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Abstract

A STOCHASTIC ANALYSIS OF END-TO-END AVAILABLE

BANDWIDTH ESTIMATION

by

Xiliang Liu

Advisor: Professor K. Ravindran

This thesis presents a theoretical foundation for packet-train available band-

width estimation in its most general settings. In the first half of our work, we

analyze the asymptotic behavior of packet-train probing in a single-hop net-

work path carrying bursty cross-traffic. We examine the asymptotic average of

the packet-train output dispersions and its relationship to the input dispersion.

We call this relationship the response curve of the network path. We show

that the real response curve is provably different from that obtained under fluid

cross-traffic models in prior work. This difference, which we refer to as response

deviation, is one of the previously unknown factors that can cause measurement

bias in available bandwidth estimation. We show both analytically and ex-

perimentally that the response deviation and its consequent measurement bias

vanish as the packet-train length or probing packet size increases and that the

vanishing rate is decided by the burstiness of cross-traffic.

In the second part of this thesis, we analyze the asymptotic behavior of

packet-train probing over a multi-hop network path P carrying arbitrarily

routed bursty cross-traffic flows. We show that the response curve Z is tightly
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lower-bounded by its multi-hop fluid counterpart F , obtained when every cross-

traffic flow on P is hypothetically replaced with a constant-rate fluid traffic flow

of the same average intensity and routing pattern. The real curve Z asymp-

totically approaches its fluid counterpart F as probing packet size or packet

train length increases. As an implication of these findings, we show that bursty

cross-traffic in multi-hop paths causes negative bias to most existing techniques.

This bias can be mitigated using long packet-trains. However, the bias is not

completely removable for the techniques that use the portion of the single-hop

fluid model that differs from F .

Through our probing analysis, we have achieved a clear understanding of

both the validity and the inadequacy of current techniques, and provided a

guideline for their further improvements.
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Chapter 1

Introduction

The information about the spare capacity of an Internet path can be very useful

in many applications. With such a knowledge, a TCP connection can quickly

ramp up to an optimal sending rate without using slow-start, improving end-

to-end throughput; end users can select among several mirror servers for fast

downloading; Overlay networks can optimize their application-level topology

and provide better services; Network managers can troubleshoot networking

problems more efficiently.

However, the available bandwidth information is usually not directly acces-

sible from the network due to the lack of administrative privileges. Therefore,

researchers have been developing measurement techniques that infer the band-

width information from the end points of network paths. This effort can be

traced back to early 1990’s, and has formed one of the important Internet mea-

surement research area since then.

Related to network bandwidth, there are two concepts that need to be clar-

ified – bottleneck capacity and available bandwidth. The former refers to the

maximum rate (in bits per second) a network path can transmit data; while
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the later is the spare capacity within a certain time interval after the network

path transmits cross-traffic. Path capacity is a static metric determined by the

hop with the minimum link capacity; while path available bandwidth is a dy-

namic metric that relates to the cross-traffic traversing the path. Due to the

burstiness of cross-traffic, path available bandwidth varies over time as well as

a wide range of observation intervals. We illustrate the two concepts and their

relationship using Fig. 1.1, where the height of each rectangle represents the

link capacity and the height of shaded portion represents the amount of capacity

used to transmit cross-traffic. The height of unshaded portion in each rectangle

represents the link available bandwidth. The path available bandwidth is the

minimum link available bandwidth along the path. More formal definitions will

be given at a later time.

A4

L1
L2

L3

L4

A1

A2

A3

Figure 1.1: Illustration of capacity and available bandwidth.

It is important to notice that the metrics of path available bandwidth usu-

ally exhibit a great deal of statistical variability. Consequently, a major issue

regarding the practical usefulness of bandwidth estimation is the predictability

of this metric based on prior measurements. There were several studies which

showed that the available bandwidth along many Internet paths remains stable

in relatively long time scales and that measurements conducted back-to-back are

expected to produce similar results. Zhang et al. measured the TCP through-

put of one-megabyte transfers in every minute for a total duration of five hours
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[44]. The measurement included 49,000 TCP connections along 145 different

Internet paths. They found that the time periods in which the throughput time

series can be modeled as a stationary process (and even an i.i.d process ), often

last for more than one hour. Balakrishnan et al. examined the throughput

stationarity of successive Web transfers to a set of clients [5]. They found that

the throughput to a given client appeared to be piece-wise stationary in the

timescale of hundreds of minutes.

On the other hand, the amount of time it takes to generate one measurement

of the path available bandwidth using current techniques is usually no more

than tens of seconds. This measurement result, given that it is sufficiently

accurate, can serve as a good prediction for the average available bandwidth of

a substantially long time interval (say, twenty minutes) to come. As illustrated

in Fig. 1.2, the time interval [t0, t2] is the duration when available bandwidth

process remains in a stationary state; the interval [t0, t1] is the duration to

generate one measurement; and [t1, t2] is the interval the measurement result

remains good. This observation justifies the usefulness of available bandwidth

estimation.

measurement remains good in this duration

t

Availale bandwidth

t2t1t0

Figure 1.2: Timescales for bandwidth measurements.
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End-to-end measurement of bottleneck capacities and available bandwidths

involves sending probing packets over the Internet path to infer bandwidth infor-

mation from the delays or inter-packet delays (i.e., dispersions) of the probing

packets when they are received at the destination host. In delay-based mea-

surements, path characteristics such as per-hop capacity and link utilization

are inferred based on the RTT or one-way delay of individual packets [4], [11],

[17], [22], [31]. In dispersion-based measurements, the inter-packet delays of

packet-pairs is traditionally used to infer bottleneck capacity [7], [8], [9], [12],

[16], [21], [33], [34]; however, recent approaches also use packet-pairs/trains to

measure cross-traffic and available bandwidth of an end-to-end path [6], [13],

[15], [18], [28], [36], [38]. It is straightforward to understand and theoreti-

cally validate delay-based bandwidth measurements. The major difficulties re-

mained are mostly due to practical issues [31], [35]. On the other hand, it is far

more difficult to characterize dispersion-based methodology that involves packet

pair/train probing. Consequently, apart from the practical issues, dispersion-

based measurement techniques are yet to be fully justified for general path and

cross-traffic conditions.

There has been a fair amount of research effort to achieve a clear understand-

ing of packet-train bandwidth estimation. However, previous analysis either re-

lied on constant-rate fluid cross-traffic models [9], [27], or provided answers that

are restricted to a single-hop path and also are only partially suitable for generic

bursty cross-traffic. [7], [15], [32], [36]. A packet-train bandwidth measurement

theory in the context of a multi-hop path with general bursty cross-traffic arrival

still remains as an open problem. Such a theory is important in that it helps

to understand both the validity and the inadequacy of existing techniques and

provides a guideline for their further improvement. In this thesis, we establish
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such a theory for end-to-end packet-train available bandwidth estimation.

Before getting into the detailed statement of our research problems, it is

necessary to briefly discuss the differences between available bandwidth mea-

surement and capacity measurement. Both of the two types of measurements

are based on packet-train probing, and can be classified as dispersion-based

techniques. However, capacity measurement techniques measure the minimum

link capacity along the path. They largely rely on various heuristics to detect

the mode that corresponds to the minimum capacity from the distribution (i.e.,

histogram) of the output packet-pair dispersions. On the other hand, available

bandwidth measurement techniques measure the spare capacity of a network

path. They are mostly based on the statistical mean of the output packet-

train dispersions and its mathematical relationship to the input packet-train

dispersion. This thesis focuses on the later, and not the former.

1.1 Research Problem

The central problem in packet-train bandwidth estimation is to derive the func-

tional relation between the input and output packet-train dispersions and to

show how the path bandwidth information is related to this functional relation.

In a multi-hop path with arbitrary cross-traffic, this problem appeared to be

very challenging. Therefore, as a natural starting point, previous work used a

single-hop path with constant-rate fluid (CRF) cross-traffic to simplify analysis.

CRF cross-traffic is a hypothetical traffic with infinitely small packet size and

constant arrival rate λ. For any time interval [t, t + δ], the amount of CRF

traffic received by the network path is λ× δ. The deterministic and constancy

nature of CRF cross-traffic leads to a simple closed-from expression of packet-
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train output dispersion gO as a piece-wise linear function of the input dispersion

gI , as given in the following

gO = max

(

gI ,
s+ λgI

C

)

=















gI gI ≥
s

C − λ
s+ λgI

C
gI ≤

s

C − λ

, (1.1)

where s is the probing packet-size and C is the hop capacity. Letting rI = s/gI

and rO = s/gO be the input and output probing rate respectively, we get the

rate version of (1.1) as follows

rO = min

(

rI ,
rIC

rI + λ

)

=















rI rI ≤ C − λ

rIC

rI + λ
rI ≥ C − λ

. (1.2)

Another commonly used variation of (1.2) is given by the piece-wise linear func-

tion between rI/rO and rI

rI/rO = max

(

1,
rI + λ

C

)

=















1 rI ≤ C − λ

rI + λ

C
rI ≥ C − λ

. (1.3)

It is conceptually helpful to view the probing output (dispersion or rate) as

the response of the network path to the probing input. We call the functional

relation between the response and the input the “probing response curve” of

the network path. Most existing techniques for available bandwidth estimation

are based upon or related to the single-hop fluid response curves (1.1), (1.2),

or their variants such as (1.3). In practice, a network path usually consists of

multiple hops and cross-traffic are always bursty. Note that due to the ran-

dom nature of bursty cross-traffic, the output packet-train dispersions are also

random. Accordingly, the statistical mean of the output dispersions is viewed

as the response of the network path to the input dispersion. Current measure-

ment proposals assume that the impact of non-bottleneck links is negligible and
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that cross-traffic burstiness only causes measurement variability that can be

smoothed out by averaging multiple probing samples. In other words, without

formal justification, the single-hop fluid response curve is considered to be a

valid approximation of the multi-hop response curve in bursty cross-traffic.

In this thesis, we set our research goals to address the following questions:

• Derive the response curve for an arbitrary network path with bursty cross-

traffic arrival.

• Investigate the impact of input packet-train parameters (i.e., probing

packet size and packet-train length) on the probing response curves.

• Examine the impact of cross-traffic burstiness on the probing response

curves. In a multi-hop path, examine the impact of cross-traffic routing

on the probing response curves.

• Compare the real response curve with the one obtained in CRF cross-

traffic, and analyze the validity and inadequacy of current techniques.

In summary, this thesis establishes a theory for packet-train bandwidth es-

timation by deriving the “probing response curves” and uncovering their major

properties.

1.2 Solution

We tackle the questions listed above in three steps. First, we take a sample-

path approach to analyze packet-train bandwidth estimation in a single-hop

path with bursty cross-traffic arrival. The results obtained in this step (see

chapter 3) are important building blocks for later multi-hop analysis.
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Even though many single-hop results can be treated as special cases in multi-

hop analysis, there are several reasons that we need to separate them from

the multi-hop analysis. First, due to the different levels of complexity, this

thesis treats single-hop analysis with a different level of mathematical rigor

than it treats multi-hop analysis. We make much weaker assumptions and

use fewer approximations in the single-hop analysis. Hence, our results have a

boarder applicability in practice. While in the multi-hop analysis, we rely on

a stronger assumption on cross-traffic arrival and an additional approximation

on cross-traffic departure at each hop to deal with the increased complexity

of the problem, as we shall see in chapter 4. The second reason we separate

the single-hop analysis is that even in a single-hop case, the problem is fairly

complex and a thorough treatment requires a significant amount of effort.

The main results we obtained in the first step is a closed-form expression for

single-hop probing response curve. Our results show that cross-traffic burstiness

causes the real response curve to deviate from that obtained in CRF cross-traffic.

This response deviation may introduce significant measurement bias to existing

techniques. We also find that by increasing packet-train length, the response

deviation and measurement bias it causes can be reduced to a negligible level.

In the second step, we derive the multi-hop response curve F for a network

path that carries arbitrarily routed CRF cross-traffic flows (see details in the

second section of chapter 4). We obtain a recursive closed-form expression of

F .

In the third step, we derive the multi-hop response curve Z for a network

path P that carries arbitrarily routed bursty cross-traffic flows (in the third and

fourth sections in chapter 4) and compare it to its “multi-hop fluid counterpart”

F , which is obtained when every cross-traffic flow in P is hypothetically replaced
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with a CRF flow of the same arrival rate and routing pattern.

In addition to the response deviation Z − F caused by cross-traffic bursti-

ness, we find another source of response deviation that comes from the difference

between the multi-hop CRF response F and the single-hop (the bottleneck link)

CRF response S, which the current techniques are anchoring upon. Both types

of response deviation are positive and cause current techniques to underesti-

mate the path available bandwidth. The portion of underestimation caused

by the response deviation Z − F is elastic, meaning that it can be reduced

to a negligible level using long packet-trains. On the other hand, the portion

of underestimation caused by the response deviation F − S is non-elastic and

remains constant for arbitrary packet-train parameters. The way to keep away

from non-elastic measurement bias is to avoid probing the path at high input

rate.

1.3 Contributions

This thesis makes the following contributions:

• It provides a stochastic-theoretic characterization of packet-train band-

width estimation and uncovers the fact that cross-traffic burstiness in-

troduces measurement bias (in addition to measurement variabilities) to

current techniques.

• It propose a methodology to compute the single-hop response curve from

a given cross-traffic trace.

• It proves that ignoring multi-hop effect in bandwidth estimation can also

lead to measurement bias.
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• It gives a complete answer to the question regarding the implication of

cross-traffic routing on bandwidth estimation, which has been mostly over-

looked in prior work.

• It formally proves that the measurement bias caused by cross-traffic bursti-

ness can be overcome by increasing packet-train parameters.

• It leads to a new measurement method that estimates the utilization and

capacity of the bottleneck link in multi-hop network paths.

These contributions lead to a fairly complete understanding of the packet-train

bandwidth estimation problem and the fundamental tradeoffs therein.

1.4 Dissertation Overview

This dissertation is organized as follows. In chapter 2, we give a brief survey of

current bandwidth estimation techniques and point out that the rationales they

are anchoring upon are all related to (1.1). This motivates us to examine the

validity of (1.1) in a network path with bursty cross-traffic. In chapter 3, we

take a sample-path approach to derive the probing response curve in a single-

hop path with bursty cross-traffic arrival. We demonstrate the deviation of

the single-hop response curve from (1.1) and the measurement bias it causes to

existing techniques. In chapter 4, we give a stochastic analysis on the response

curve Z of a multi-hop path and decompose its deviation from (1.1) into two

portions. We demonstrate the measurement biases caused by both portions of

response deviation and point out the way to mitigate or avoid the two types of

consequent measurement biases. Finally, in chapter 5, we summarize our work

and point out future research directions.
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Chapter 2

Related Work

IP-layer bandwidth estimation and the idea of using packet-pairs to infer link

capacity dates at least as far back as 1988 when Jacobson [16] designed the

packet conservation principle of TCP to allow senders to indirectly infer the

bottleneck/available bandwidth based on the spacing between the ACK packets.

Keshav’s packet-pair flow control followed in 1991 [20] and relied on fair queuing

in all network routers.

Several years later, Carter et al. (1996) developed a tool called cprobe [8] to

measure the available bandwidth. Cprobe bounced a short train of ICMP echo

packets off the target server and recorded the spacing between the first and last

returning packet. The rate of the arriving echo stream was used as an estimate

of the available bandwidth. As pointed out later by Dovrolis [9], cprobe actually

measured a metric called the asymptotic dispersion rate (ADR), which does not

generally equal the available bandwidth. Paxon (1999) defined and measured a

relative available bandwidth metric β [34], which approached 1 when the path

was void of cross-traffic and 0 when the path was close to 100% utilization.

Melander et al. (2002) studied the relationship between the input and output
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rates rI and rO of probing trains in a single-hop path and presented the following

FIFO fluid model [27]:

rO =















rI rI ≤ C − λ

C
rI

rI + λ
rI ≥ C − λ

, (2.1)

where C and λ are the hop capacity and cross-traffic intensity (or rate) respec-

tively. Applying math induction to the subsequent hops along the path, we

get the main model of measuring the available bandwidth AP of an arbitrary

multi-hop path P :

rO =















rI rI ≤ AP

C
rI

rI + λ
b ≥ rI ≥ AP

, (2.2)

where b is the second minimum residual link bandwidth along path P and C is

the capacity of the tight hop.

Based on (2.1) and (2.2), Melander et al. proposed a measurement technique

called TOPP (Trains of Packet Pairs) [28]. TOPP first collects the output rates

of probing packet pairs for a series of equally spaced input rates in some interval

[rmin
I , rmax

I ]. In the subsequent analysis phase, instead of using (2.2), TOPP uses

the piece-wise linear relationship between rI/rO and rI :

rI

rO

=















1 rI ≤ AP

rI

C
+
λ

C
b ≥ rI ≥ AP

. (2.3)

TOPP identifies the second segment in the curve using several empirical

methods and applies linear regression to calculate the capacity C and cross

traffic intensity λ of the tight link. Hence, AP = C − λ is obtained.

Another recent proposal is SLoPS (Self Loading Periodic Streams) by Jain

et al. (2002) [18]. SLoPS is implemented in a tool called pathload and is based
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on the observation that one-way delays of packets in a probing train show an

increasing trend when the input rate of the probe traffic is higher than the

available bandwidth of the path. This rationale is clearly true if cross-traffic is

modeled as a fluid and generally can be written as a variation of (2.3):

rI

rO

=















1 rI ≤ AP

> 1 rI > AP

. (2.4)

To measure available bandwidth in bursty cross-traffic, pathload adapts its

input probing rate in a way similar to a binary search to locate the region where

the one-way delay of the probing packets is just about to show an increasing

trend or the two statistical tests used can neither detect an increasing trend,

nor detect a non-increasing trend with sufficient confidence. That region is then

taken as the range of the available bandwidth of the path.

PathChirp [37] is a proposal to improve pathload’s measurement speed.

PathChirp uses probing trains with exponentially decreasing inter-packet spac-

ing and calculates available bandwidth from the queuing delay signature of the

arriving chirp.

