Hence, the additive zero-
1 on the three sample-paths under investigation. They &re @ban termD;(T,,) becomes easily detected from the output
immediate consequences of ergodic stationarity. signal samples’,. However, this does not mean that there is

_ “We useE].] to denote the sample-path mean, or limiting time-average, Unlike Bs(Ty) and Y5(Ty), Ds(Ty) is not a moving average process
instead of the ensemble mean. by nature. Consequently, the frequency distribution Iof(7},) gradually
5Assuming second order moments exist. becomes insensitive to the increasesof



no cross-traffic intensity information captureddf). The first A
equality of (20) shows that;(T;,) is always sampled by the
packet-pair. It is only because of the strong noise tés(f},)
that the desired signal is undetectable based on the oliserva
of &/,.

When input signab < s/C, the positive-part ternds(T),)
in the first equality of model (20) i8. Hence, additive signal
s/C and multiplicative A-mean signalY;(T;,) can be easily
detected from the statistics 6f . However, the additive zero-
mean signalD;(7,,) does not escape packet-pair sampling. It
only becomes undetectable from the statistics,oflue to the
strong noise terniRs(7},).

When is neither large nor small, both positive-part terms. . - . .
become prominent noise. Neither the additive zero-mean sé,é’gp?ﬁgl'lf,ﬁsﬂﬁf‘g trend OB (15 (1)) and B[ 125 (1)] with respect tay while
nal nor the multiplicative\-mean signal can be easily detected.
However, they are always captured by probing sampling and
encoded in the output spaciag This is exactly the subtlety ] _
that escaped the unifying model (6). The unifying model show Proof: Recall Theorem 2 and notice that due to ASTA

: : ty, the frequency distribution &;(7;,) is also Ps(z).
that 0/, carries a sample of the zero-mean signal only und Oper _ o .
DQ condition (wheri (T,,) > 0). However, the truth is that the %so note thatBs(T,,) is only distributed in[0, C]. Therefore,

Qle
>

Q
A/

output spacing always carries a samplelRf(T;,,) regardless Bs(T,)0 — s + C 5 —s
of the condition it is under. It is thevhole set of samples E <T> ] = / c dPs(z)
Ds(T,,) that exhibits additive zero-mean natunet the set of s/9
samples under the DQ condition. Similarly, it is the whole se s— Bs(T,)6\ " /95— 26
of samplesY;(T;,) that has a mean equal tg not just the T) - /o dPs(z)
set of samples under the JQ condition. This explains why the
unifying signal model is not accurate. Combining these results with (20) and (36), we have the
statement of the theorem. ]
V. ASYMPTOTICSIN PACKET-PAIR SAMPLING To help understand this result, we examine the two integral

One important application of our packet-pair probing modérmsE([I5(t)] and E[Rs(t)] in (38). Fig. 4 plots the evolving
(20) is that it allows immediate derivation of the asymptotitrend of the two terms with respect sowhile keepings con-
average of probing output spacifigas a closed-form function stant. As seen in the figuré;[R;(¢)] shows a monotonically
of the input spacing. This functional relation, which we call decreasing tend asincreases and at some poinit becomes
the gap response curyeserves as a theoretical foundation fop or practically negligible. The other term[/(t)] remains
bandwidth measurement tools such as TOPP [18] and Spricéor § < s/C and then shows a monotonically increasing
[26]. Previous derivations assumed constant-rate fluigssrotrend, asymptotically approaching a linear functionjofThe
traffic and the results given in (2)-(3). In this section, \weisit two curves intersect at the poidit= s/(C' — A). These results
this problem under the condition of ergodic stationary sroscan be summarized into the following two set of formulas

traffic arrival, which is clearly more realistic than fluidaffic.

~ S
A. Asymptotic Average @f E[{5(t)] =0 6 < C
Note that the output spacings also form a discrete-time E[I5(t)] = E[Rs(t)] 0=c—y - (39)
sample-pathd/,. The asymptotic average of is just the s - s
sample-path mean @f,. That is, E[Rs(t)] = c T C 0 0< C
E[5,] = lim > 4. (37) lims oo E[Is(t)] = %5 - %
ot . lims—.co E[Rs(t)] =0 - (40)
Our next theorem provides a closed-form expression for lim, ./ E[I;(t)] =0

E[5,].