Hu et al. [15] (2003) analyzed the interaction between probing pairs and

CBR cross-traffic using a single-hop path. They proposed the following gap

formula under the condition that the packets in each probing pair share the

same hop busy period:

gO =
s

C
+
λgI

C
, (2.5)

where gO is the output gap, gI is the input gap between the packet pair, s is

the packet size of probe traffic. The paper [15] also proposed a packet-train

based estimator called IGI that measures the cross-traffic intensity, which can

be viewed as an empirical extension of (2.5).
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As an alternative to IGI, [15] suggested to use a method called PTR (Packet

Transmission Rate), in which the output rate of the probing train is used as

an estimator of AP . The authors [15] showed that both IGI and PTR produce

accurate results at the turning point where the input gap gI starts to become

the same as the output gap gO.

Notice that IGI/PTR is also related to model (2.1), which shows that the

turning point is where both rI and rO are equal to the available bandwidth

C − λ. Equation (2.5) is the “gap” version of the second part of (2.1).

Spruce [38] is another measurement proposal that uses packet-pairs. Like

IGI, spruce assumes a single bottleneck link whose capacity C can be esti-

mated beforehand. Spruce sends probing pairs with intra-pair gap gI set to the

bottleneck link transmission delay of the packet and inter-pair delay set to an

exponentially distributed random variable so as to maintain the average probing

rate below 0.05C. Each probing pair generates an available bandwidth estimate

Ai computed by:

Ai = C
(

1 − gO − gI

gI

)

. (2.6)

Spruce averages the last 100 samples of Ai to arrive at an estimation of AP .

Observe that spruce anchors its rationale on (2.5) with gI = s/C, where s is

the probing packet size.

There are other measurement proposals such as Delphi [36] and the work in

[13]. These proposals assume specific cross-traffic processes, which allows them

to either directly estimate cross-traffic intensity or reconstruct its parameters

on a larger timescale based on the sampled traffic in small time intervals. The

packet probing part however is similar to that of spruce and is related to (2.5).

In summary, most of the recent proposals anchor their rationales directly on
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(2.1) or a model closely related to it. However, (2.1) is only fully justified based

on a fluid cross-traffic model, in which the arrival rate of cross-traffic is constant

at all times t and equals λ. For general bursty cross-traffic, it is important to

understand whether (2.1) is the asymptotic behavior of packet train probing or

not. An affirmative answer to this question would lay a solid ground for the

design of available bandwidth measurement methods and provide them with

an assurance of asymptotic accuracy. On the other hand, a negative answer

would shed new light on the fundamental limits and tradeoffs in probing-based

measurements, giving rise to new insights in parameter tuning under certain

application requirements. In the next chapter, we tackle this question in a

single-hop path.
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Chapter 3

Single-Hop Probing Analysis

3.1 Introduction

Let us start from a more accurate definition of available bandwidth. According

to recently established notions, the available bandwidth of a network hop is its

residual capacity after transmitting cross-traffic. Since at any time instance, the

hop is either idle or transmitting packets at its capacity speed C, the utilization

of the hop can be viewed as an on-off function over time. The definition of

the available bandwidth ought to look at the average unutilized bandwidth over

some time interval δ, i.e.,

Bδ(t) = C
(

1 − 1

δ

∫ t+δ

t

U(x)dx
)

, (3.1)

where Bδ(t) is the available bandwidth in time interval [t, t+ δ], U(x) ∈ {0, 1}

is the link utilization on-off function determined by the packet-arrival pattern

of cross-traffic, and C is the hop capacity. The available bandwidth along a

network path is the minimum available bandwidth of all traversed hops. The

hop carrying the minimum available bandwidth is called the tight hop.
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In this chapter, we analyze the asymptotic behavior of single-hop, packet-

train bandwidth estimation under bursty cross-traffic conditions. This question

has two aspects. First, given a cross-traffic arrival process and fixed probing

train parameters (i.e., packet size and train length), we analyze how the probing

output relates to the probing input. We investigate the output rate and gap for

individual packet trains as well as their asymptotic average as the number of

probings approaches infinity. We examine the functional relation between the

probing input and the asymptotic average of the probing output in the entire

input range.

Second, we investigate how the response curve evolves with respect to the

changes in packet train parameters and cross-traffic burstiness. Both questions

are of fundamental importance for the design of available-bandwidth estimation

methods. The answer to the first question provides a theoretical foundation that

extends previous rationales based on fluid cross-traffic models. The answer to

the second question offers an insight into parameter tuning strategies in the

measurement design.

Although our final goal is to understand the behavior of packet-train probing

in multi-hop network paths, the insight obtained in the analysis of a single hop

is indispensable in reaching this goal. Moreover, the single-hop case on its own

is an interesting and complex problem calling for an elaborate discussion.

In this chapter, we make two theoretically and practically mild assumptions,

under which we derive several important properties of the gap (and rate) re-

sponse curve. Our results show that the rate response curve in constant-rate

fluid cross-traffic is the tight upper bound of that in bursty cross-traffic with

the same average intensity. We show that there is a probing input range where

the real curve negatively deviates from its fluid-based prediction. Most exist-



18

ing measurement techniques make use of the curve in that range without being

aware of the “response deviation”, which sometimes makes them subject to

significant measurement bias.

Our analysis also identifies the source of the probing response deviation

and arrives at its closed-form expression for arbitrary packet-train parameters.

We show that the amplitude of the response deviation is exclusively decided

by the packet-train parameters and the available bandwidth distribution. We

also present an experimental approach to compute the response deviation in

given cross-traffic traces. This allows us to empirically validate our theoretical

results, qualitatively observe the relationship between the response deviation

and probing train parameters in certain cross-traffic conditions, and evaluate

the asymptotic performance of various available-bandwidth estimators.

The rest of the chapter is organized as follows. In section 3.2, we identify

the measurement targets and present the analytical foundation of packet-train

probing. In section 3.3, we analyze the major properties of the response curves.

In section 3.4, we propose two experimental methods, period testing and trace

driven testing, to observe the response deviation and examine its relationship to

several deciding factors. We explain the implications of our findings on some of

the current proposals in section 3.5. Finally, we present the concluding remarks

in section 3.6.

3.2 Analysis of Packet Probing

In this section, we present an analytical formulation of packet probing, identify

measurement targets, and derive closed-form relation between probing input

and output for individual packet trains. Our analysis focuses on the single-hop
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Figure 3.1: Single-hop probing model.

probing model in Figure 3.1. We use the quadruple 〈a1, gI , s, n〉 to denote a

probing train of n packets p1, p2, . . . , pn, where a1 is the arrival time of the first

packet p1 to the hop, gI is the inter-packet spacing, s is the probe packet size,

and n is the train length. The arrival time at the hop of the probing packets are

denoted by ai = a1 + (i − 1)gI , i = 1, 2, . . . , n. The departure time of probing

packets from the hop are denoted by di, i = 1, 2, . . . , n. We define the output

gap of a packet train as the average spacing between adjacent packets in the

train :

gO=
dn − d1

n− 1
. (3.2)

In terms of rate, the corresponding average input and output rates are given

by:

rI =
s

gI

, rO =
s

gO

=
(n− 1)s

dn − d1

. (3.3)

We start from the gap version of (2.1), namely, we first investigate the

validity of the following model:

E[gO] =















gI gI >
s

C − λ
s

C
+
gIλ

C
gI ≤

s

C − λ

(3.4)
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in a single hop path and then come back to its rate version. Since we are

now dealing with bursty cross-traffic, neither cross-traffic intensity nor probing

output gap is a constant. Meanwhile, λ and E[gO] can be viewed as the time

averages of traffic intensity and output gaps. Detailed connotations about these

two terms are clarified at later proper times.

3.2.1 Problem Formulation

Throughout this chapter, we assume infinite buffer capacity, FIFO queuing,

and a work-conserving discipline for the forwarding hop. For the composition

of cross-traffic and probing traffic, we assume simple traffic arrival, i.e., at most

one packet arrives at any time instance.

Definition 1 Cross traffic is driven by the packet counting process N(t) and the

packet-size process Sn. The cumulative traffic arrival V (t) is a random process

counting the total volume of data received by the router up to time instance t:

V (t) =

N(t)
∑

n=1

Sn. (3.5)

Note that V (t) and N(t) are right continuous, meaning that the packet

arriving at t is counted in V (t). Unlike conventional traffic modeling, we make

no assumption on N(t) or Sn. Instead, our assumption is made for V (t).

Assumption 1 Cross traffic exhibits “intensity stability,” which means that

limt→∞ V (t)/t exists and is less than the hop capacity C.

This higher level assumption can accommodate a broad range of traffic types

and, at the same time, detach the model from the underlying details of traffic

arrival. We define cross-traffic intensity λ in (3.4) as the limit of V (t)/t as
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t→ ∞. This definition reveals a mathematical essence of one’s intuitive notion

of average traffic intensity. Further, as we next show, the time average of cross-

traffic intensity metrics in arbitrary fixed observation interval is the same as

this limit.

Definition 2 We define Yδ(t) as the average cross-traffic arrival rate in the

interval (t, t+ δ] and call it the “δ-interval cross-traffic intensity” process:

Yδ(t) =
V (t+ δ) − V (t)

δ
. (3.6)

Given this definition, we have the following result.

Lemma 1 The limiting time average E[Yδ(t)] of any δ-interval cross-traffic

intensity sample-path is equal to λ:

E[Yδ(t)] = lim
t→∞

1

t

∫ t

0

Yδ(u)du = λ, ∀δ > 0. (3.7)

Proof: First, notice that:

1

t

∫ t

0

Yδ(u)du =

∫ t+δ

t
V (u)du

δt
−
∫ δ

0
V (u)du

δt
. (3.8)

Computing the limits, we get:

lim
t→∞

1

t

∫ t

0

Yδ(u)du = lim
t→∞

∫ t+δ

t
V (u)du

δt
− 0. (3.9)

Since V (t) is a non-decreasing function, we can write:

δV (t) ≤
∫ t+δ

t

V (u)du ≤ δV (t+ δ). (3.10)

Finally, note that both δV (t) and δV (t+δ) have the same limit when divided

by δt:

lim
t→∞

V (t)

t
= lim

t→∞

δV (t)

δt
≤ lim

t→∞

∫ t+δ

t
V (u)du

δt

≤ lim
t→∞

δV (t+ δ)

δt
= lim

t→∞

V (t+ δ)

t+ δ

t+ δ

t

= lim
t→∞

V (t)

t
. (3.11)
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Combining (3.9) and (3.11), we have for ∀δ > 0:

lim
t→∞

1

t

∫ t

0

Yδ(u)du = lim
t→∞

V (t)

t
= λ, (3.12)

which leads to the statement of the lemma.

Throughout this chapter, we use the notation of probability expectation

as a shorthand representation for sample-path limiting time average. In fact,

the limiting time average of a sample-path is the expectation of its limiting

frequency distribution [29, pages 45-50]. Hence, it is also called the “sample-

path mean.” The analysis in this chapter is purely sample-path based, and we

avoid addressing any probabilistic nature of the underlying random process. The

first equality in Lemma 1 has nothing to do with ergodicity. It is an equality

by definition. Lemma 1 reveals that to measure λ, instead of conducting one

observation in a very large time interval (which is often not practical), we can

conduct observations in arbitrarily small time intervals and use their average to

approach it. This has significant implication on probing based measurement as

we show later.

Our next assumption is related to the forwarding hop.

Definition 3 Hop workload process W (t) is the sum at time instance t of ser-

vice times of all packets in the queue and the remaining service time of the

packet in service.

Note that W (t) is also right continuous. Two examples of hop workload

sample-path are shown in Figure 3.2.

Assumption 2 The forwarding hop exhibits workload stability. That is, limt→∞W (t)/t =

0.
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Figure 3.2: (a) The first 50 ms of the workload sample-path W (t) of exponential

on-off ns-2 traffic (C = 10 mb/s, s = 750 bytes); (b) Hop workload W (t) of

CBR ns-2 traffic (C = 2.4 mb/s, s = 1500 bytes).

Workload stability means that W (t) = o(t). Note that given Assumption 1,

workload stability is satisfied in most practical situations and that Assumption

2 is formally stated only for convenience of presentation.

We next define a process especially useful in characterizing how cross-traffic

changes the gaps of probing packet pairs.

Definition 4 A δ-interval workload-difference process Dδ(t) is the difference

between the hop workload at time t and t+ δ:

Dδ(t) = W (t+ δ) −W (t). (3.13)

One important implication of workload stability relevant to probing based

measurements is the zero-mean nature of Dδ(t). It is formally stated as follows.
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Lemma 2 Assuming W (t) = o(t), the limiting time average E[Dδ(t)] of any

δ-interval workload-difference sample-path is zero:

E[Dδ(t)] = lim
t→∞

1

t

∫ t

0

Dδ(u)du = 0, ∀δ > 0. (3.14)

Proof: By the definition of Dδ(t), we have

E[Dδ(t)] = E[W (t+ δ) −W (t)]

= E[W (t+ δ)] − E[W (t)]

= lim
t→∞

∫ t

0
W (u+ δ)du

t
− lim

t→∞

∫ t

0
W (u)du

t

= lim
t→∞

∫ t+δ

t
W (u)du

t
− lim

t→∞

∫ δ

0
W (u)du

t

= lim
t→∞

∫ t+δ

t
W (u)du

t
− 0 = 0. (3.15)

The last equality holds since W (t) = o(t).

With these two assumptions, we next present a formulation of “available

bandwidth” and show how it is related to cross traffic and hop workload.

Definition 5 Hop utilization process U(t) is an on-off process associated with

W (t):

U(t) =















1 W (t) > 0

0 W (t) = 0

(3.16)

and δ-interval hop idle process

I(t, t+ δ) = Iδ(t) = δ −
∫ t+δ

t

U(x)dx (3.17)

is a process indicating the total amount of idle time of the forwarding hop in

[t, t+ δ]. We further call time interval [t, t+ δ] a “hop busy period” if Iδ(t) = 0

and a “hop idle period” if Iδ(t) = δ.
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Under this picture, several properties of the workload sample-path W (t) for

non-fluid traffic become clear. First, W (t) consists of alternating idle and busy

periods. Second, in any busy period, W (t) is a series of piecewise linear segments

with slope −1 separated by discontinuity points. Third, any discontinuous point

d in W (t) corresponds to the arrival of a packet. Assuming the packet size is s,

we have1 W (d) −W−(d) = s/C.

Definition 6 A δ-interval available bandwidth process Bδ(t) is a process indi-

cating the residual bandwidth in the time interval [t, t+ δ]:

Bδ(t) = C

(

1 − 1

δ

∫ t+δ

t

U(x)dx

)

=
Iδ(t)C

δ
. (3.18)

In our next lemma, we present the relationship among cross-traffic intensity,

hop workload, and available bandwidth in arbitrary finite time intervals.

Lemma 3 For all t ≥ 0 and δ > 0, the following holds:

δ =
Bδ(t)δ

C
−Dδ(t) +

Yδ(t)δ

C
. (3.19)

Proof: Note that the total hop idle time in [t, t+ δ] is

Iδ(t) =
Bδ(t)δ

C
. (3.20)

The amount of data transmitted by the hop in [t, t+ δ] is given by the workload

change in the hop (taking into account the new arrivals):

(W (t) −W (t+ δ))C + V (t+ δ) − V (t)

= −Dδ(t)C + Yδ(t)δ, (3.21)

1f−(a) denotes the left-sided limit limx→a− f(x).
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which follows from the definitions of Dδ and Yδ in (3.13) and (3.6). Dividing

(3.21) by C, the hop working time is

−Dδ(t) +
Yδ(t)δ

C
. (3.22)

Since the sum of hop working time in (3.22) and hop idle time in (3.20) must

be equal to δ, we immediately get the statement of the lemma.

Note that the term Dδ(t) escaped the formulation efforts of prior work.

Although it is a zero-mean term, it is not always insignificant. For example,

when the distribution of available bandwidth is of interest, this term must be

taken into consideration.

The next two theorems present the asymptotic relationship between cross-

traffic intensity and available bandwidth. They explain when and why available

bandwidth can be estimated by measuring cross-traffic intensity λ.

Theorem 1 Under the assumptions made in this chapter, δ-interval available

bandwidth converges to C − λ as the observation interval becomes large:

lim
δ→∞

Bδ(t) = C − λ, ∀t > 0. (3.23)

Proof: Rearranging (3.19), we get:

Bδ(t) = C − Yδ(t) +
Dδ(t)C

δ
. (3.24)

Note that since we assumed W (t) = o(t), we have:

lim
δ→∞

Dδ(t)

δ
= lim

δ→∞

(

W (t+ δ) −W (t)

δ

)

= 0. (3.25)

Further, as an immediate consequence of Assumption 1, we have:

lim
δ→∞

Yδ(t) = λ, ∀t. (3.26)
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Taking the limit of (3.24) and combining with (3.25) and (3.26), we get (3.23).

Theorem 1 shows that given the two stability assumptions we made, available

bandwidth also exhibits stability and, in large time intervals, can be approxi-

mated by C − λ.

Note, however, that in cases when we are interested in the available band-

width in a small δ-interval2, Lemma 3 suggests that Bδ(t) cannot be correctly

estimated based on the measurement of Yδ(t) alone. However, the following

theorem says that the limiting time average of available bandwidth metrics in

arbitrary δ-interval can be estimated by measuring cross-traffic.

Theorem 2 The limiting time average E[Bδ(t)] of any δ-interval available

bandwidth process is C − λ. That is,

E[Bδ(t)] = lim
t→∞

1

t

∫ t

0

Bδ(u)du = C − λ, ∀δ > 0. (3.27)

Proof: This is a direct consequence from (3.24), Lemma 1 and Lemma

2. We leave the verification to the reader.

To summarize, our results show that available bandwidth in a large timescale

or the first-order statistics of available bandwidth in arbitrary fixed time scale

can be estimated based on the measurement of cross traffic, while small timescale

metrics and their higher-order statistics cannot be correctly estimated solely

based cross-traffic measurements.

Note that measuring cross-traffic intensity λ is not the only way to estimate

available bandwidth A. Metric A = C − λ can be directly estimated without

knowing the values of C or λ, as is the case of SLoPS [18] and PTR [15].

2“Small” is relative to the convergence delay of V (t)/t.
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Our discussion of probing response curve in Section 4 will cover the theoretical

aspects of both approaches.

Despite the perplexing dynamics, we identified two measurement targets, λ

and A = C − λ, under mild traffic assumptions. These two targets are fairly

stable in the sense that they are independent of any particular observation

time instance t and observation interval δ. Although other metrics such as the

variance and distribution of available bandwidth might also be interesting, they

are less stable because of their dependence on δ. Measurement of those targets

is beyond the scope of this thesis.

We are now ready to derive the probing response curve and show how these

two targets, λ and A, are captured in the curve. Before that, however, we must

understand the interaction between the probing traffic and the cross-traffic.

Traffic interaction includes two parts: the way the probing train changes the

original hop workload and the way the cross-traffic changes the inter-packet

gaps in the probing train. The latter is our interest, but its analysis relies on

understanding the former.

3.2.2 Probing Intrusion of Packet Trains

We use W̃ (t) and Ĩ(t) to respectively denote the workload sample-path and

the hop idle sample-path associated with the superposition of cross-traffic and

probing traffic. Note that traffic composition only increases hop workload. That

is, for all t, W̃ (t) ≥ W (t). We next define useful notation that will help us

examine this intrusion behavior of packet train probing.

Definition 7 The intrusive range of the probing traffic into W (t), is the set

{t : W̃ (t) > W (t)}. The intrusion residual function is Wd(t) = W̃ (t) −W (t).
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Figure 3.3: Illustration of intrusion residual function.

The function Wd(t) helps us understand the intrusion behavior of the prob-

ing traffic into W (t). Before the arrival of probing packets, Wd(t) = 0. It

gets an immediate increment of s/C upon every probing packet arrival, where

s is the packet size. In W (t)’s busy periods without additional probing packet

arrival, Wd(t) remains unchanged. In W (t)’s idle periods without additional

probing packet arrival, Wd(t) deceases linearly with slope −1. Function Wd(t)

is monotonically non-increasing between every two adjacent probing packet ar-

rivals. Figure 3.3 illustrates this behavior, where (t1, t2) and (t3, t5) are two busy

periods in W (t), and (t2, t3) and (t5, t7) are two idle periods in W (t). Times t1,

t4 and t6 are the instants of probing packet arrivals. Time t7 is the end point

of the intrusive range.

Based on the above observations of Wd(t), we state the following lemma

without proof:

Lemma 4 When W (t) is probed by a single packet p of size s arriving into the
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hop at time t0,

Wd(t) =







0 t < t0

max
(

0,
s

C
− I(t0, t)

)

t ≥ t0
. (3.28)

When W (t) is probed by a packet train 〈a1, gI , s, n〉, we are often interested

in computing

Ri(a1) = W−
d (ai) = W−

d (a1 + (i− 1)gI) (3.29)

for i = 1, 2, . . . , n. Metric Ri(a1)
3 is the intrusion residual caused by the first

i− 1 packets in the probing train 〈a1, gI , s, n〉 and experienced by packet pi. In

other words, the queuing delay of pi in the hop is given by:

W̃−(ai) = W (ai) +W−
d (ai)

= W (ai) +Ri(a1). (3.30)

The total sojourn time of pi at the hop is the sum of its service time and its

queuing delay:

di − ai = W (ai) +Ri(a1) +
s

C
(3.31)

As a direct result of Lemma 4, Ri can be recursively computed as follows:

Ri =







0 i = 1

max
(

0,
s

C
+Ri−1 − I(ai−1, ai)

)

i > 1
. (3.32)

Denoting s/C − I(ai−1, ai) by yi, the second part of equation (3.32) can be

expanded to the following non-recursive form:

Ri = max

(

0, yi−1,
i−1
∑

k=i−2

yk, . . . ,
i−1
∑

k=1

yk

)

. (3.33)

We next discuss the second part of traffic interaction.

3When a1 is irrelevant, we often write Ri(a1) as Ri.
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3.2.3 Output Gaps of Individual Probing Trains

We first present a corollary. It is due to the work-conserving assumption. It says

that the whole duration of any packet’s stay at the hop is a hop busy period.

Corollary 1 For any packet arriving into the hop at time t and departing from

the hop at time t+ δ, [t, t+ δ] is a hop busy period.

Our next lemma describes the relationship between probing input and output

for an individual packet train. It is the corner stone of our probing analysis.

Previous work only revealed this result under certain conditions [15], [32]. The

full picture, although simple and important, has remained undocumented.

Lemma 5 Assuming δ = (n − 1)gI and W (t) is probed by a packet train

〈a1, gI , s, n〉, the output gap gO can be expressed as:

gO =
Yδ(a1)gI

C
+
s

C
+
Ĩ(a1, an)

n− 1

= gI +
Dδ(a1)

n− 1
+
Rn(a1)

n− 1
. (3.34)

Proof: Examine hop activity of W̃ (t) within the time interval [d1, dn].

Notice that (n−1)s/C time units are spent on serving all probing packets except

p1 and that

V (an) − V (a1)

C
=
Yδ(a1)(n− 1)gI

C
=
Yδ(a1)δ

C
(3.35)

time units are spent on serving the cross traffic that has arrived at the hop

during the time interval [a1, an]. Thus the total hop working time in [d1, dn] is

given by

Yδ(a1)δ

C
+

(n− 1)s

C
. (3.36)
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Also notice that Ĩ(d1, dn) is the total idle time of the hop during this time

interval. Since the sum of the hop working time in (3.36) and hop idle time

must be equal to dn − d1, we immediately have the following:

dn − d1 =
(n− 1)gIYδ(a1)

C
+

(n− 1)s

C
+ Ĩ(d1, dn), (3.37)

which leads to:

gO =
dn − d1

n− 1
=
gIYδ(a1)

C
+
s

C
+
Ĩ(d1, dn)

n− 1
. (3.38)

Further, due to corollary 1, we get:

Ĩ(d1, dn) = Ĩ(a1, an). (3.39)

Substitute (3.39) back to (3.38), we proved the first equality in (3.34). For the

second equality in (3.34), first recall from (3.31) that:

dk = ak +Rk(a1) +W (ak) +
s

C
, k = 1, 2, . . . , n. (3.40)

Thus,

dn − d1 = (an − a1) +Rn(a1) +Dδ(a1). (3.41)

Dividing both sides of (3.41) by n− 1, we get:

gO =
dn − d1

n− 1
= gI +

Dδ(a1)

n− 1
+
Rn(a1)

n− 1
. (3.42)

This proved the second equality in (3.34).

Lemma 5 shows that the output gap carries the information about Yδ(a1),

which is potentially useful in cross-traffic measurements. However, the output

gap is also contaminated by the noise information of Dδ(a1), Ĩ(a1, an), and

Rn(a1). In Lemma 2, we established the zero-mean nature for the first noise
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term. The other two terms can have positive means in bursty cross-traffic.

That is exactly where the response deviation comes from, as we show later.

Meanwhile, we examine several useful bounds for these two terms.

From (3.32), noticing that I(ai−1, ai) is no less than zero and applying math-

ematical induction to i, we get 0 ≤ Rn ≤ (n− 1)s/C. Combining with Lemma

5, we have:

Corollary 2 Again assuming δ = gI(n− 1), the following inequalities hold:

Dδ(a1)

n− 1
+ gI ≤ gO ≤ Dδ(a1)

n− 1
+ gI +

s

C
. (3.43)

The second inequality is tight iff I(a1, an) = 0.

Now we get into the second noise item Ĩ(a1, an). The next lemma leads to

a bound for Ĩ(a1, an).

Lemma 6 For k = 1, 2, . . . , n− 1, we have:










Ĩ(ak, ak+1) = 0 gI ≤
s

C

0 ≤ Ĩ(ak, ak+1) ≤ gI −
s

C
gI >

s

C

. (3.44)

Proof: First, due to the probing intrusion behavior illustrated in Figure

3.3, we have:

Ĩ(ak, ak+1) = max(0, I(ak, ak+1) −
s

C
−Rk), (3.45)

where Rk ≥ 0 and 0 ≤ I(ak, ak+1) ≤ (ak+1 − ak) = gI . When gI ≤ s/C,

I(ak, ak+1) ≤ s/C. (3.45) becomes 0. Thus, the first part of (3.44) is proved.

When gI > s/C, note that

max(0, I(ak, ak+1) −
s

C
−Rk)

≤ max(0, I(ak, ak+1) −
s

C
)

≤ max(0, gI −
s

C
) = gI −

s

C
. (3.46)
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This proves the second part of (3.44).

Since the term Ĩ(a1, an) can be expressed as a sum:

Ĩ(a1, an) =
n−1
∑

k=1

Ĩ(ak, ak + 1), (3.47)

we get the following bounds on the noise term Ĩ(a1, an)/(n−1) after combining

(3.44) with (3.47):














Ĩ(a1, an)

n− 1
= 0 gI ≤

s

C

0 ≤ Ĩ(a1, an)

n− 1
≤ gI −

s

C
gI >

s

C

. (3.48)

Collecting Lemma 5 and (3.48), we get the following result.

Corollary 3 When W (t) is probed by 〈a1, gI , s, n〉,










gO =
Yδ(a1)gI

C
+
s

C
gI ≤

s

C
Yδ(a1)gI

C
+
s

C
≤ gO ≤ Yδ(a1)gI

C
+ gI gI >

s

C

. (3.49)

We call (gOC − s)/gI the intensity sampling estimator (ISE). Corollary 3

implies that when ISE is used to estimate Yδ(a1), it is ensured to be correct only

when gI ≤ s/C. When gI > s/C, ISE’s correctness is not guaranteed and it

tends to overestimate Yδ(a1). The amount of overestimation, however, will not

be more than C−s/gI , as can be easily derived from the inequality in Corollary

3.

Finally, we must also notice an important relationship between Rn(a1) and

Ĩ(a1, an). By subtracting the two expressions of gO in (3.34) and combining

Lemma 3, we get:

Ĩ(a1, an) = Rn(a1) + I(a1, an) − (n− 1)s

C
. (3.50)

With the understanding of individual packet train probing, we are now in a

position to derive the probing response curve.
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3.3 Probing Response Curves

The probing response curve depends on a number of factors such as packet-train

parameters, the inter-packet pattern, and cross-traffic characteristics. We as-

sume a Poisson inter-probing pattern, because the asymptotic average of Pois-

son samples converges to the limiting time average of the sample-path being

sampled. This property is known as PASTA (Poisson Arrivals See Time Av-

erages) [41]. The average rate of Poisson sampling is assumed to be small

enough so that the interference between adjacent trains can be neglected. We

use 〈{Tm}, gI , s, n〉 to denote a probing train series driven by a Poisson arrival

process Λ(t) = max{m ≥ 0 : Tm ≤ t}. We use g
(k)
O to denote the output gap of

the kth probing train 〈Tk, gI , s, n〉 in the series, i.e., g
(k)
O = (d

(k)
n − d

(k)
1 )/(n− 1).

The term E[gO] in (3.4) is defined as the limiting average of the discrete-time

sample-path g
(k)
O :

E[gO] = lim
m→∞

1

m

m
∑

k=1

g
(k)
O . (3.51)

As mentioned, we use the notation of probability expectation to represent

limiting time average, both for continuous-time sample-paths and for discrete-

time sample-paths.We now introduce relevant concepts to characterize sample-

path statistics and formally state a simplified sample-path version of PASTA

that we use in subsequent derivations.

3.3.1 Frequency distribution and PASTA

Definition 8 For continuous-time sample-path X(t), define indicator function

Ψ(x, t):

Ψ(x, t) =







1 X(t) ≤ x

0 X(t) > x
. (3.52)
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The frequency distribution function P (x) of X(t) is defined as following (as-

suming the limit exists for ∀x):

P (x) = lim
τ→∞

1

τ

∫ τ

0

Ψ(x, t)dt. (3.53)

For discrete-time sample-path Xn, define indicator function as:

Ψ(x, n) =







1 Xn ≤ x

0 Xn > x
. (3.54)

The frequency distribution function P (x) of Xn is defined as following (assuming

the limit exists for ∀x):

P (x) = lim
k→∞

1

k

k
∑

n=1

Ψ(x, n). (3.55)

For a sample-path of stochastic vector process ~X(t), we can similarly define

its frequency distribution function P (~x). The only trick is to interpret the ≤ and

> inequality symbols in (3.52) and (3.54) as a relation for every corresponding

component in the vector.

Lemma 7 Assuming that ~X(t) is a continuous-time sample-path with frequency

distribution P (~x), Tk is a Poisson arrival sample-path, then the discrete-time

sample-path ~X(Tk) also has frequency distribution P (~x).

Lemma 7 basically says that Poisson sampling sees the sample-path fre-

quency distribution. Consequently, Poisson sampling also sees the sample-path

time average, which is just the expectation of the sample-path frequency dis-

tribution. PASTA is a classic queuing theory result obtained in early 1980’s.

Rigorously speaking, PASTA requires an assumption called LAA (Lack of An-

ticipation Assumption) on the Poisson arrival process, and the result holds in
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”almost surely” sense, instead of pathwise sense. Practically, the Poisson process

governing packet train probing is mostly made independent of the cross-traffic

arrival process, which is a condition much stronger than the LAA assumption.

Hence, in Lemma 7, we avoid the technical rigor that has little practical impli-

cation.

3.3.2 Bounds

We now obtain upper and lower bounds on the gap response curve.

Theorem 3 When W (t) is probed by a Poisson packet-train series 〈{Tm}, gI ≤

s/C, s, n〉, the following equality holds:

E[gO] =
gIλ

C
+
s

C
. (3.56)

Proof: Let δ = (n− 1)gI . Using Corollary 3, gI ≤
s

C
implies:

E[gO] = E
[gIYδ(Tm) + s

C

]

=
gIE[Yδ(Tm)] + s

C
. (3.57)

Since {Tm} is driven by Poisson arrivals, due to the PASTA property, we have:

E[Yδ(Tm)] = E[Yδ(t)]. (3.58)

Combining (3.57), (3.58), and Lemma 1, we get (3.56).

Rearranging the result of Theorem 3, we get:

λ =
E[gO]C − s

gI

= E
[gOC − s

gI

]

, (3.59)

which explains when and why ISE can form an unbiased estimator for traffic

intensity and thus for the available bandwidth.
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Theorem 4 When W (t) is probed by Poisson packet-train series 〈{Tm}, gI >

s/C, s, n〉, the following holds:

max
(gIλ+ s

C
, gI

)

≤ E[gO] ≤ min
(

gI(1 +
λ

C
), gI +

s

C

)

.

Proof: Notice that when gI > s/C:

E[gO] ≥ gIE[Yδ(Tk)] + s

C
=
gIE[Yδ(t)] + s

C
=
gIλ+ s

C
. (3.60)

Similarly, due to Corollary 2, PASTA, and Lemma 2, we have:

E[gO] ≥ gI +
E[Dδ(Tk)]

n− 1
= gI +

E[Dδ(t)]

n− 1
= gI . (3.61)

Collecting (3.60) and (3.61), we get:

max

(

gIλ+ s

C
, gI

)

≤ E[gO]. (3.62)

For the upper bound of E[gO], first, from Corollary 3, PASTA, and Lemma

1, we get:

E[gO] ≤ gI

(

1 +
E[Yδ(Tk)]

C

)

= gI

(

1 +
E[Yδ(t)]

C

)

= gI

(

1 +
λ

C

)

. (3.63)

Then from Corollary 2, PASTA, and Lemma 2, we get:

E[gO] ≤ E[Dδ(Tk)]

n− 1
+
s

C
+ gI

=
E[Dδ(t)]

n− 1
+
s

C
+ gI = gI +

s

C
. (3.64)

Combining (3.63) and (3.64), we get:

E[gO] ≤ min

(

gI(1 +
λ

C
), gI +

s

C

)

. (3.65)

This concludes the proof of this theorem.
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Theorem 4 provides both a lower bound and an upper bound for E[gO] when

gI > s/C. Combining the case when gI ≤ s/C as is stated in Theorem 3, we get

the lower bound on E[gO] for the entire probing range 0 < gI <∞ as follows4:

L(E[gO]) =











max
(gIλ+ s

C
, gI

)

gI >
s

C
s+ gIλ

C
gI ≤

s

C

=











gI gI >
s

C − λ
s+ gIλ

C
gI ≤

s

C − λ

. (3.66)

That is exactly model (3.4) we are trying to validate. However, Theorem 4

shows that (3.4) is a lower bound of E[gO], which does not necessarily equal to

E[gO]. Likewise, combining Theorems 3 and 4, we have the entire upper bound

summarized as follows:

U(E[gO]) =











min
(

gI(1 +
λ

C
), gI +

s

C

)

gI >
s

C
s+ gIλ

C
gI ≤

s

C

=



























s

C
+
gIλ

C
gI ≤

s

C

gI +
gIλ

C

s

C
≤ gI ≤

s

λ

gI +
s

C
gI ≥

s

λ

. (3.67)

The real gap response curve is contained between these two bounds. We

define the “response deviation” β(gI , s, n) as the difference between the real

gap response curve and the lower bound given by (3.66). It can be expressed as

following due to Theorem 4, Lemma 5, and PASTA:

β(gI , s, n) =















E[Ĩ(t, t+ (n− 1)gI)]

n− 1
gI ≤

s

C − λ
1

n− 1
E[Rn(t)] gI ≥

s

C − λ

. (3.68)

4L(.) and U(.) denote lower bound and upper bound of a function respectively.
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We next give a closed-form expression for the response deviation and thus

for the probing response curves.

3.3.3 Closed-from Expression

Assuming δ = gI , note that both Rn(t) and Ĩ(t, t+ (n− 1)δ) can be expressed

as deterministic functions of an (n− 1)-dimensional vector

~B
(n−1)
δ (t) =



















Bδ(t)

Bδ(t+ δ)

...

Bδ(t+ (n− 2)δ)



















. (3.69)

The exact functional expressions, on the other hand, are not very important at

this point. Therefore, we can introduce the following notation:

Ĩ(t, t+ (n− 1)δ) = ϕ( ~B
(n−1)
δ (t)), (3.70)

Rn(t) = ψ( ~B
(n−1)
δ (t)), (3.71)

where ϕ(.) and ψ(.) are some vector functions. It then becomes apparent that

the response deviation depends on the sample-path limiting frequency distribu-

tion of ~B
(n−1)
δ (t). Denoting by P

(n−1)
δ (~x) this distribution function, the response

deviation can be expressed by the following vector integrals:

β(gI , s, n) =















1

n− 1

∫

Ω

ϕ(~x)dP
(n−1)
δ (~x) gI <

s

C − λ
1

n− 1

∫

Ω

ψ(~x)dP
(n−1)
δ (~x) gI ≥

s

C − λ

,

where Ω is an (n− 1)-dimensional cube [0, C]n−1.