Theorem 3:When a hop is probed by ASTA packet-pair All these properties are provable based on the lemmas we
sequence{T,},d,s) and assuming thai-interval available had in the pr_eyiogs section. We next prove one of them and
bandwidth sample-patB;(t) has frequency distribution func- leave the verification of the others to the reader.

tion Ps(x), then the following holds Theorem 4:The termE[Rs(t)] is a continuous and mono-
S\ C s tonic decreasing function ofin the rang€0, co). It converges
E[)] = ts +/ o~ Sdpa(a;) to 0 asé increases.
¢ sis C Proof: First, note that for amyA > 0 and¢, we have

/0 g — g6
5+ /0 o dPs(x). (38) 0 < Rs(t) — Ryyn(t) < A. (41)



Fluid Lower Bound Fluid Upper Bound
Gap Response Curve - Rate Response Curve -

s/C, onset point of curve deviation
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Fig. 5. lllustration of the gap response curve. Fig. 6. lllustration of the rate response curve.

This difference defines a new sample-path, whose timgom this lower bound and reaches the maximum deviation at
average can be computed as following the pointd = s/(C — A), where the input rate is equal to the
available bandwidth. This deviation is also illustrated thg

0 < E[Rs(t) = Rssa()] < A, (42)  curve in the shadow area of Fig. 4 and can be expressed as
which can be rewritten as C 25—
/ xd SdP(;(SC) 5 < s
0 < E[Rs(1)] — E[Rs+a(t)] < A. (43) ss5 C c-A (48)
s/6 o _
This shows that”'[Rs(t)] is a monotonic decreasing function / 5 xadpé(x) 5> 5
of §. Further, by taking the limit of (43) wheh — 0, we 0 ¢ C=A
have In contrast, note that using the unifying signal model (6),
iim (E[Rs(t)] — E[Rs+a(t)]) = 0. (44) we can not foresee such a deviation phenomenon. Especially
—0

at the pointd = s/(C — \) where the amount of deviation

This proves the continuity of’[Rs(t)] with respect tod in  is maximized, the unifying model would, however, predict no
the range(0, o). Next, we show its convergence to 0 &s deviation at all.

increases. It helps to identify the exact value of, which represents the
First, note that end point of the deviation range. Note thais the minimum
/6 g _ 48 input spacing that causes a zero intrusion residual
Jm ElRs(t)] = Jim o o b a = inf{s: E[Rs(t)] = 0}
s/é s/0 . S
_ 61320 %dPg(x) . 51220 x—gdp6($)-(45) = inf{d: Pg(g) = 0}. (49)
. 0 ) ) ) 0 This requires thaiBs(t) be greater than the input probing
Note that the first item in (45) is zefo rates/d for almost every along the time axis. In other words,
/8 s s s the input rates/5 must be smaller than the distribution lower
Jim gdbs(z) = lim 5Pf5(5) = EPOO(O) =0, bound of-interval available bandwidth. It is often not possible
0 (46) to satisfy such a condition exadilysince the convergence of
and the second item in (45) is also zero Ps(x) to the step function in (35) might only be asymptotic
and Ps(z) may remain positive for alk € (0, C] regardless
/8 4.8 5/ 5§ o —
0< lim 22 dPs(z) < lim 3_dPs(z) of the observa_tlon mtervaf. In that caseq = oo and we
6—00 Jo 6—00 Jg can only mark it approximately as a point where the deviation
= lim 2 Ps(3) = 2P (0) = 0. (47) becomes practically negligible.
s—o00 C 706 ¢ It is often more informative to look at the rate version of
Hence, the limit of E[Rs(t)] whend — oo is zero. m the response curve rather than the spacing version, because

the rate response curve has a direct association with cross-
B. Deviation Erom Fluid Model traffic intensity and available bgndwldt_h. PlotthE[én] with
o respect tar = s/6 and comparing it with the fluid model (3),
Note that the real gap response curve (38) is different frof get Fig. 6. The fluid rate model becomes an upper bound of
the fluid model (3). In fact, as schematically showed in Fig. $he real response curve. The input rate rafigler, C') becomes

the fluid model is a lower bound of the real curve. In the inpyhe area where the real curve negatively deviates from tie flu
dispersion rangé€s/C, «), the real curve positively deviatesy,qdel.

"Recall thatP. is the step function given in (35). 8For instance, when cross-traffic arrival is Poisson.



C. Impact of Probing Packet Size on bandwidth measurement accuracy becomes insignificant? |

How does the packet size affect the response curves opvhat follows, we show that even for relatively “smooth” (¢.g
the amount of deviation from fluid models? We first considdr0iSSon) cross-traffic, the deviation phenomenon stillleare
the case when input rate < C' — ). Notice that the second significant adverse impact on bandwidth estimation.
expression in (48) can be simplified to the following form

VI. THE IMPACT OF RESPONSECURVE DEVIATION ON

/5/5 5 _CxédPg(x) — /T rd ;xédpé(x) BANDWIDTH MEASUREMENT
0 5 . o A. Computing Response Curves
=G <T/O dPs(z) —/O a:dPg(x)) - (50)  we devise an off-line algorithm to compute the single-hop
o ) response curves based on cross-traffic packet arrival,trace
Applying integration by parts, we get the probing packet sizes, and the hop capacity’. The
r r trace file provides information regarding the arrival timeda
/O zdPs(x) = rPs(r) _/O By(x)da. (51) packet size for every cross-traffic packet. Given a trace file

with sufficiently long time interval recorded, the frequgnc

distributions of the associated sample-paths (sucf&s),
s/ ¢ _ 2§ 5 [T Ds(t), and Bs(t)) in that finite time interval become good

/ o dbs(@) = 5/ Ps(z)dx. (52)  approximations of their limiting frequency distributior®ur

0 0 off-line algorithm approximates the sample-path mear/of

Whens — oo while keepingr constant, the sampling intervals,, any given input spacing. Next, we briefly explain the
d = s/r approaches infinity proportionally. Hence, we have spirit of this algorithm.

Substituting (51) back to (50), we get

s/0 s " We use Y[ to denote a cross-traffic trace in the time
Jim dPs(z) = lim = [ Ps(z)dr.  (53) interval[0, 7]. GivenTg and hop capacity, the hop workload
0 R sample-pathiV (¢) in the interval [0, 7], denoted asV/ (),
Dropping the constant/C, we get a sufficient and necessaryan be computed. The following corollary states the fumctio
condition for the amount of deviation at input ratec C'— A properties of workload sample-path.
to vanish wherns — oo Corollary 2: Hop workload sample-path consists of alter-

' nating busy periods and idle periods. Any busy period com-
lim 5/ Ps(x)dz = 0. (54) Ing busy peri I peri y busy peri
0

s—xd

500 prises piece-wise linear segments with slepe

Taking advantage of these functional properties and using a
proper data structure, we can represBnft)] without losing
any information about the original process. Fréi(t);, we

c are able to retrieveYs(t), Ds(¢t) and Bs(t) for any ¢ in
Jlim 4] C—r—/ Ps(z)dx | =0.

Similarly, for any input rater > A, a sufficient and
necessary condition for the deviation to vanish is

(55) [0, — 4]. In other words, we keep the full information about
Y5(t)57°, Ds(t)5~°, and B;(t)7~° in the data structure of
These conditions require the sample-path distribution &F (¢)].
Bs(t) not only to exhibit decaying variance when the obser- Instead of approximatingk[é/] using a finite number
vation interval§ becomes large, but also to show sufficiemdf output dispersion samples, we approxim#t@’(¢)], the
decaying speed. Our experimental observation so far shosgsresponding continuous-time sample-path mean, usiag th
that these properties are usually satisfied. The problem tohe average of’(¢) in a finite interval. Note that due to
identifying cross-traffic types in which (54) or (55) is v@obéd the ASTA assumptionE[é),] = FEI[é'(¢)]. Hence, a good
remains open. approximation of the latter sample-path mean also serves as
Even though large probing packet size usually implies leasgood approximation for the former. The continuous-time
deviation of the real response curves from the fluid modeds, wample pathd’(¢) also has certain “nice” properties as we
point out the existence of such interesting cases wheraigertstate in the next theorem. The proof is in constructive terms
probing packet size can lead to a response curve with which provides a concrete idea of how our off-line algorithm
derivation at all. This happens only when cross-traffic bithi is designed.
periodic arrival pattern. Assuming the workload sampléipa Definition 9: Event-pointgre the time instances at which
W (t) is a periodic function that repeats itself evefytime the workload sample path switches from a busy period to an
units, then setting probing packet sizef9C — \) causes the idle period or undergoes a sudden increment due to packet
real response curves to coincide with the fluid models. arrival. An epochis a time interval between two adjacent
In practice, cross-traffic is rarely periodic and we have tevent-points.
rely on large packet size to reduce the amount of respons&heorem 5:The sample-pathd’(¢) consists of piece-wise
curve deviation. However, due to the limit of path MTU andinear segments with possible slopsl and —1. For any two
the concern of packet fragmentation, probing packetsize@n time instance$) < t; < ts, §'(t) is continuous in the interval
not be made arbitrarily large. The question becomes whetlier, ¢2) given thatt; andt, fall into the same epoch di/(¢),
the commonly used MTU 0500 bytes is enough to reduceand thatt; + § and ¢, + ¢ also fall into the same epoch of
the amount of curve deviation to such an extent that its impdd’ (¢).
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Fig. 7. A comparison between the fluid curve of prior work, tha@ve Fig. 8. Transformed curves used by TOPP.
computed offline, and the one measured in simulations.