To better understand these results, we now consider a degenerated case

where n = 2, i.e., the packet-pair probing case. Note that both ϕ(~x) and ψ(~x)
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Figure 3.4: Illustrations of (a) the gap response deviation, (b) gap response

curve, and (c) rate response curve in the entire input range.

become scalar functions and have simple expressions with respect to Bδ(t):

Ĩδ(t) = ϕ(Bδ(t)) = max
(

0,
Bδ(t)δ − s

C

)

, (3.72)

R2(t) = ψ(Bδ(t)) = max
(

0,
s−Bδ(t)δ

C

)

. (3.73)

Therefore, we have the following results for the packet-pair probing response

curve.

Theorem 5 Assuming that W (t) is probed by Poisson packet-pair series 〈{Tm}, gI , s, 2〉,

observation interval δ = gI , and the δ-interval available bandwidth sample-path

Bδ(t) has frequency distribution function Pδ(x), the following holds:

E[gO] =
gIλ+ s

C
+

∫ C

s/δ

xδ − s

C
dPδ(x)

= gI +

∫ s/δ

0

s− xδ

C
dPδ(x). (3.74)

Proof: We only need to show the following:

E[Ĩδ(t)] =

∫ C

s/δ

xδ − s

C
dPδ(x), (3.75)

E[R2(t)] =

∫ s/δ

0

s− xδ

C
dPδ(x). (3.76)
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Then combining Lemma 5, Lemma 1, Lemma 2, Lemma 7, and both equations

above, we immediately get the theorem.

To prove (3.75), simply recall (3.72) and we have:

E[Ĩδ(t)] = E

[

max

(

0,
Bδ(t)δ − s

C

)]

=

∫ C

s/δ

xδ − s

C
dPδ(x).

For the second part, recall (3.73) and we have:

E[R2(t)] = E

[

max

(

0,
s−Bδ(t)δ

C

)]

=

∫ s/δ

0

s− xδ

C
dPδ(x).

This proved the theorem.

It immediately follows that the packet-pair response deviation is as following

(where gI = δ):

β(gI , s, 2) =



















∫ C

s/δ

xδ − s

C
dPδ(x) gI <

s

C − λ
∫ s/δ

0

s− xδ

C
dPδ(x) gI ≥

s

C − λ

. (3.77)

The response deviation is one of the previously unknown factors causing mea-

surement errors in available bandwidth estimation techniques based on (3.4).

Our closed-from expressions show that the response deviation is exclusively de-

cided by the packet-train parameters and the available bandwidth sample-path

distribution. Next, we show the full picture of the response curves for both the

gap version and the rate version.

3.3.4 Full Picture

We now investigate the relationship between the response deviation given in

(3.68) and the input gap gI while keeping all other parameters fixed. We first
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present the results for the case of packet-pair probing.

Theorem 6 When W (t) is probed by Poisson packet pair series 〈{Tm}, gI , s, 2〉,

the response deviation β(gI , s, 2) equals zero when input gap gI ∈ (0, s/C]; it is a

monotonically increasing function of gI in the input gap range (s/C, s/(C−λ)];

and it is a monotonically decreasing function of gI in the input gap range

(s/(C − λ),∞). Furthermore, in the whole input gap range (0,∞), the re-

sponse deviation is a continuous function of gI . Finally, the response deviation

β(gI , s, 2) monotonically converges to 0 as gI approaches infinity.

Proof: When gI ∈ (0, s/C], β(gI , s, 2) equals to 0 due to Theorem 3.

Next, we prove the continuity and monotonicity properties of β(gI , s, 2). Let

δ = gI , we first show that E[Ĩδ(t)] is a continuous and monotonically increasing

function of δ in the range δ ∈ (0,∞). First, note for any 0 < ∆ and t, we have:

0 ≤ Ĩδ+∆(t) − Ĩδ(t) ≤ ∆. (3.78)

This difference defines a new sample-path, and we can compute its time average

as follows:

0 ≤ E[Ĩδ+∆(t) − Ĩδ(t)] ≤ ∆, (3.79)

which can be rewritten as:

0 ≤ E[Ĩδ+∆(t)] − E[Ĩδ(t)] ≤ ∆. (3.80)

This already proves the monotonicity of E[Ĩδ(t)] with respect to δ. Further, by

taking the limit of (3.80) when ∆ → 0, we have:

lim
∆→0

(E[Ĩδ+∆(t)] − E[Ĩδ(t)]) = 0. (3.81)

This proves the continuity of E[Ĩδ(t)] with respect to δ in the range (0,∞).

Similarly, we can prove the continuity and monotonic decreasing property of
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E[R2(t)] with respect to δ in the range (0,∞). Combining the monotonicity

properties for both E[R2(t)] and E[Ĩδ(t)], further recall (3.68), we proved the

monotonicity properties of β(gI , s, 2) described in this theorem.

For continuity of β(gI , s, 2), note that when δ = s/(C − δ), the equality

E[R2(t)] = E[Ĩδ(t)] can be easily obtained from Theorem 5. Combining this

result with the continuity of E[Ĩδ(t)] and E[R2(t)], we proved the continuity of

β(gI , s, 2) with respect to gI in the entire probing range.

We next prove the asymptotic property of β(gI , s, 2) as gI → ∞. First, note

that due to (3.77), we have:

lim
gI→∞

β(gI , s, 2) = lim
δ→∞

∫ s/δ

0

s− xδ

C
dPδ(x)

= lim
δ→∞

(

∫ s/δ

0

s

C
dPδ(x) −

∫ s/δ

0

xδ

C
dPδ(x)

)

= lim
δ→∞

∫ s/δ

0

s

C
dPδ(x) − lim

δ→∞

∫ s/δ

0

xδ

C
dPδ(x). (3.82)

Note that the first item in (3.82) is zero:

lim
δ→∞

∫ s/δ

0

s

C
dPδ(x) = lim

δ→∞

s

C
Pδ(

s

δ
) = 0,

and the second item in (3.82) is also zero:

0 ≤ lim
δ→∞

∫ s/δ

0

xδ

C
dPδ(x) < lim

δ→∞

∫ s/δ

0

s
δ
δ

C
dPδ(x)

= lim
δ→∞

s

C
Pδ(

s

δ
) = 0.

Hence, the limit of β(gI , s, 2) when gI → ∞ is zero. This concludes the whole

proof.

Packet-pair response deviation has very nice functional properties in terms

of continuity and monotonicity. The response deviation β(gI , s, 2) is a hill-

shaped function with respect to gI as shown in Figure 3.4(a), where it reaches
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its maximum when gI = s/(C − λ). Our next theorem presents an inequality

that links the packet-train and packet-pair response deviation.

Theorem 7 For any n ≥ 2, the following holds:

1

n− 1
β((n− 1)gI , (n− 1)s, 2) ≤ β(gI , s, n) ≤ β(gI , s, 2).

Proof: We prove the theorem when gI ≤ s/(C − λ). The proof when

gI ≥ s/(C − λ) is very similar and we omit it. First, we slightly refine our

notations. we use Ĩ(t0, t1, t, gI , s, n) to denote Ĩ(t0, t1) when the hop is probed by

a single packet train 〈t, gI , s, n〉. When t = t0, we omit the third parameter and

only write Ĩ(t0, t1, gI , s, n). We now prove the first part
1

n− 1
β((n− 1)gI , (n−

1)s, 2) ≤ β(gI , s, n). Note that:

β((n− 1)gI , (n− 1)s, 2)

= E[Ĩ(t, t+ (n− 1)gI , (n− 1)gI , (n− 1)s, 2)] (3.83)

β(gI , s, n)

=
1

n− 1
E[Ĩ(t, t+ (n− 1)gI , gI , s, n)]. (3.84)

The idle time in (3.83) can be expanded as:

Ĩ(t, t+ (n− 1)gI , (n− 1)gI , (n− 1)s, 2)

= max(0, I(t, t+ (n− 1)gI) −
(n− 1)s

C
). (3.85)

Due to (3.50), the idle time in (3.84) can be expanded as:

Ĩ(t, t+ (n− 1)gI , gI , s, n)

= I(t, t+ (n− 1)gI) −
(n− 1)s

C
+Rn(t). (3.86)

Combining (3.85) and (3.86), further noticing that Rn(t) ≥ 0, we have for ∀t,

Ĩ(t, t+ (n− 1)gI , (n− 1)gI , (n− 1)s, 2)

≤ Ĩ(t, t+ (n− 1)gI , gI , s, n). (3.87)
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This leads to

E[Ĩ(t, t+ (n− 1)gI , (n− 1)gI , (n− 1)s, 2)]

≤ E[Ĩ(t, t+ (n− 1)gI , gI , s, n)]. (3.88)

Dividing both sides of (3.88) by n− 1, we get:

1

n− 1
β((n− 1)gI , (n− 1)s, 2) ≤ β(gI , s, n). (3.89)

Next we prove the second part β(gI , s, n) ≤ β(gI , s, 2). Notice that for k =

0, 1, . . . , n− 2,

Ĩ(t+ kgI , t+ (k + 1)gI , gI , s, 2)

= max
(

0, I(t+ kgI , t+ (k + 1)gI) −
s

C

)

, (3.90)

Ĩ(t+ kgI , t+ (k + 1)gI , t, gI , s, n)

= max
(

0, I(t+ kgI , t+ (k + 1)gI) −
s

C
−Rk(t)

)

. (3.91)

Combining (3.90) and(3.91), noticing that Rk(t) ≥ 0, we get:

Ĩ(t+ kgI , t+ (k + 1)gI , t, gI , s, n)

≤ Ĩ(t+ kgI , t+ (k + 1)gI , gI , s, 2). (3.92)

This inequality also holds when we sum up all idle time from k = 0 to k = n−2:

n−2
∑

k=0

Ĩ(t+ kgI , t+ (k + 1)gI , t, gI , s, n)

≤
n−2
∑

k=0

Ĩ(t+ kgI , t+ (k + 1)gI , gI , s, 2). (3.93)
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Note that the left-side item in (3.93) is actually Ĩ(t, t + (n − 1)gI , gI , s, n).

Computing the limiting time averages of both sides in (3.93), we get:

E[Ĩ(t, t+ (n− 1)gI , gI , s, n)

≤
n−2
∑

k=0

E[Ĩ(t+ kgI , t+ (k + 1)gI , gI , s, 2)]

= (n− 1)E[Ĩ(t, t+ gI , gI , s, 2)]. (3.94)

Dividing (n− 1) at both sides of (3.94), we get:

β(gI , s, n) ≤ β(gI , s, 2). (3.95)

This proves the second inequality in this theorem.

This result tells us that the packet-train response deviation β(gI , s, n) has

similar hill-shaped evolving trend with respect to gI since it is both lower-

bounded and upper-bounded by hill-shaped functions. We conjecture that it is

also continuous and has similar monotonicity properties described in Theorem

6.

In summary, the response deviation is significant only in the middle part

of the whole probing range. We call that range the deviated probing range.

The full picture of the gap response curve is illustrated in Figure 3.4(b). The

whole probing range (0,∞) is divided into three segments. Interval (0, s/C] is

an undeviated region where the ISE formula (CgO − s)/gI forms an unbiased

intensity estimator for λ. Region (s/C, α) is a deviated region where E[gO] is

larger than what is given in (3.4), but smaller than the upper bound in (3.67)

and the ISE formula overestimates λ. Finally, interval (α,∞) is the second

undeviated probing range where E[gO] = gI . Theoretically, this range often does

not exist due to infinite α. Practically, a sufficiently small deviation is taken

as none. The probing point s/(C − λ), associated with available bandwidth, is
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the point where the response deviation is maximized and is not the same as the

turning point α. Further note that the upper bound of gap response curve as

given in (3.67) is actually not a tight bound.

It is often more informative to look at the rate version of the response

curve rather than the gap version, because it has a direct association with our

measurement interests: traffic intensity and available bandwidth. Transforming

(3.4) into the corresponding rate version, we get the rate upper bound:

U

(

s

E[gO]

)

=











rI 0 < rI ≤ C − λ

C
rI

rI + λ
rI > C − λ

. (3.96)

Although (3.96) looks similar to (2.1), they are in fact very different since

E[rO] = E[s/gO] 6= s/E[gO] and E[rO] has a different behavior from that of

s/E[gO]. Our conclusions are meant for s/E[gO], not for E[s/gO]. Although

TOPP proposes (2.1) as its rationale, its actual implementation is however

based on (3.96). It is important to clarify this confusion.

Transforming (3.67) gives us the rate lower bound as follows.

L

(

s

E[gO]

)

=































rIC

rI + C
0 < rI ≤ λ

rIC

λ+ C
λ < rI ≤ C

rIC

rI + λ
C < rI

. (3.97)

As illustrated in Figure 3.4(c), along the vertical direction, the rate response

curve appears between the two bounds given above. Along the horizontal di-

rection, the curve shows one negatively deviated probing region sandwiched by

two undeviated probing regions.
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3.3.5 The Impact of Packet Train Parameters

We now examine the impact of probing packet size on response deviation. First,

we consider the rate response curve of packet-pair probing. At any fixed input

rate point r < C − λ, let s → ∞. This causes the sampling interval δ = s/r

approach to infinity proportionally. Recall (3.77), we have:

β
(s

r
, s, 2

)

=

∫ r

0

s− xδ

C
dPδ(x)

=

∫ r

0

rδ − xδ

C
dPδ(x) =

δ

C

∫ r

0

(r − x)dPδ(x)

=
δ

C

(

r

∫ r

0

dPδ(x) −
∫ r

0

xdPδ(x)

)

(3.98)

Applying integration by parts, we get:

∫ r

0

xdPδ(x) = rPδ(r) −
∫ r

0

Pδ(x)dx. (3.99)

Substituting (3.99) back to (3.98), we get

β
(s

r
, s, 2

)

=
δ

C

∫ r

0

Pδ(x)dx. (3.100)

From (3.100), we get a sufficient and necessary condition for packet-pair

response deviation at input rate r < A to vanish when s→ ∞:

lim
δ→∞

δ

∫ r

0

Pδ(x)dx = 0. (3.101)

Similarly, for any input rate r > A, a sufficient and necessary condition for

packet-pair response deviation to vanish is:

lim
δ→∞

δ

(

C − r −
∫ C

r

Pδ(x)dx

)

= 0. (3.102)

These conditions require the cross-traffic not only exhibit decaying variance or

gradually concentrating distribution when the observation interval δ becomes
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large, but also show sufficient decaying speed. Our experiments show that cross-

traffic often satisfies these properties. Hence, larger probing packet size usually

implies less response deviation. The same conclusion also holds For packet train

probing due to the following theorem.

Theorem 8 For any input probing rate r, If

lim
s→∞

β
(s

r
, s, 2

)

= 0, (3.103)

then for packet train of any length, we have:

lim
s→∞

β
(s

r
, s, n

)

= 0, ∀n > 2. (3.104)

Proof: Recall Theorem 7, we have:

1

n− 1
β

(

(n− 1)s

r
, (n− 1)s, 2

)

≤ β
(s

r
, s, n

)

≤ β
(s

r
, s, 2

)

.

Taking the limits of all three terms in the above inequality and noticing (3.103),

we get:

0 ≤ lim
s→→∞

β
(s

r
, s, n

)

≤ 0. (3.105)

Hence, lims→∞ β( s
r
, s, n) = 0. This proves the theorem.

As to the impact of packet train length n, (3.33) shows that Rn depends

on a partial sum of series of random variables yi, i = 1, 2, . . . , n − 1 summed

in the reverse order. This is a classic form in random walk theory [42], which

deals with partial sums of i.i.d random variables. Although it is unlikely for

yi = s/C−I(ai, ai+1) to be i.i.d, we make this assumption to keep the derivations

tractable and apply random walk theory to conceptually understand the impact

of train length on response deviation. Using the response deviation expression

in (3.68), random walk theory says that if E[yi] < 0, which is the case when
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gI > s/(C − λ), Rn converges in distribution to a finite-mean random variable

as n→ ∞:

lim
n→∞

E[Rn] <∞. (3.106)

Consequently,

lim
n→∞

E[Rn]

n− 1
= 0. (3.107)

On the other hand, when E[yi] ≥ 0, as is the case when gI ≤ s/(C − λ), Rn

grows unbounded with probability 1 as n→ ∞. Note the following relationship

between Rn and Ĩ(a1, an):

Ĩ(an, an+1) = max
(

0, I(an, an+1) −
s

C
−Rn

)

. (3.108)

Thus, there is a random point n0 such that Ĩ(an, an+1) becomes 0 if n > n0.

And this n0 converges in distribution to a finite-mean random variable as n→

∞, Thus we have

lim
n→∞

E[Ĩ(a1, an)] <∞, (3.109)

lim
n→∞

1

n− 1
E[Ĩ(a1, an)] = 0. (3.110)

This explains why the response deviation can be overcome by long packet

trains. Even when yi are not i.i.d random variables and the above argument

does not fully apply, it at least tells us why the response deviation can be

mitigated, which is quite non-intuitive.

3.3.6 Discussion

We now briefly mention how sensitive our results are with respect to the as-

sumptions made in this chapter. First, notice that the simple traffic-arrival

assumption is made solely to avoid getting into unnecessary technical details.
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Even when batch arrivals are allowed, simple arrivals occur almost everywhere

along the time axis, and all the results we obtained so far remain valid.

In this chapter, we also assumed infinite buffer space in the hop. Hence, our

results are valid when buffer space is sufficiently large and packet loss can be

neglected. In the case of otherwise, the equality A = C−λ becomes invalid. The

analysis of the impact of buffer size on bandwidth estimation requires future

work.

We further assumed a Poisson inter-probing pattern. This can be relaxed

to more general ASTA [25] sampling and as long as the sampling pattern has

decent ASTA properties, all of our conclusions hold. In the case of non-negligible

ASTA bias, most measurement techniques would fail and nothing interesting is

left for discussion. ASTA bias is another source of measurement error that has

never been studied or evaluated before. We consider it beyond the scope of the

thesis.