inter-probing delay is chosen to H&6. We use the average
Proof: See the Appendix. B of the 1000 output dispersions to approximafgs’,|.
Our algorithm computes'(¢)§~°, the sample-path’(¢) in Fig. 7 shows both the rate curve computed off-line and the
time interval [0, 7 — ¢], based onYf, C, s and 4. Taking rate curve measured in NS2 simulation. The figure shows that
advantage of Theorem 5, we can represent the sample-p&i two agree and non-negligibly deviate from the fluid upper

. N -5 . .. . X X i
information of §'(¢)5 " to its full precision in a proper data pound. The deviation is very clear even though we use the

structure. We then compute the followthg largest probing packet size. The figure also shows that we can
- 1 3§ obtain a much smoother curve using off-line computatiomtha
y(t)g " = 5/ &' (t)dt, (56) using NS2 simulation.
TT9Jo Next, we discuss the implications of our findings on two
and use it as an approximation to packet-pair bandwidth measurement techniques: TOPP and
1 /7 Spruce.
E[0'(t)] = lim ;/ 8 (u)du. (57)
T—00 0

It is clear that the precision of this approximation is mﬁinIB' TOPP
decided byr. Thus, we can pick a large so that further =~ We first consider a single-hop path. TOPP uses the fluid
increase ofr would make little difference. It could be some-ate model (2) as its measurement rationale. It first calltn
times impractical to have such a long trace. However, nodéltput rates” = s/’ 1° for a series of equally spaced input
that even when (56) is not a good approximation/’ (¢)], rates in some intervat™", r™¢*]. TOPP then transforms the
it still represents the correct result in a hypotheticaligiic measured rate response curve to a function betwgehand
cross-traffic that repeats itself after everyime units. This is 7, which admits the following piece-wise linear relation in
due to the fact that in periodic cross-traffic, sample-path) fluid models:

has a limiting time-average equal to its time average in one B 1 r<C—M\
period. r/r = { r+ A SOy (58)
In our experiment, we use a single-hop path with capacity retv -

C =10 mb/s. We use Poisson cross-traffic with average arrivalTopp identifies the second segment in the curve and applies
rate of 500 packets per second. The packet siz€8 bytes. |ineqr regression to calculate the capacityand cross-traffic
Hence,A = 3.0 mb/s. The probing packet size is chosen tfhtensity/\.

be 1500 bytes. We comput&|[d'(¢)] for 130 input values o6 \we transform both the computed and the measured rate
in [0.86 ms 12 mg, which corresponds 30 equally spaced esponse curves in Fig. 7 to the form of (58). As showed
input rates in the range ¢f.0 mb/s 14 mb/g. We generate a i, Fig. 8, the deviation ranges appear as the second segments
100-second cross-traffic trace and find that the time average\Qf,en applying linear regression on these segments, we get
¢'(t) in time interval[0, 30s] has sufficiently converged. Evenggtimation results in Table II. The table shows that even if
for the smallest inpud = 0.86 ms, doubling the trace interval Topp could manage to get the asymptotic rate curve, it would

to 60 s does not produce more thafi difference. ~ not achieve an accurate measurement due to its unawareness
To validate our algorithm, we also use the same setting §f the deviation phenomenon.

NS2 simulation to measure the response curve. For every inpu, 5 single-hop case, note that the real curve agrees with
rate, the sender transmit800 packet-pairs. The inter-probingid model whenr > (. Therefore, linear regression can

delay is controlled by an exponentially distributed randor, applied to this curve portion to extract the capadity
variable to meet the ASTA sampling condition. The average

10We used’ to denote a measurement &f[5’] using finite number of
9Theorem 5 also allows an efficient computation of (56) witjhhaccuracy. samples of’.



TABLE 1l
TOPP ESTIMATION RESULTS(IN MB/S)
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average of output packet-pair dispersions in a single-tatp,p
which extends previous fluid models and serves as a thealretic
foundation for packet-pair bandwidth estimation. In ouufe
work, we will apply these results to analyze the robustnéss o

C A C -
Real values 10 3.0 7.0
TOPP in ns2 simulation 35.97 3233 3.64
TOPP in off-line computation 35.81 32.38 3.43

and cross-traffic intensity. In a multi-hop path, unlike what
can be easily derived from the fluid model as showed in (4),
the real curve becomes very complex and is not amenal
to closed-form analysis. However, based on the single-hop
results, we can predict that one necessary condition for tHél
curve portion that contains the information afand C' to
survive against multi-hop interference is that the avddab [3
bandwidth for all pre-tight linkanust be significantly higher
than the tight link capacityOtherwise, when the input rate is
greater tharC, it falls into the deviation range of some pre-
tight link and the probing rate gets reduced on average befol5]
the packet-pairs arrive at the tight hop. [6]

C. Spruce [7]

Spruce assumes a single bottleneck link whose capétity (€]
can be estimated beforehand. Spruce sends probing pdlirs wit
intra-pair spacing set tos/C, which is the bottleneck link [9]
transmission delay of the probing packet. Inter-pair detay
controlled by an exponentially distributed random varmatu (10
meet ASTA property. Each probing pair generates an availalpi1]
bandwidth estimate by computing

80
— ).

Spruce averages the last 100 samples to obtain a final estinr?mﬁ]]
for the path available bandwidth. Our next theorem states
unbiasedness of Spruce estimator

Theorem 6:Under the assumptions of this paper,
single-hop path, we have

lo (5] e

Proof: Combining (38) and the first equality in (39), thigg)
theorem is easily proved. ]
In a multi-hop path, the pre-bottleneck links introduceseo
to the input signals, which shifts it from a constant to a2
random variable. The post-bottleneck links introduce @ois
to ¢’. This impact can be minimized if both noise signal?l]

[12]

A, =C (1 (59)

[15]
in 8

[17]

(60)

i [19]

current available bandwidth measurement techniques tt-mul
hop queuing interference.
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Sincels(t;) > s/C, we getls(t;) > 0 and
APPENDIX I - -
PROOF OFTHEOREM5 I(t) = Is(ti) + (t — ti). (64)
Proof: We approach the proof in three steps. In the firééombining (64) and the proof in the first step, which shows the
step, we prove the second statement in the theorem. Thatoigjer two terms on the right hand side of (61) are constants,
we show that’(t) is continuous in the time intervdt,,t,). Wwe haved'(t) = d'(t;) + (t — t;), which means tha#’(t);, is

Recalling Theorem 2, we have a linear segment with slope
Ys(t)d s - In the fourth case whefl’(¢;) > 0, W(t; + §) = 0, and
o) = 50 Tt I5(1)- (61) Is(t:) < s/C, lett’ = min(er, 2 =6, tiy, ti+s/C = I5(ti)).

i i i Notice that for anyt; < ¢ < ¢/, (63) still holds, and we also
The first two terms on the right hand side of (61) are constanigye ;s (t;) = 0 due to the case condition

with respect tor because of the following
S

. +
Ys5(t)6 = V(t+6) — V(t) I5(ti) = (Ié(ti) - 5) =0. (65)

=Y5(t1)s — (V(t) = V(t1)) + (V(t+6) —V(t1 +6)).  Further recall that < ¢’ < t;+s/C—1I5(t;), and consequently