Finally, we made two sample-path assumptions on cross-traffic and avoided

assuming cross-traffic stationarity. The later however was an assumption com-

monly made in prior work. Our results are applicable to but not limited to

stationary cross-traffic. More information regarding this issue is given in the

appendix.

Next, we present our experimental methodology to compute the probing

response curve and observe the response deviation quantitatively.

3.4 Experimental Results

To characterize the response deviation, we need to obtain the limiting averages

of the probing output. In this section, we propose two experimental procedures
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to compute the probing response curves with supervised precision. The first

procedure is period testing, applicable to periodic traffic such as CBR. The

second procedure is trace-driven testing, applicable to aperiodic traffic. We first

apply the former to CBR traffic to verify our analytical results. We then apply

the latter to several additional traffic traces to examine the relationship between

response deviation and packet-train parameters.

3.4.1 Period Testing

The CBR (Constant Bit Rate) traffic we consider here is the one with a fixed

packet size, fixed inter-packet delay, and periodical triangle-wave workload

sample-path showed in Figure 3.2(b). In this thesis, a traffic is called bursty

if its cumulative arrival sample-path V (t) is not a linear function of t. Hence,

all but constant-rate fluid traffic is bursty. In this light, CBR cross-traffic is

arguably the simplest type of bursty traffic; however, it is also very impor-

tant since we believe that any available bandwidth estimation technique must

be shown accurate in CBR cross-traffic before being tested in more complex

environments.

It is clear that CBR traffic satisfies both stability assumptions we made.

Period testing on CBR traffic operates as follows. Assume a scenario with CBR

cross-traffic packet size sc, inter-packet delay T , hop capacity C, and sc/C < T .

Without loss of generality, we let the first packet arrive to the router at time

instance 0. We divide the time interval [0, T ] into m equal-size sub-intervals.

For all k = 0, 1, 2...m− 1, we compute the output gap g
(k)
O of the probing train

〈T (2k+1)/2m, gI , s, n〉. The average metric
∑m−1

k=0 g
(k)
O /m of the output gaps is

used as an approximation of E[gO]. The departure time of the last packet in the
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probing train is calculated using (3.31), where W (an) can be easily computed

due to the periodicity of the CBR workload sample-path. Also note that Rn(a1)

can be recursively computed using (3.32). Thus, period testing can be conducted

using deterministic computation without the use of ns2.

The validity of period testing is due to the following theorem:

Theorem 9 Let E[gO] be the asymptotic average of output gaps when the hop

is probed by Poisson packet train series 〈{Tm}, gI , s, n〉. Let gO(t) be the output

gap when the hop is probed by a single packet train 〈t, gI , s, n〉. Assuming the

workload sample-path W (t) associated with cross-traffic is a periodic function in

the time interval (0,∞) and T is period duration, the following holds:

E[gO] =
1

T

∫ T

0

gO(u)du. (3.111)

Proof: First notice that, due to the periodicity of W (t), the associated

sample-paths such as Dδ(t) and Iδ(t) also have the same periodicity for all δ > 0.

Recall Lemma 5, which says gO(t) is a deterministic function of those sample-

paths. Thus, gO(t) is also periodic with period duration T . It immediately

follows that:

1

T

∫ T

0

gO(u)du = lim
τ→∞

1

τ

∫ τ

0

gO(u)du. (3.112)

On the other hand, note that due to PASTA, we have:

E[gO] = lim
τ→∞

1

τ

∫ τ

0

gO(u)du. (3.113)

Combining (3.112) and (3.113), we proved the theorem.

Period testing essentially approximates the right-side item in (3.111) using
∑m−1

k=0 gO(T (2k+1)/2m)/m. This approximation can be made arbitrarily precise

by choosing sufficiently large m. Next, we introduce two supervision strategies
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Figure 3.5: Packet pair probing in CBR cross-traffic: (a) Rate response curves,

(b) relative rate response deviation. C=10mb/s, λ=2.5mb/s.

to help decide the number of samplesm. Both are also applicable to trace-driven

testing.

In the first method called self supervision, we iteratively double the number

of samples and stop when there is little or no difference between the results pro-

duced in consecutive iterations. In the second method called region supervision,

we make sure that m is large enough so that the results of period testing are

in agreement with those predicted by (3.4) or (3.96) in the undeviated probing

range.

In our experiment, we choose sc = 1, 500 bytes, C = 10 mb/s, and λ = 2.5

mb/s. Thus, the inter-packet spacing of CBR cross-traffic is 4.8 ms. Using our

supervision strategies, we find that 500 samples can provide very good precision

and the results do not significantly differ from those obtained using 1, 000 or

more samples.

Figure 3.5(a) shows the rate response curves when the hop is probed by
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packet pairs. The legends are sorted in the same order as their corresponding

curves appear vertically in the figure, and we do this whenever possible for all

figures to make them easier to read.

Figure 3.5(b) shows the relative rate response deviation, defined as:

min
(

rI ,
rIC

λ+ rI

)

− s

E[gO]

C − λ− (C − λ)C

λ+ C

, (3.114)

where the numerator is the absolute rate response deviation and the denomi-

nator is the difference between the rate upper bound and the rate lower bound

when the input probing rate equals to the available bandwidth C − λ. This

difference is an upper bound of absolute rate response deviation. Hence, the

relative response deviation metric takes values in [0, 1].

As shown in Figure 3.5, the response deviation is clearly noticeable for all

three cases. The deviated regions are around (5 mb/s, 10 mb/s) for s = 1500

bytes, (3.5 mb/s, 10 mb/s) for s = 750 bytes, and (1.7 mb/s, 10 mb/s) for
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s = 250 bytes. The relative response deviation (3.114) also exhibits high ampli-

tude up to 0.5-0.8, meaning that, at certain probing ranges, the rate response

curves are much closer to the lower bound than to the upper bound. Also note

that as probing packet size s increases, both the deviation range and devia-

tion amplitude shrink. Further, the strongest deviation appears at the available

bandwidth point for all three cases, which is 7.5 mb/s in our case. Finally,

the response deviation appear monotonic at both sides of the available band-

width probing point. These observations are in agreement with our theoretical

findings.

Figure 3.6 shows gap and rate response curves when the hop is probed by

packet trains. The probing packet size is 50 bytes. The reason why we use small

probing packet size is to show that long trains can compensate for the deviation

introduced by the small probing packet size. The figure shows the response

curves for train lengths 16, 64, and 256 packets. From Figure 3.6, we see that

the response deviation is clear, but diminishes as train length increases.

3.4.2 Trace-Driven Testing

Traffic Traces

In this section, we compare response deviation using four different cross-traffic

types: CBR traffic, Poisson traffic with constant packet size (PCS), Poisson

traffic with packet sizes (in bytes) uniformly distributed in [1, 1500] (PUS), and

Pareto on/off traffic (POF). Hop capacity C is fixed at 10 mb/s. The cross-

traffic packet size is 750 bytes for CBR, PCS, and the on period of POF. The

average sending rate is 500 packets per second for CBR, PCS, and PUS. The

mean duration of POF on/off periods is 10 and 5 ms, respectively. The Pareto
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Figure 3.7: (a) Function I(t) shows the convergence delays, and (b) Function

R(t) shows convergence errors for the four traffic traces.

shape parameter α for the duration of both on/off periods is set to 1.9 so that

their variance is infinite. In POF on periods, the source sends CBR traffic at

750 packets per second. Given these settings, all four cross-traffic types have

an average traffic intensity equal to 3 mb/s.

Since all but CBR traffic have aperiodic hop workload sample-path, we can-

not apply period testing to obtain their response curves. Instead, we employ

trace-driven testing to compute the response curves for the other three traffic

types. We use RNGs (random number generators) to produce four packet-

arrival traces, one for each traffic type. These traces record the time instances

of all packet arrivals and their sizes within a period of 100 seconds. Before we

explain how trace-driven testing works, we first show that these traffic traces

satisfy the two cross-traffic stability assumptions we made.

In Figure 3.7(a), we plot function I(t) = V (t)/t for the four traffic traces.

As shown in the figure, all traffic types exhibit intensity stability despite the
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big differences in their convergence delays. Figure 3.7(b) shows the intensity

convergence error defined as:

R(t) =
|I(t) − 3 mb/s|

3 mb/s
. (3.115)

As demonstrated in Figure 3.7, CBR shows the fastest convergence speed.

In about 10 seconds, CBR converges to the 0.2%-neighborhood of the limiting

value, i.e., R(10) ≤ 0.002. PCS and PUS also converge relatively fast, but

much slower than CBR. In 10 seconds, both PCS and PUS converge to the 1%-

neighborhood of the desired 3 mb/s. PCS converges a little faster than PUS but

the difference is small. POF shows the slowest convergence speed5. It reaches

the 1.5%-neighborhood in about 60 seconds.

The four traffic traces also exhibit workload stability when they are injected

in a hop of capacity C = 10 mb/s. This is theoretically provable. Using queue-

ing theory, we can directly compute the limiting time average of the workload

process for these four traffic types. The existence of workload limiting time

average implies workload stability. More details are given in the appendix.

Testing Procedure

Trace-driven testing is grounded on the following corollary:

Corollary 4 Let E[gO] be the asymptotic average of output gaps when the hop is

probed by Poisson packet train series 〈{Tm}, gI , s, n〉. Let gO(t) be the output gap

when the hop is probed by a single packet train 〈t, gI , s, n〉. Then the following

holds due to PASTA:

E[gO] = lim
τ→∞

1

τ

∫ τ

0

gO(u)du. (3.116)

5POF carries some flavor of self-similar traffic.
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Trace-driven testing essentially approximates the right-side item in (3.116)

by computing the time average of gO(t) in a finite time interval [0, t0]. The

approximation can be made arbitrarily accurate when sufficiently large t0 is

used. We choose t0 based on the convergence error function R(t) of the traffic

traces, since a small value of R(t0) is a good indication that the traffic statistics

in [0, t0] has sufficiently converged to its equilibrium statistics.

Once t0 is chosen, trace-driven testing computes the sample average
∑m−1

k=0 gO(t0(2k+

1)/2m)/m and uses it as an approximation of
∫ t0
0
gO(u)du/t0, where m is de-

cided by the two supervision strategies discussed before. The computation of

the output gap g
(k)
O of the probing packet train 〈t0(2k + 1)/2m, gI , s, n〉 again

relies on (3.31) and (3.32), where the workload W (t) at any time instance can

be computed based on cross-traffic trace and hop capacity.

In our experiment, we choose t0 = 20 seconds for PCS and PUS, which leads

to R(t) ≤ 0.01, and t0 = 60 seconds for POF, which ensures R(t) ≤ 0.015. For

CBR, we still use period testing. In what follows, we first compute the response

curves for several fixed packet-train parameters. We then study the impact of

packet-train parameters on response deivation.

Results for Fixed Packet-train Parameters

Figure 3.8(a) shows the rate response curves for the four traces when the hop is

probed using packet pairs. We computed the output rate s/E[gO] at 140 input

rate points, from 1.0 mb/s to 14.0 mb/s with a 0.1 mb/s increment. We applied

region supervision to decide the number of samples. That is, at each input

rate in [10.0 mb/s, 14.0 mb/s], the number of samples is made large enough

so that the output rate s/E[gO] computed in trace-driven testing is within the

1%-neighborhood of the value predicted by fluid model (3.96). This required
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Figure 3.8: Rate response curve for the four cross-traffic traces: (a) probing

pairs, (b) 16-packet trains (probing packet size 750 bytes).

500 samples for CBR, 1,000 samples for PCS and PUS, and 2,000 samples for

POF.

As showed in Figure 3.8(a), the rate response curve of POF is virtually

indistinguishable from that of CBR. The PCS and PUS curves are also very

close to each other. However, it is interesting to note that the curve for POF

is closer to rate upper bound than the curves for PUS and PCS, meaning that

it suffers less response deviation. This indicates that, for fixed packet train

parameters, cross-traffic of more burstiness does not necessarily imply larger

response deivation. We explain the reasons in a short while.

Figure 3.8(b) shows the rate response curves for the four traces when the

hop is probed using 16-packet trains. For the CBR trace, the response curve

is almost undeviated and hardly distinguishable from the rate upper bound in

the figure. The response deviations are still clear for the other three traces; and

those three curves are very close to each other. This shows that, as the probing
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Figure 3.9: NBR for the four cross-traffic traces: (a) probing train length from

2 to 512. (b) log scale plotting of (a). (c) probing packet size from 50 bytes to

1500 bytes. (d) log scale plotting of (c).

train length increases, the response deivation diminishes. For cross-traffic of

different burstiness, the diminishing rate is different. The response deivation

for POF vanishes at a rate lower than those of the other three.

Impact of Packet-train Parameters

Since we constantly observe that the response curves suffer the largest response

deviation at the available bandwidth point, we define a metric called NBR (Nor-

malized Bias Ratio) to characterize the amount of deviation in a rate response

curve. Assuming r is the output rate s/E[gO] when the input rate is A = C−λ,

we define:

NBR =
A− r

r − AC

C + λ

, (3.117)
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which is the distance of the actual curve to its upper bound divided by the

distance to its lower bound, given that the input probing rate is equal to the

available bandwidth A. The NBR metric takes values in [0,∞), where larger

NBR values indicate more response deviation in the response curve. We next

investigate the relationship between NBR and packet-train parameters.

For all four traces, we computed NBR using probing packet sizes between 50

and 1500 bytes with 50-byte increasing step and probing train lengths between 2

and 512 packets with 2-packet increasing step. Thus, in total, we have 256×30 =

7, 680 different packet-train parameters for each of the four traces. For each

packet-train parameters, we calculate the output rate r in (3.117) using trace-

driven testing with 2,000 samples.

Figure 3.9(a) shows NBR for the four traces using s = 750 bytes. In all four

traces, NBR decreases as the probing train length increases and this relationship

appears to be a power-law function as is confirmed by our log-log scale plotting

in Figure 3.9(b). Figure 3.9(c) shows NBR when train length is fixed at 16

packets and the probing packet size varies from 50 bytes to 1500 bytes . We again

observe a power-law decrease of NBR with respect to the increase in the probing

packet size as showed in the log-scale plotting in Figure 3.9(d). Conjecturing

that the relationship between NBR, probing size s, and train length l can be

modeled using function NBR = k/(sα1lα2), we get:

log(NBR) = log(k) − α1 log(s) − α2 log(l), (3.118)

To obtain further insight into this formula, we plot 3D charts of NBR(s, l)

on a log-log scale for all four traces and indeed observed four flat planes. Figure

3.10 shows the four NBR planes.

We use 3D-fitting to find the parameters of the four planes. All least-square
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Figure 3.10: NBR(s, l) for four types of cross-traffic on log-log scale.

fitting errors are less than 2%, indicating that the power-law function (3.118) is

a reasonable model for NBR. Curve-fitting results are given in Table 3.1, which

shows that traffic with more burstiness has smaller values of α1 and α2. This

explains why the response deviation in POF is harder to overcome than those

in the other three cross-traffic traces.

Discussion

The experimental results we obtained in trace-driven testing agree with our

analytical findings very well. Furthermore, our results show that with fixed
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Table 3.1: 3D-fitting results for NBR planes.

α1 α2 log(k)

CBR 1.103 ± 0.017 0.993 ± 0.008 10.53 ± 0.175

PCS 0.562 ± 0.006 0.534 ± 0.003 6.300 ± 0.058

PUS 0.524 ± 0.008 0.539 ± 0.004 6.111 ± 0.077

POF 0.413 ± 0.007 0.338 ± 0.003 4.000 ± 0.074

packet-train parameters, more cross-traffic burstiness does not necessarily im-

plies more response deviation. This response deviation, however, is more diffi-

cult to overcome by increasing the probing packet size or probing train length.

To understand this phenomenon, recall that traffic burstiness relates to how

fast the traffic becomes ”smooth” with respect to the increase of observation

intervals rather than how ”smooth” the traffic appears given a fixed observation

interval. Hence, it is usual that for a given observation interval, POF has smaller

second order statistics than Poisson traffic and appears ”smoother”, leading to

less response deviation when packet trains are constructed to sample the traffic

in such an observation interval. As the train length or packet size increases,

the observation interval increases, Poisson traffic becomes smooth quicker than

POF. Therefore, the response deviation is also overcome quicker.

Even though we do not offer a precise interpretation for the power-law re-

lation between NBR metric and packet-train parameters, we believe that it is

related to the evolving trend of available bandwidth frequency distribution with

respect to the increase of observation interval. This view is supported by the

closed-form expression of response deviation, which shows that there is no other

factor that can decide the NBR metric.
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3.5 Implications

Among the five representative proposals TOPP, IGI/PTR, Spruce, pahtload,

and pathChirp, the first three directly fall under the umbrella of our work. The

last two techniques have quite a few tunable parameters and their behavior is

complex. We will consider them in our future work.

3.5.1 TOPP

Figure 3.11 shows the rate response curves for the four traces when the hop

is probed using 1, 500-byte packet pairs (as suggested in [28]). The curves are

transformed using formula (2.3) so that TOPP can apply segmented linear re-

gression to obtain the hop capacity and available bandwidth information. In

the order of closeness to TOPP’s expected piece-wise linear curve appear the

response curves of CBR, POF, PCS and PUS. TOPP uses the second segment,

assuming that it is the one with the hop information. However, the deviated

probing range usually appears as the second segment unless it is very small and

undetectable. In Figure 3.11, all the deviated ranges are very clear and will be

incorrectly acted upon by TOPP. Table 3.2 shows the results of a linear regres-

sion applied to the deviated response curves according to the basic algorithm

in TOPP. As the table shows, the available bandwidth is significantly underes-

timated, especially for PUS and PCS. Both the hop capacity and cross traffic

intensity are significantly overestimated. To assure asymptotic accuracy, TOPP

has to apply additional techniques to bypass these segments in the deviated

probing range.
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Figure 3.11: TOPP-transformed rate response curves.

Table 3.2: TOPP results (in mb/s) using the deviated segment (correct values:

C = 10 mb/s, A = 7 mb/s).

estimated C estimated λ estimated A

CBR 11.11 4.44 6.67

PCS 35.81 32.38 3.43

PUS 32.51 29.24 3.28

POF 23.38 18.36 5.02

3.5.2 IGI/PTR

PTR uses the probing output rate, s/E[gO], at the turning point to estimate

the available bandwidth. As we established, the turning point usually is not the

available bandwidth point. It can be associated with a rate much smaller than

available bandwidth. Thus, theoretically-speaking, PTR is a negatively biased

available bandwidth estimator in all single-hop paths.
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As an estimator of cross-traffic intensity, the IGI formula

λ = E

[
∑

1≤i<n,di+1−di>gI
C(di+1 − di − s

C
)

dn − d1

]

(3.119)

is negatively biased when gI ≤ s/C. This is clear when comparing (3.119) with

the ISE equation (3.59), which has the same numerator but smaller denomi-

nator than those of IGI. Recall that in [15], the IGI estimator is applied at

the turning point where an − a1 = E[dn − d1]. In that case, IGI has the same

denominator, but a smaller numerator compared to ISE. According to Theo-

rem 4, ISE is a positively-biased intensity estimator at the turning point, which

suggests that IGI can be viewed as an estimator with a heuristical compensator

for this bias. We use trace-driven testing to examine the performance of IGI’s

bias compensation. We use probing packet size 750 bytes and train length 64

packet as suggested in [15]. For comparison purposes, we also examine the ISE

estimator and the PTR available bandwidth estimator.

Figure 3.12 shows these results for the four cross-traffic. The figure clearly

shows that IGI provides a good estimate of cross-traffic intensity λ at the avail-

able bandwidth point A = 7 mb/s, while not at the turning point T ≈ 6 mb/s

for all but CBR. When the input probing rate is small, IGI formula is not a

converging estimator and the results are unstable.

For highly bursty traffic such as POF, the turning point falls into the un-

stable region and IGI does not ensure consistent results.

3.5.3 Spruce

Spruce uses ISE with input probing rate C to estimate cross-traffic intensity.

Thus, it is unbiased according to Theorem 3. Although this approach is more
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Figure 3.12: Trace driven testing of three estimators: IGI, PTR, and ISE: (a)

using CBR, (b) using PCS, (c) using PUS, (d) using POF.

susceptible to cross-traffic interference from non-tight hops, we focus on single-

hop analysis in this chapter and skip this issue. A detailed discussion about

Spruce is given in the next chapter.

3.6 Concluding Remarks

This chapter focused on developing a theoretical understanding of single-hop

bandwidth estimation in non-fluid cross-traffic conditions. Our main contri-
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butions include a rigorous formulation of all relevant factors in probing-based

bandwidth estimation, an analytical methodology featuring intrusion residual

analysis, and a thorough discussion of single-hop probing response curves.

Our results clearly delineate the tradeoffs involved in using shorter trains

and long trains, which allows choosing the packet-train parameters in a judicious

way.

While we identified the response deviation as one potential contributing

source of measurement errors, there are certainly other important issues related

to the performance of measurement techniques such as multi-hop effects, timing

errors, and layer-2 effects [33].

In the next chapter, we extend this analysis to multi-hop paths and un-

derstand the behavior of current measurement techniques in arbitrary network

paths.
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Chapter 4

Multi-Hop Probing Analysis

4.1 Introduction

In this chapter, we extend the asymptotic analysis in chapter 3 to arbitrary net-

work paths and uncover the nature of the measurement bias caused by bursty

cross-traffic flows in multi-hop network paths. This problem is significantly dif-

ferent from previous single-hop analysis due to the following reasons. First,

unlike single-hop measurement, where the input packet-trains have determinis-

tic and equal inter-packet separation formed by the probing source, the input

packet-trains at any hop (except the first one) along a multi-link path are out-

put from the previous hop and have random structure. Second and more im-

portantly, the multi-hop probing asymptotics are strongly related to the routing

pattern of cross-traffic flows. This is an issue that never arises in a single-hop

path and has received little attention in prior investigation. However, as we

show in this chapter, it is one of the most significant factors that affect the

bandwidth measurement accuracy in multi-hop paths.

To characterize packet-train bandwidth estimation in its most general set-
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tings, we derive the probing response curve Z of a multi-hop path P assuming

arbitrarily routed bursty cross-traffic flows. We compare Z with its “multi-hop

fluid counterpart” F , a response curve obtained when every cross-traffic flow

in P is hypothetically replaced using a CRF flow of the same average intensity

and routing pattern. Under an ergodic stationarity assumption for each cross-

traffic flow, we show that the real curve Z is tightly lower bounded by its fluid

counterpart F . The curve Z asymptotically approaches its fluid bound F in

the entire input range as probing packet size or packet-train length increases.

Most of the existing techniques are based on the single-hop fluid response

curve S associated with the bottleneck link in P. Therefore, any deviation of

the real curve Z from the single-hop curve S can potentially cause measurement

bias in bandwidth estimation. Note that the deviation Z−S can be decomposed

as

Z − S = (Z − F) + (F − S). (4.1)

The first term Z −F is always positive and causes asymptotic underestimation

of AP for most of the existing techniques. This deviation term and its result-

ing measurement bias are “elastic” in the sense that they can be reduced to

an arbitrarily negligible level using packet-trains of sufficient length1. For the

second deviation term F − S, we note that both S and F are piece-wise linear

curves. The first two linear segments in F associated with large input disper-

sions coincide with S (i.e., F − S = 0). The rest of the linear segments in F

associated with small input dispersions appear above S (i.e., F − S > 0). The

amount of deviation and the additional negative measurement bias it causes

are dependent on the routing patterns of cross-traffic flows, and are maximized

1In practice, probing packet-size is limited to 1500 bytes and can not be arbitrarily large.
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when every flow traverses only one hop along the path (called one-hop persistent

cross-traffic routing). Furthermore, the curve deviation F − S is “non-elastic”

and stays constant with respect to probing packet size and packet-train length

at any given input rate. Therefore, the measurement bias it causes cannot be

overcome by adjusting the input packet-train parameters.

Among current measurement techniques, pathload and PTR operate on the

input probing range where F coincides with S, and consequently are only sub-

ject to the measurement bias caused by the first deviation term Z −F . Spruce

may use the probing range where F −S > 0. Hence it is subject to both elastic

and non-elastic negative measurement biases.

The rest of the chapter is organized as follows. Section 4.2 derives the multi-

hop response curve F assuming arbitrarily routed CRF cross-traffic flows and

examines the deviation term F − S. In Section 4.3 and 4.4, we derive the

real response curve Z of a multi-hop path and show its relationship to its fluid

counterpart F . We provide practical evidence to our theoretical results using

simulations, testbed experiments, and real Internet measurements in Section

4.5. We examine the impact of these results on existing techniques in Section

4.6 and conclude in Section 4.7.

4.2 Multi-Hop CRF Response Curves

It is important to first thoroughly understand the response curve F of a network

path carrying CRF cross-traffic flows, since as we show later, it is an approach-

able bound of the real response curve Z. Initial investigation of the CRF curves

is due to Melandar et al. [26] and Dovrolis et al. [9]. However, prior work only

considers two special cross-traffic routing cases (one-hop persistent routing and
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path persistent routing). In this section, we formulate and solve the problem

for arbitrary cross-traffic routing patterns, based on which, we discuss several

important properties of the CRF response curves that allow us to obtain the

path available bandwidth information.

4.2.1 Formulation and Solution

We view an N -hop network path P = (L1, L2, . . . , LN) as a sequence of N

interconnected First-Come First-Served (FCFS) store-and-forward hops. For

each forwarding hop Li in P, we denote its link capacity by Ci, and assume that

it has infinite buffer space and a work-conserving queuing discipline. Suppose

that f1, f2, . . . fM areM CRF cross-traffic flows traversing path P. The flow rate

of fj is denoted by ψj and the flow rate vector is given by Ψ = (ψ1, ψ2, . . . , ψM)T .

Definition 9 A flow aggregation is a set of flows, represented by a “selection

vector” p = (p1, p2, . . . , pM)T , where pj = 1 if flow fj belongs to the flow aggre-

gation and pj = 0 if otherwise.

A single flow fj is also viewed as a flow aggregation whose selection vector has

all but the jth element equal to 0. We use the notation fj and its selection vector

interchangeably. There are several operations between flow aggregations. First,

the common flows to aggregations p and q form another flow aggregation, whose

selection vector is given by p ⊗ q, where the operator ⊗ represents “element-

wise multiplication”. Second, the equality p ⊗ q = p implies that aggregation

q contains all flows in aggregation p. Third, the aggregation that contains the

flows in p but not in q is given by p − p ⊗ q, where ⊗ has higher priority

than the subtraction operator. Finally, note that the traffic intensity of a flow

aggregation p can be computed from the inner product ΨTp.
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We now define several types of flow aggregation frequently used later in

this chapter . First, the traversing flow aggregation at link Li, denoted by its

selection vector ri, includes all CRF flows that pass through Li. The M × N

matrix R = (r1, r2, . . . , rN) is called the “routing matrix” of cross-traffic flows

over path P. The selection vector ri is also called the routing vector of link Li.

For convenience, we define an auxiliary routing vector r0 = 0.

Before getting to the second type of flow aggregation, we state two routing

constraints to simplify discussions. The first constraint requires every flow to

have different routing pattern and consequently all row vectors in the routing

matrix R are different among each other. In the case of otherwise, the flows

with the same routing pattern should be aggregated into one single flow. The

second routing constraint requires every flow to have only one link where it

enters the path and also have only one (downstream) link where it exits from

the path. In the case of otherwise, the flow is decomposed into several separate

flows that meet this routing constraint.

The second type of flow aggregation, denoted by ei, includes all flows enter-

ing the path at link Li, which can be expressed as ei = ri − ri ⊗ ri−1 given the

second routing constraint stated previously. The third type of flow aggregation,

which includes flows that enter the path at link Lk and traverse the downstream

link Li, is denoted as Γk
i = ek ⊗ ri, where k ≤ i.

The cross-traffic intensity at link Li is denoted by λi. It is assumed to be

less than the link capacity Ci:

λi = ΨT ri < Ci, 1 ≤ i ≤ N. (4.2)

We call the two-dimensional vector hi = (Ci, λi)
T the hop configuration of

Li, the 2 × N matrix H = (h1,h2, . . . ,hN) the path configuration of P. The
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two row vectors in H are referred to as capacity vector and intensity vector,

denoted by C and Λ respectively. The hop available bandwidth of Li is given

by Ai = Ci − λi. We assume that every hop has different available bandwidth,

and consequently that the tight link is unique. Sometimes, we need to refer to

the second minimum hop available bandwidth and the associated link, which

we denote as Ab2 = Cb2 − λb2 and Lb2 respectively. That is

b2 = arg min
1≤i≤N,i6=b

(Ci − λi), (4.3)

where b is the index of the tight hop.

When a packet-train of input dispersion (i.e., inter-packet spacing) gI and

packet size s is used to probe path P, we are interested in computing the output

dispersion of the packet train and examining its relation to gI . Such a relation

is called the gap response curve of path P. It is easy to verify that under the

CRF condition, for any cross-traffic routing matrix R, the response curve does

not depend on the packet-train length n. Hence, we only consider the case of

packet-pair probing. We denote the output dispersion at link Li as γi(gI , s) or

γi for short, and again for notational convenience we let γ0 = gI . Note that

γN(gI , s) is a more elaborate version of the notation F we have used previously.

Based on the above formulation, the gap response curve of path P have a

recursive representation given in the following theorem.

Theorem 10 When a packet-pair with input dispersion gI and packet size s is

used to probe an N -hop CRF path P with routing matrix R and flow rate vector

Ψ, the output dispersion at link Li can be recursively expressed as follows

γi =















gI i = 0

max

(

γi−1,
s+ Ωi

Ci

)

i > 0
, (4.4)
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where Ωi is given by

Ωi =
i
∑

k=1

[

γk−1Ψ
T Γk

i

]

. (4.5)

Proof: Note that the term Ωi represents the volume of fluid cross-traffic

buffered between the packet-pair in the outgoing queue of link Li. As an analogy,

we can view packet-pair as a bus, cross-traffic as passengers, and routers as bus

stations. Then, Ωi is the cross-traffic that is “picked up” by the packet-pair at

link Li as well as all the upstream links of Li; and they will traverse over link

Li due to the flows’ routing decision.

We now prove (4.4). Assuming that the first packet arrives at link Li at time

instance a1. It gets immediate transmission service and departs at a1 + s/Ci.

The second packet arrives at a1 +γi−1. The server of Li needs to transmit s+Ωi

amount of data before it can serve the second packet. If this is done before time

instance a1 + γi−1, the second packet also gets immediate service and γi = γi−1.

Otherwise, the sever undergoes a busy period between the departure of the two

packets, meaning that γi = (s+ Ωi)/Ci. Therefore, we have

γi = max

(

γi−1,
s+ Ωi

Ci

)

. (4.6)

This completes the proof of the theorem.

As a quick sanity check, we verify the compatibility between Theorem 10

and the special “one-hop persistent” routing case. In one-hop persistent routing

[10], every flow that enters the path at link Li will exit the path at link Li+1.

The element-wise multiplication of any two different routing vectors gives a zero

vector. That is, ri ⊗ rk = 0 for i 6= k. Hence, we have

Γk
i = rk ⊗ ri − rk ⊗ rk−1 ⊗ ri =















0 i 6= k

ri i = k

. (4.7)
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Therefore, (4.5) can be simplified as

Ωi = γi−1Ψ
T ri = γi−1λi, (4.8)

which agrees with previous results [26] [9].

4.2.2 Properties of CRF Response Curves

Theorem 10 leads to several important properties of the CRF response curve,

which we discuss next. Note that none of these results for arbitrary cross-traffic

routing have been confirmed in previous work.

Property 1 The output dispersion γN(gI , s) is a continuous piece-wise linear

function of the input dispersion gI in the input dispersion range (0,∞).

Proof: We apply mathematical induction to i. When i = 0, according to

the first formula in (4.4), γ0 = gI is a continuous linear function of gI . Assuming

for any 0 ≤ i < N , γi is a continuous piece-wise linear function of gI , we show

that γN is also a continuous piece-wise linear function of gI . From (4.5), we

know that ΩN is a linear combination of γi, where 1 ≤ i < N . Therefore, Ωi

is a continuous piece-wise linear function of gI . Combining this result with the

second part of (4.4) and the induction hypothesis which states the piece-wise

linearity of γN−1, the desired property follows for γN .

Let 0 = αK+1 < αK < . . . < α1 < α0 = ∞ be the input dispersion turning

points that split the gap response curve to K + 1 linear segments. To under-

stand what the linear segments and the turning points are associated with, we

introduce a concept called “congestible hop set.”

Definition 10 When a packet-pair with input dispersion gI and packet size s

is injected into the CRF path P, the set of hops at which the dispersion of the
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traversing packet-pair gets expanded is called the congestible hop set of path P

at input rate s/gI . It is easy to verify that the congestible hop set is decided by

the ratio of s to gI and not their individual values. We denote the congestible

hop set as H(P, s/gI):

H(P, s/gI) = {Li : Li ∈ P ∧ γi−1(gI , s) < γi(gI , s)}. (4.9)

Lemma 8 A necessary and sufficient condition for two input dispersions g1

and g2 to fall into the same linear segment of the gap response curve is

H(P, s/g1) = H(P, s/g2). (4.10)

Among the turning points, the first two α1 and α2 are of major interests.

Among the linear segments, the first segment in the input dispersion range

(α1,∞) and the second segment in the range (α2, α1) are most important for

bandwidth estimation.

Property 2 The first turning point α1 corresponds to the path available band-

width in the sense that AP = s/α1. The first linear segment in the input dis-

persion range (α1 = s/AP ,∞) has slope 1 and intercept 0. The second linear

segment in the input dispersion range (α2, α1) has slope λb/Cb and intercept

s/Cb, where b is the index of the tight link:

γN(gI , s) =















gI α1 ≤ gI ≤ ∞
gIλb + s

Cb

α2 ≤ gI ≤ α1

. (4.11)

These facts are irrespective of the routing matrix.

Proof: To prove the first part in (4.11), we apply mathematical induction

to i to show that there is no link at which the packet-pair gets expanded when

gI ≥ s/AP . For i = 0, γ0 = gI due to the first part of (4.4).
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Suppose that for 0 ≤ i < N , γi = gI , we show that γN = gI . Combining

induction hypothesis and (4.5), we get

ΩN =
N
∑

k=1

[

γk−1Ψ
T Γk

i

]

= gIΨ
T

N
∑

k=1

Γk
i

= gIΨ
T rN = gIλN . (4.12)

Further recalling that

s

gI

≤ AP ≤ AN = CN − λN , (4.13)

we have (s+ gIλN)/CN ≤ gI = γN−1. Combining (4.4), we have γN = gI .

When α1 < gI ≤ α2, there is only the tight link Lb that expands the packet-

pair dispersion. Due to the same derivation as in (4.12), Ωb = gIλb. Combining

the second part in (4.4) and the fact that s/gI > Ap = Cb − λb, we get

γb = max

(

gI ,
s+ gIλb

Cb

)

=
s+ gIλb

Cb

. (4.14)

Finally, notice that γN = γb due to the fact that Lb is the only link that expands

the packet-pair.

It helps to find the expression for the turning point α2, so that we can

identify the exact range for the second linear segment. However, unlike α1, the

turning point α2 is dependent on the routing matrix. In fact, all other turning

points are dependent on the routing matrix and can not be computed based on

the path configuration matrix alone. Therefore, we only provide a bound for

α2.

Property 3 For any routing matrix, the term s/α2 is no less than Ab2, which

is the second minimum hop available bandwidth of path P.
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The slopes and intercepts for all but the first two linear segments are related

to the routing matrix. We skip the derivation of their expressions, but instead

provide both a lower bound and an upper bound for the entire response curve.

Property 4 For a given path configuration matrix, the gap response curve as-

sociated with any routing matrix is lower bounded by the following piece-wise

linear function

S(gI , s) =















gI gI >
s

AP
s+ gIλb

Cb

0 < gI <
s

AP

. (4.15)

It is upper bounded by the gap response curve associated with one-hop persistent

routing.

Proof: The lower bound is obvious, so we only prove the upper bound.