Since (¢1,t] is within a workload epoch, there is no crossVVe also have

traffic arrival during this interval. Henc® () — V'(t;) = 0. 0<I5(t) = (L;(t-) F(t—t) — £)+ <0. (66)
The same is also true in the interv@d, + 4,¢ + 6] and we N ' Yool —

haveV(t + 6) — V(t1 + 6) = 0. Therefore,Y5(t) = Ys(t1)  Therefore,I5(t;) = I5(t) = 0. Combining this result with
is a constant with respect to The third term/s(t) on the (1) we haves'(t) = &(t;), which means thad'(t)! is a
right hand side of (61) is obviously a continuous function gfnear segment with slope. '

t. Henced'(t) is continuous in(ty, ts). y o In the fifth case wherV(t;) = 0, W(t; + 6) > 0, and
In the second step, we show th#{¢);~° can be split into Is(t;) > s/C, lett = min(e1, e — 0, tit1, ti+ Is(t;) — s/C).
a series of consecutive continuous segments. That is, Notice that for anyt; < ¢t < ¢/, we have
o0y = mn, (62) Ls(t) = Is(t:) — (t — t3) (67)
=1 S S

~ +
Is(ts) = (Is(t:) — 5) = Ii{t)~ 5. (68)
wheret; =0, t,41 =7 — 6, andt; < t;4q forall 1 <i <mn. _
We now prove this result by constructing such a partition. Again recallt <t <t; + Is(t;) — s/C , we have
Let e; be the first event-point iV (¢) after¢; andes be - s\t s\t
the the first event-point iV (¢) aftert; + d. Thend’(t) is I5(t) = (L;(t) - 5) = (L;(tl-) —(t—t:) — 5)
continuous in the intervdk,, min(e;, eo—4)) due to the result _ NN S F N
proved in the first step. Suppose that § < min(e;, ez — ), =Is(t:) - (t = t) c Ls(ts) = (t = ). (69)
then set'Fingn =1 and_tnﬂ =ty =T 4, the partition is  combing (61) and (69), we hav&(t) = 0'(t;) — (t — t:),
accomplished. Otherwise, I6f = min(ei, 2 —4) and proceed \hich means thaf'(t)!’ is a linear segment with slopel.
with the partition of’ ()7, ~° recursively. This eventually splits |, the sixth case V\;helﬁV(ti) =0, Wt +6) >0, and
§'(t)5~° into the form of (62). I5(t;) < s/C, lett' = min(ey, ey — d,t;,1). Notice that for
In the third step, we show that in any continuous segmesy ¢, < ¢ < t/, we have
5’(t)§j“ , ¢'(t) is a piece-wise linear curve with possible slopes

0, 1, and—1. We prove this result by recursively identifying I5(t) = Is(ts) — (t — t;) (70)
all the linear segments in the intervél;, t;+1). We denote Ty(t) = (Ls(t) 3 i)+ o 71)
by e; ande, the first event-points iV (t) after¢; andt; + C

0 respectively. In what follows, we discuss the identificatioConsequently, we also have
procedure in six possible cases. ~ ~
In the first case whefV (¢;) > 0 and W (t; + ) > 0, let Ls(t) = Is(t:) = 0. (72)
t' = min(e1, ez — d,%;41). Notice that for anyt; < ¢ < ', Combing (61) and (72), we hav&(t) = ' (t;), which means
I5(t;) = I5(t) and consequently;(t;) = I5(t). Combining thatd'(t) is a linear segment with slope
the proof in the first step, we hav&(t;) = &'(¢), which means  Finally, if ¢ = t;;1, we finished identifying all linear
thatd’(t);, is a linear segment with slopie segments. Otherwise, we recursively identify the remainin
In the second case whéi (t;) = 0 and W (t; +6) = 0, linear segments in'(t);;*'. Notice that the six cases we
let ¢ = min(ey, €2 — d,%i11). Using a similar argument, it is discussed above cover all possibilities. Hen&gt)'i*' can
easy to see that'(¢);, is also a linear segment with slope only contain piece-wise linear segments with possible esop
In the third case whenV(t;) > 0, W(t; +6) = 0, and 1, 0, and—1.

I5(t;) > s/C, lett’ = min(e1, ez — d,t;41). Notice that for  combining all three steps, we proved the theorem. m
anyt; < t < t’, we have