We apply mathematical induction to show that the output dispersion γp
N(gI , s)

associated with one-hop persistent routing, is no less than the output dispersion

γN(gI , s) associated with any other cross-traffic routing patterns. For i = 0,

γp
0 = γ0 = gI . Assuming for all i < N , we have γp

i ≥ γi. We next show that

γp
N ≥ γN . First, we establish the fact that ΩN ≤ γN−1λN as follows

ΩN =
N
∑

k=1

[

γk−1Ψ
T Γk

i

]

≤ γN−1

N
∑

k=1

[

ΨT Γk
i

]

= γN−1Ψ
T rN = γN−1λN . (4.16)

Then we have γp
N ≥ γN due to the following

γN(gI , s) = max

(

γN−1,
s+ ΩN

CN

)

≤ max

(

γN−1,
s+ λNγN−1

CN

)

≤ max

(

γp
N−1,

s+ λNγ
p
N−1

CN

)

= γp
N , (4.17)
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where the second inequality follows from the induction hypothesis.

Recall that the lower bound S(gI , s) is the single-hop response curve of the

bottleneck link Lb, denoted in short by S in the introduction. We now make

several observations regarding the deviation of γN(gI , s) (i.e., F) from S(gI , s).

Combing (4.11) and (4.15), we see that γN(gI , s) − S(gI , s) = 0 for gI ≥ α2.

That is, the first two linear segments on F coincide with S. For gI < α2,

Property 4 implies that the deviation γN(gI , s)−S(gI , s) is positive. The exact

value depends on cross-traffic routing and it is maximized in one-hop persistent

routing given a fixed path configuration matrix.

Note that there are three pieces of path information that we can extract

from the gap response curve F without resorting to the routing matrix, which

is usually not available in practice. By locating the first turning point α1, we

can compute the path available bandwidth. From the second linear segment, we

can obtain the tight link capacity and cross-traffic intensity (and consequently,

the bottleneck link utilization) information. Other parts of the response curve

F are less readily usable due to their dependence on the routing matrix.

To extract bandwidth information from the output dispersion γN , it is often

more helpful to look at the rate response curve, i.e., the functional relation

between the output rate rO = s/γN and the input rate rI = s/gI . However,

since this relation is not linear, we adopt a transformed version first proposed

by Melander et al. [28], which depicts the relation between the ratio rI/rO and

rI . Denoting this rate response curve by F̃ (rI), we have

F̃ (rI) =
rI

rO

=
γN(gI , s)

gI

. (4.18)

Suppose that the jth linear segment in the gap response curve is expressed

as γN(gI , s) = ℓjgI + κj, then in the input rate range (s/αj−1, s/αj), the rate
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response curve F̃ (rI) can be expressed as

F̃ (rI) =
γN(gI , s)

gI

= ℓj +
κj

gI

= ℓj +
κj

s
rI . (4.19)

This shows that F̃ (rI) is also piece-wise linear. It is easy to see that the first

turning point in the rate curve is s/α1 = Ap and that the rate curve in the input

rate range (0, s/α2) can be expressed as follows:

F̃ (rI) =















1 rI ≤ AP

λb + rI

Cb

s

α2

≥ rI ≥ AP

. (4.20)

Finally, we state the following important property for the rate response curve

F̃ (rI).

Property 5 For any given input rate rI ∈ (0,∞), the rate response F̃ (rI) does

not depend on probing packet size s.

Proof: First, by applying induction on i, we can prove that for any given

rI , γN(gI , s) is proportional to s. We skip the details for this step. Further

notice that gI = s/rI is also proportional to s. Combining theses facts and

(4.18), the property follows.

4.2.3 Examples and Discussions

We use a simple example to illustrate the response curve properties. Suppose

that we have a 3-hop path with equal capacity 10mb/s. We consider two routing

matrices and flow rate settings that lead to the same path configuration.

In the first setting, the flow rate vector Ψ is (4, 7, 8)T and the routing pattern
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is one-hop persistent. That is,

ΛT = RT Ψ =











1 0 0

0 1 0

0 0 1











T

×











4

7

8











=











4

7

8











. (4.21)

In the second setting, the flow rate vector Ψ is (4, 3, 1)T and the routing pattern

is path persistent. That is,

ΛT = RT Ψ =











1 1 1

0 1 1

0 0 1











T

×











4

3

1











=











4

7

8











. (4.22)

The probing packet size s is 1500 bytes. The CRF gap response curves for

both routing patterns are plotted in Fig. 4.1(a). In this example, both curves

have 4 linear segments separated by turning points α1 = 6ms, α2 = 4ms, and

α3 = 2ms. It is provable that when links are arranged in the decreasing order

of their hop available bandwidth, every turning point corresponds to a hop

available bandwidth regardless of the cross-traffic routing. Note that in Fig.

4.1(a), the curve for path-persistent routing appears below the one for one-hop

persistent routing. The lower bound S identified in Property 4 is also shown in

the figure. This lower bound is the gap response curve of the single-hop path

comprising only the tight link of P.

The rate response curves for the two examples are given in Fig. 4.1(b),

where the three turning points are 2mb/s, 3mb/s, and 6mb/s respectively. Due

to the transformation we adopted, the rate curve for one-hop persistent routing

still remains as an upper bound for the rate curves associated with the other

routing patterns. From Fig.4.1(b), we also see that, similar to the gap curves,

the two multi-hop rate response curves and their lower bound S̃(rI) (i.e., the
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Figure 4.1: An example of multi-hop response curves.

transformed rate version of S(gI , s)) share the same first and second linear

segments.

We conclude this section by discussing several major challenges in extending

the response curve analysis to a multi-hop path carrying bursty cross-traffic

flows. First, notice that with bursty cross-traffic, even when the input dispersion

and packet-train parameters remain constant, the output dispersion is no longer

deterministic as it is under the CRF condition. Rather, it becomes a random

variable. Accordingly, we define the gap response curve Z to be the functional

relation between the input dispersion and the statistical mean of the output

dispersion random variable. Second, unlike in the CRF case, where both packet-

train length n and probing packet size s have no impact on the rate response

curve F̃ (rI), the response curves in bursty cross-traffic are strongly related to

these two packet-train parameters. Finally, a full characterization of a CRF flow

only requires one parameter – its arrival rate, while a full characterization of a

bursty flow requires several stochastic processes. In what follows, we address

these problems and extend our analysis to multi-hop paths with bursty cross-
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Table 4.1: Random Process Notations

{Vi(p, t)} The cumulative arrival process of p at link Li

{Y i
δ (p, t)} The cross-traffic intensity process p at Li

{Wi(p, t)} The hop workload process at Li w.r.t. p

{Di
δ(p, t)} The workload-difference process at Li w.r.t. p

{Ui(p, t)} The hop utilization process at Li w.r.t. p

{Bi
δ(p, t)} The available bandwidth process at Li w.r.t. p

traffic.

4.3 Basics in Multi-Hop Analysis

In this section, we present a stochastic formulation for the multi-hop band-

width measurement problem and derive a recursive expression for the output

dispersion random variable. This expression is a fundamental result that the

asymptotic analysis in Section 4.4 is based upon.

4.3.1 Formulation

We keep most of the formulation for CRF path, with some of the terms having

different meanings explained in the while. Since cross-traffic flows now be-

come bursty flows of data packets, we adopt the definitions of several random

processes (Definition 1-6) in chapter 3 to characterize them. However, these

definitions need to be refined so that they are with respect to a particular hop

and a particular flow aggregation. In what follows, we refine the two basic ran-

dom processes, which the definitions of the other processes are based upon. The

notations for all the six random processes are given in Table 4.1.
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Definition 11 The cumulative traffic arrival of flow aggregation p at link Li,

denoted as {Vi(p, t), 0 ≤ t <∞} is a random process counting the total volume

of data (in bits) received by hop Li from flow aggregation p up to time instance

t.

Definition 12 Hop workload process of Li with respect to flow aggregation p,

denoted as {Wi(p, t), 0 ≤ t <∞} indicates the sum at time instance t of service

times of all packets in the queue and the remaining service time of the packet in

service, under such a hypothetical situation that the server of Li only transmits

packets from flow aggregation p, while silently drops all packets not from p.

We next make several modeling assumptions on cross-traffic flows. First, we

assume all flows have stationary arrivals.

Assumption 3 For any cross-traffic flow fj that enters the path from link Li,

the cumulative traffic arrival process {Vi(fj, t)} has ergodic stationary incre-

ments. That is, for any δ > 0, the δ-interval traffic intensity process {Y i
δ (fj, t)}

is a mean-square ergodic process with time-invariant distribution and ensemble

mean ψj.

We explain this assumption in more details. First, the stationary increment

assumption implies that the increment process of {Vi(fj, t)} for any given time

interval δ, namely {Vi(fj, t + δ) − Vi(fj, t) = δY i
δ (fj, t)}, has time-invariant

distribution. This further implies that the δ-interval traffic intensity process

{Y i
δ (fj, t)} also has time-invariant distribution. Second, the mean-square er-

godicity can be mathematically expressed as follows

lim
τ→∞

E

[

(

1

τ

∫ τ

0

Y i
δ (fj, u)du− ψj

)2
]

= 0. (4.23)
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It is easy to prove that, an equivalent expression of (4.23) is given by

lim
δ→∞

E

[

(

Y i
δ (fj, t) − ψj

)2
]

= 0 ∀t > 0. (4.24)

This implies that, for any t, as the observation interval δ increases, the random

variable Y i
δ (fj, t) converges to ψj in mean-square sense. In other words, the

variance of Y i
δ (fj, t) decays to 0.

Our next assumption makes sure that every hop has sufficient capacity to

accommodate the traversing flows and consequently that the queue at each link

remains stable.

Assumption 4 For any link Li, the traversing flows have an aggregated traffic

intensity less than the link capacity Ci. That is, λi = ΨT ri < Ci.

As a consequence of the two assumptions, the ergodic stationary property

also holds for any flow aggregations at their entering link, as stated formally in

the following.

Corollary 5 For any flow aggregation p that enters the path at link Li, i.e.,

p⊗ei = p, the process {Vi(p, t)} has ergodic stationary increments. That is, the

traffic intensity process {Y i
δ (p, t)} has time-invariant distribution with ensemble

mean ΨTp and the mean-square convergence expressed by the following

lim
δ→∞

E

[

(

Y i
δ (p, t) − ΨTp

)2
]

= 0 ∀t > 0. (4.25)

We point out that the correlation among flows in any aggregation does not

affect the validity of Corollary 5. This is because when observation interval δ

is sufficiently large, the intensity process Y i
δ (fj, t) for any flow has negligible

variance. Consequently, the correlation among flows also becomes negligible. It



89

is also important to notice that flow correlation does not concern any results in

this chapter, whose focus is on the asymptotic situations where the correlation

between any flows becomes negligible.

Due to Szczotka [39] [40], the workload process {Wi(p, t)} will “inherit” the

ergodic stationarity property from the traffic arrival process {Vi(p, t)}. This

property is further carried over to the δ-interval workload-difference process

{Di
δ(p, t)} and the available bandwidth process {Bi

δ(p, t)}, whose ensemble

means are 0 and Ai(p) = Ci − ΨTp respectively2. Further, the ergodicity

property leads to the following result.

Lemma 9 For any flow aggregation p that enter the path at link Li, the random

variable Bi
δ(p, t) converges in mean-square sense to Ci − ΨTp as δ → ∞.

lim
δ→∞

E

[

(

Bi
δ(p, t) −

(

Ci − ΨTp
)

)2
]

= 0 ∀t > 0. (4.26)

On the other hand, notice that unlike {Y i
δ (p, t)} and {Bi

δ(p, t)}, the work-

load difference process {Di
δ(p, t)} is not a moving average process by nature.

Consequently, the mean-square ergodicity of {Di
δ(p, t)} does not cause the vari-

ance of Di
δ(p, t) to decay with respect to the increase of δ. Instead, we have the

following lemma.

Lemma 10 For any t, the variance of the random variable Di
δ(p, t) converges

to 2V ar[Wi(p, t)] as δ increases.

lim
δ→∞

E

[

(

Di
δ(p, t) − 0

)2
]

= 2V ar [Wi(p, t)] . (4.27)

2The available bandwidth of Li is Ai = Ai(ri) = Ci − ΨT
ri, and not Ai(p).
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Proof: Due to the definition of workload-difference process and the sta-

tionarity of workload process, we have

E[(Di
δ(t))

2] = E[(Wi(t+ δ) −Wi(t))
2]

= E[(Wi(t+ δ))2 − 2Wi(t)Wi(t+ δ) + (Wi(t))
2]

= 2
(

E[(Wi(t))
2] − E[Wi(t)Wi(t+ δ)]

)

. (4.28)

Notice that due to the mean-square ergodicity of workload process, the random

variable Wi(t+ δ) are asymptotically uncorrelated to Wi(t) as δ increase. That

is

lim
δ→∞

E[(Wi(t) − E[Wi(t)])(Wi(t+ δ) − E[Wi(t+ δ)])] = 0. (4.29)

As a consequence of (4.29), we get

lim
δ→∞

E[Wi(t)Wi(t+ δ)]

= lim
δ→∞

E[Wi(t)]E[Wi(t+ δ)] = E2[Wi(t)]. (4.30)

Taking the limit of (4.28) and combining (4.30), we get (4.27).

In our later analysis, not only we need to know the asymptotic variance of

Y i
δ (p, t), Di

δ(p, t) and Bi
δ(p, t) when δ approaches infinity, but also we often rely

on such a condition that their variance is uniformly bounded by some constant

for any δ. We now justify this condition from a practical standpoint. First

note that cross-traffic arrival rate is bounded by the capacities of incoming

links at a hop. Suppose that the sum of all incoming link capacities at hop Li

is Ci, then Y i
δ (p, t) is distributed in a finite interval [0, Ci] and its variance is

uniform bounded by the constant C2
i for any observation interval δ. Similarly,

the variance of Bi
δ(p, t) is uniformly bounded by the constant C2

i . The variance

of Di
δ(p, t) is uniformly bounded by the constant 4V ar[Wi(p, t)] for any δ, which

directly follows from the definition of Di
δ(p, t).
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We also point out that some of the notations introduced to formulate CRF

path now have different meanings. The rate of the bursty cross-traffic flow fj,

denoted by ψj, is the ensemble mean of the traffic intensity process {Y i
δ (fj, t)},

which is also the long-term average arrival rate of fj at any link it traverses. The

term λi = ΨT ri becomes the long-term average arrival rate of the aggregated

cross-traffic at link Li. The term Ai = Ci − λi is the long-term average hop

available bandwidth at link Li. Again recall that we explicitly target the mea-

surement of the long-term averages of available bandwidth and/or cross-traffic

intensity, instead of those metrics in certain time intervals.

We next introduce several notations to describe packet-train probing. As in

[23], we use the quadruple 〈{Tm}, gI , s, n〉 to denote an infinite packet-train se-

ries with input inter-packet dispersion gI , packet size s, and packet-train length

n. This series is driven by a point process Λ(t) = max{m ≥ 0 : Tm ≤ t} to probe

path P. Let d1(m, i) and dn(m, i) be the departure time instances from link Li

of the first and last probing packets in the mth packet-train. We define the sam-

pling interval of the packet-train as the total spacing ∆ = dn(m, i) − d1(m, i),

and the output dispersion as the average spacing G = ∆/(n− 1) of the packet-

train. Both ∆ and G are random variables, whose distributions depend on

several factors such as the input dispersion gI , the packet-train parameters s

and n, the packet-train index m in the probing series, the hop Li that the out-

put dispersion G is associated with. Therefore, a full version of G is written

as Gi(gI , s, n,m). However, for notation brevity, we often omit the parameters

that are implicitly known or have little relevance to the topic under discussion.

We now formally state the questions we address in this chapter. Note that

a realization of the stochastic process {GN(gI , s, n,m), 1 ≤ m < ∞} is just a

packet-train probing experiment. We examine the sample-path time-average
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and its relationship to gI when keeping s and n constant. This relationship,

previously denoted by Z, is called the “gap response curve” of path P. In

particular, we compare the gap response curve of P with that of the CRF

counterpart of P and prove that the former is lower-bounded by the later.

Definition 13 Suppose that path P has routing matrix R and flow rate vector

Ψ and that path P has routing matrix R and flow rate vector Ψ. P is called the

CRF counterpart of P if 1) all cross-traffic flows traversing P are constant-rate

fluid; 2) the two paths P and P have the same configuration matrix; and 3)

there exists a row-exchange matrix T , such that TR = R and TΨ = Ψ.

From this definition, we see that for every flow fj in P, there is a corre-

sponding CRF flow fj′ in the CRF counterpart of P such that fj′ have the

same average intensity and routing pattern as those of fj. Note that the third

condition in Definition 13 is made to allow the two flows have different indices,

i.e., to allow j 6= j′.

A second focus of this chapter is to study the impact of packet-train para-

meters s and n on the response curves. That is, for any given input rate rI

and other parameters fixed, we examine the convergence properties of the two

processes {GN(s/rI , s, n,m), 0 < s <∞} and {GN(s/rI , s, n,m), 2 ≤ n <∞}.

Next, we first obtain a basic result for the process {GN(gI , s, n,m), 1 ≤ m <

∞}, called “output dispersion process”.

4.3.2 Analysis of Output Dispersion Process

We keep input packet-train parameters gI , s, and n constant and denote for short

the output dispersion process at link Li by {Gi(m), 1 ≤ m < ∞}. To study
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the properties of this process, we first derive the expressions for the random

variable Gi(m).

Lemma 11 Let G0(m) = gI , the random variable Gi(m) has a recursive ex-

pression given in the following

Gi(m) =
i
∑

k=1

Y k
∆k−1

(Γk
i , tk) ×Gk−1(m)

Ci

+
s

Ci

+
Ĩi(m)

n− 1

= Gi−1(m) +
Di

∆i−1
(ei, ti)

n− 1
+
Ri(m)

n− 1
, (4.31)

where ∆k−1 = (n − 1) × Gk−1(m) is the sampling interval of the input packet

train at link Lk, tk is the arrival time of the packet-train at Lk. The term Ri(m)

represents the extra queuing delay (besides Wi(ei, ti + ∆i−1)) experienced at Li

by the last probing packet in the train. The term Ĩi(m) is the hop idle time of

Li during the time interval [ti, ti + ∆i−1].

Proof: For the first equality in (4.31), note that the following term (which

is a random variable)

Y k
∆k−1

(Γk
i , tk) × (n− 1) ×Gk−1(m) (4.32)

denoted separately by Ωk
i , is the amount of cross-traffic the packet-train picked

up at link Lk that will traverse link Li. The random variable

Ωi =
i
∑

k=1

Ωk
i (4.33)

gives the total amount of cross-traffic that Li has to transmit between the

departures of the first and last packets in the packet-train. During that time

interval, the server also needs to transmit n − 1 probing packets, which takes

(n− 1)s/Ci time units, and idle for Ĩi(m) time units. Therefore, we have

(n− 1) ×Gi(m) =
Ωi + (n− 1)s

Ci

+ Ĩi(m). (4.34)
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Dividing by n− 1 at both sides of (4.34), we get the first equality in (4.31).

For the second equality in (4.31), note that the term Ri(m) is the intrusion

residual3 experienced by the last packet in the probing train. It is the amount

of extra queuing delay caused by all but the last probing packets in the packet-

train and the cross-traffic packets picked up by packet-train at the upstream

links of Li. Let q1 and qn be the queuing delays experienced by the first and

last packet in the train, we have

q1 = Wi(ei, ti) (4.35)

qn = Wi(ei, ti + ∆i−1) +Ri(m). (4.36)

By subtracting (4.35) from (4.36), we get

qn − q1 = Di
∆i−1

(ei, ti) +Ri(m). (4.37)

Further notice that

∆i − ∆i−1 = (n− 1) × (Gi(m) −Gi−1(m)) = qn − q1. (4.38)

Combining (4.37) and (4.38), the second part of (4.31) follows.

We assume that adjacent packet-trains in the probing series are sufficiently

separated so that the transient probing intrusion effect on each queue caused

by the previous packet-train is assimilated before the arrival of the next packet-

train. Consequently, each packet-train comes to see a multi-hop system of the

same stochastic nature and the output dispersion process {GN(m), 1 ≤ m <∞}

is a identically distributed random process.

By further assuming the existence of a sample-path time-average, we have

that with probability one, the asymptotic average of the packet train output

3For the details about “intrusion residual”, please refer to [23]
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dispersions coincide with the ensemble mean of (any random variable in) the

stationary process {GN(m), 1 ≤ m <∞}. Therefore, in the rest of the chapter,

we focus on the statistics of the output dispersion random variable GN , where

we drop the index m.

4.4 Multi-Hop Response Curves

In this section, we first apply mathematical induction to show that the gap

response curve Z = E[GN(gI , s, n)] of a multi-hop path P is lower bounded

by its CRF counterpart F = γN(gI , s). We then investigate the impact of

packet-train parameters on probing response.

4.4.1 Bound

Our next lemma shows that passing through a link can only increase the en-

semble mean of the dispersion random variable.

Lemma 12 For 1 ≤ i ≤ N , the output dispersion random variable Gi has a

mean no less than that of Gi−1. That is, E[Gi] ≥ E[Gi−1].

Proof: First, due to the second part of (4.31), we have

E[Gi] = E[Gi−1] +
E[Di

∆i−1
(ei, ti)]

n− 1
+
E[Ri]

n− 1
. (4.39)

Note that the second term in the right hand side of (4.39) is 0, regardless of the

distribution of the random variable ∆i−1. Let P (x) be the distribution function

of ∆i−1, we have

E[Di
∆i−1

(ei, ti)] =

∫ ∞

0

E[Di
∆i−1

(ei, ti)|∆i−1 = x]dP (x)

=

∫ ∞

0

E[Di
x(ei, ti)]dP (x) =

∫ ∞

0

0 dP (x) = 0. (4.40)
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Also note that due to the properties of the intrusion residual, E[Ri] ≥ 0. Hence

E[Gi] ≥ E[Gi−1].

Using the first part of (4.31), our next lemma shows that for any link Li,

the output dispersion random variable Gi is lower bounded in mean by a linear

combination of the output dispersion random variables Gk, where k < i.

Lemma 13 For 1 ≤ i ≤ N , the output dispersion random variable Gi satisfies

the following inequality

E[Gi] ≥
1

Ci

(

i
∑

k=1

ΨT Γk
iE[Gk−1] + s

)

. (4.41)

Proof: Due to the first part of (4.31), we have

E[Gi] =
1

Ci

(

i
∑

k=1

E
[

Y k
∆k−1

(Γk
i , tk)Gk−1

]

+ s

)

+
E[Ĩi]

n− 1
. (4.42)

Let P (x) be the distribution function of ∆k−1, we have

E
[

Y k
∆k−1

(Γk
i , tk) ×Gk−1

]

=

∫ ∞

0

E

[

Y k
∆k−1

(Γk
i , tk) ×Gk−1

∣

∣

∣Gk−1 =
x

n− 1

]

dP (x)

=

∫ ∞

0

E

[

Y k
x (Γk

i , tk) ×
x

n− 1

]

dP (x)

=
ΨT Γk

i

n− 1

∫ ∞

0

xdP (x) = ΨT Γk
iE[Gk−1]. (4.43)

Combining (4.42), (4.43), and the fact that E[Ĩi] ≥ 0, the lemma follows.

Combining Lemma 12 and Lemma 13, we get

E[Gi] ≥ max

(

E[Gi−1],

∑i
k=1 ΨT Γk

iE[Gk−1] + s

Ci

)

. (4.44)

This leads to the following theorem.
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Theorem 11 For any input dispersion gI , packet-train parameters s and n, the

output dispersion random variable GN of path P is lower bounded in mean by

the output dispersion γN(gI , s) on the CRF counterpart of P. That is

E[GN(gI , s, n)] ≥ γN(gI , s). (4.45)

Proof: We apply mathematical induction to i. When i = 0, E[G0(gI , s, n)] =

γ0(gI , s) = gI . Assuming that (4.45) holds for 0 ≤ i < N , we next prove that it

also holds for i = N . Recall (4.44), we have

E[GN ] ≥ max
(

E[GN−1],

∑N
k=1 ΨT Γk

NE[Gk−1] + s

CN

)

≥ max
(

γN−1,

∑N
k=1 ΨT Γk

Nγk−1 + s

CN

)

= γN , (4.46)

where the second inequality is due to induction hypothesis, and the last equality

is due to Theorem 10.

Theorem 11 shows that in the entire input gap range, the piece-wise linear

CRF gap response curve F discussed in Section 4.2 is a lower bound of the real

gap curve Z. The deviation between the real curve Z and its fluid lower bound

F , which is denoted by βN(gI , s, n), can be recursively expressed as follows

βi =















βi−1 +
E[Ri]

n− 1
Li /∈ H(P, s/gI)

1

Ci

∑i
k=1 ΨT Γk

i βk−1 +
E[Ĩi]

n− 1
Li ∈ H(P, s/gI)

, (4.47)

where P is the CRF counterpart of path P, and β0 = 0. Expanding (4.47), we

get the following result.

Corollary 6 The response curve deviation βN(gI , s, n) has the following non-

recursive expression

βN =
1

n− 1





∑

Lj /∈H

ajE[Rj] +
∑

Lk∈H
bkE[Ĩk]



 , (4.48)
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where H = H(P, s/gI), aj and bk are coefficients that are only functionally

related to the routing matrix R, the flow rate vector Ψ, and the capacity vector

C, but are not functionally related to the input packet-train parameters s and

n.

In what follows, we study the asymptotics of the curve deviation βN when

input packet-train parameters s and n become large and show that the fluid

lower bound F is in fact a tight bound of the real response curve Z.

4.4.2 Impact of Probing Packet Size

We now demonstrate that for any input probing rate rI , the curve deviation

β(s/rI , s, n) vanishes as probing packet size s approaches infinite. We prove this

result under the condition of one-hop persistent cross-traffic routing. We also

justify this conclusion informally for arbitrary cross-traffic routing and point

out the major difficulty for a rigorous proof. First, we make an additional

assumption as follows.

Assumption 5 Denote by P i
δ(x) the distribution function of the δ-interval

available bandwidth process {Bi
δ(ei, t)}, we assume for all 1 ≤ i ≤ N , the fol-

lowing holds














P i
δ(r) = o

(

1

δ2

)

r < Ci − ΨTei

P i
δ(r) = 1 − o

(

1

δ2

)

r > Ci − ΨTei

. (4.49)

Recall that the mean-square ergodicity assumption we made earlier implies

that as the observation interval δ gets large, the random variable Bi
δ(ei, t) con-

verges in distribution to Ci − ΨTei. Assumption 5 further ensures that this

convergence is fast in the sense of (4.49). Even though this condition appears
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cryptic at first, it is valid in a broad range of cross-traffic environments. Next,

we show its validity under the condition of regenerative 4 link utilization.

Theorem 12 When hop utilization process {Ui(ei, t)} is regenerative, condition

(4.49) holds.

Proof: When the hop utilization process {Ui(ei, t)} is regenerative, the

process {Ci(1 − Ui(ei, t))} is also regenerative with the same stopping times

and regeneration cycles. Further note that the δ-interval available bandwidth

Bi
δ(ei, t) is the time average of the regenerative process {Ci(1 − Ui(ei, t))}.

According to the regenerative central limit theorem [42, pages 124], for any

t, Bi
δ(ei, t) converges in distribution to a Gaussian random variable N(Ci −

ΨTei, σ
2/δ) as δ approaches infinity, where σ is a constant. This implies that

the mean of the Gaussian distribution remains Ci − ΨTei for all δ while the

variance is inversely proportional to δ. Therefore, for sufficiently large δ, we

have

P i
δ(r) =

1

2

(

1 + erf

(

(

r − C + ΨTei

)√
δ

σ
√

2

))

, (4.50)

where erf is the special function called Gauss error function.

According to the asymptotic series of erf(x) [3, pages 297-309], we have

erf(x) =















Θ

( −1

xex2

)

− 1 x < 0

Θ

( −1

xex2

)

+ 1 x > 0

. (4.51)

Combining (3.100) with (4.50), we have

P i
δ(r) =















Θ

(

1√
δekδ

)

= o

(

1

δ2

)

r < Ci − ΨTei

1 − Θ

(

1√
δekδ

)

= 1 − o

(

1

δ2

)

r > Ci − ΨTei

, (4.52)

4Refer to [42, pages 89] for the definition of regenerative process.
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where k is a positive constant given below

k =

(

r − ΨTei

)2

2σ2
. (4.53)

This proves the theorem, at the same time, (4.52) shows that the convergence is

much faster than what we assumed in Assumption 5. It is in fact exponentially

fast.

Regenerative queue is very common both in practice and in stochastic mod-

eling literature. Note that all the four traffic types used in [23] lead to regener-

ative hop workload and consequently lead to regenerative link utilization. We

also conjecture that (4.49) holds under much milder condition; and we leave its

identification as future work.

An immediate consequence of Assumption 5 is the following lemma.

Lemma 14 For any link Li in P, assuming ei = ri, when Li is probed by

packet-pairs with input rate r, we have the follow two limits regarding the con-

ditional second-order moments of Ri and Ĩi.














lims→∞E[R2
i |Gi−1 = s/r] = 0 r < Ci − λi

lims→∞E[Ĩ2
i |Gi−1 = s/r] = 0 r > Ci − λi

. (4.54)

Proof: We first consider the case when r < Ci − λ. Let δ = s/r and

denote by Ri(δ) the random variable Ri under the condition that the input

packet-pair dispersion Gi−1 = δ. We have

Ri(δ) = Ri(s/r) = max

(

0,
s− δBi

δ(ei, t)

Ci

)

, (4.55)

where t is the arrival time of the packet-pair into Li. Denoting by P i
δ(x) the

distribution function of the random variable Bi
δ(ei, t), we have

E[R2
i (δ)] =

∫ r

0

δ2(r − x)2

C2
i

dP i
δ(x) ≤

2r2δ2P i
δ(r)

C2
i

. (4.56)
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Taking the limit of (4.56) and further recalling Assumption 5, we get

0 ≤ lim
δ→∞

E[R2
i (δ)] ≤ lim

δ→∞

2r2δ2Pδ(r)

C2
i

= 0. (4.57)

This leads to the first part in (4.54). Now consider the case when r > Ci − λi.

Denoting by Ĩi(δ) the random variable Ĩi under the condition that the input

packet-pair dispersion Gi−1 = δ = s/r, we have

Ĩi(δ) = Ĩi(s/r) = max

(

0,
δBi

δ(ei, t) − s

Ci

)

. (4.58)

Computing the second moment of Ĩi(s/r), we get

E[Ĩ2
i (δ)] =

∫ C

r

δ2(x− r)2

C2
i

dP i
δ(x) ≤

δ2(Ci − r)2

C2
i

(

1 − P i
δ(r)

)

. (4.59)

Taking the limit of (4.59) and recalling Assumption 5, we get

0 ≤ lim
δ→∞

E[Ĩ2
i (δ)] ≤ lim

δ→∞

(Ci − r)2δ2(1 − P i
δ(r))

C2
i

= 0. (4.60)

This leads to the second part in (4.54).

Our next theorem states formally the convergence property of the output

dispersion random variable GN(s/rI , s, n) when s increases, for any N -hop path

P with one-hop persistence cross-traffic routing, for any given input rate rI ∈

(0,∞), and any packet-train length n ≥ 2.

Theorem 13 Given one-hop persistent cross-traffic routing and the three as-

sumptions made in this chapter, for any input rate rI , the output dispersion

random variable GN of path P converges in mean to its fluid lower bound γN :

lim
s→∞

E[GN(s/rI , s, n)] = γN(s/rI , s). (4.61)

The asymptotic variance of GN when s increases is upper bounded by some

constant KN ,

lim
s→∞

E[(GN − γN)2] ≤ KN . (4.62)
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Proof: We only consider the case of packet-pair probing. The proof can

be easily extended to packet-train probing by applying mathematical induction

on n. In the proof of packet-pair case, we apply mathematical induction on i.

For the base case when i = 0, G0 = s/rI = γ0 and K0 = 0, the theorem

holds trivially. Suppose the theorem holds for i = N − 1, we now show that it

also holds for i = N .

First consider the case when s/γN−1 < CN −λN , due to Lemma 11, we have:

GN = GN−1 +DN
GN−1

(eN , t) +RN . (4.63)

We now examine the asymptotic mean and asymptotic variance for each of the

three terms on the right hand side of (4.63). For the first term GN−1, due to

the induction hypothesis, we have

lim
s→∞

E[GN−1] = γN−1, (4.64)

lim
s→∞

E[(GN−1 − γN−1)
2] ≤ KN−1. (4.65)

The second term in (4.63) is a zero-mean random variable regardless of the

distribution of GN−1,

lim
s→∞

E
[

DN
GN−1

(eN , t)
]

= 0. (4.66)

The proof is similar to what we showed in (4.40). The variance of DN
GN−1

(eN , t)

converges to 2V ar[WN(eN , t)] as s→ ∞, which is a constant with respect to s.

To show this, first note that

E

[

(

DN
GN−1

(eN , t)
)2
]

=

∫ ∞

0

(

DN
x (eN , t)

)2
dP (x), (4.67)

where P (x) is the distribution function of GN−1. The integral term in (4.67)

can be decomposed into the sum of three integral terms as follows:

E[D2] =

∫ E/2

0

D2dP (x) +

∫ 3E/2

E/2

D2dP (x) +

∫ ∞

3E/2

D2dP (x), (4.68)
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where D2 =
(

DN
x (eN , t)

)2
and E = E[GN−1]. Using Chebyshev’s inequality and

the fact that E[D2] ≤ 4V ar[WN(eN , t)], it is easy to show that both the first and

the third integral terms in (4.68) converges to 0 as s → ∞. In addition, using

Chebyshev’s inequality and lemma 10, we can show that the second integral

term in (4.68) converges to 2V ar[WN(eN , t)] as s → ∞. Omitting all the

intermediate steps, we get:

lim
s→∞

E

[

(

DN
GN−1

(eN , t)
)2
]

= 2V ar[WN(eN , t)]. (4.69)

For the third term RN in (4.63), its first-order moment converges to 0 as

s→ ∞ as we show next. Note that

E[RN ] =

∫ s/AN

0

E[RN(x)]dP (x) +

∫ ∞

s/AN

E[RN(x)]dP (x), (4.70)

where AN = CN − λN is the available bandwidth of LN , P (x) is the distri-

bution function of GN−1, and E[RN(x)] denotes the conditional expectation

E[RN |GN−1 = x]. Notice that RN is upper bounded by s/CN , Hence due to

Chebyshev’s inequality, for the first additive term in (4.70), we have

0 ≤
∫ s/AN

0

E[RN(x)]dP (x) ≤ s

CN

P

(

s

AN

)

≤ sV ar[GN−1]

CN (s/AN − E[GN−1])
2 . (4.71)

Taking the limit of (4.71) when s→ ∞, we get

0 ≤ lim
s→∞

∫ s/AN

0

E[RN(x)]dP (x)

≤ lim
s→∞

s

CN

V ar[GN−1]

(s/AN − E[GN−1])
2 (4.72)

≤ lim
s→∞

s

CN

KN−1

(s/AN − γN−1)
2 = lim

s→∞
Θ

(

1

s

)

= 0,
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where the last inequality is due to induction hypothesis and the second last

equality is due to the fact that γN−1 is a linear function of s/rI as stated in

Property 1.

For the second additive term in (4.70), first recall Theorem 6, which says

that RN(x) is a monotone decreasing function of x. Therefore, we have

0 ≤ lim
s→∞

∫ ∞

s/AN

E[RN(x)]dP (x)

≤ lim
s→∞

E[RN(s/AN)] = 0, (4.73)

where the last equality is due to Lemma 14. From Lemma 14, it follows that

RN(s/AN) converges in mean-square sense to 0, which implies that RN(s/AN)

also converges to 0 in mean when s→ ∞. Combing (4.72) and (4.73), it follows

that

lim
s→∞

E[RN ] = 0. (4.74)

In almost the same way as showed from (4.70) to (4.74), we can prove that the

asymptotic variance of RN when s increases is bounded by a constant. We omit

the proof details of this step. Combining all these investigation, it follows that

lim
s→∞

E[GN ] = lim
s→∞

E[GN−1] = γN−1 = γN . (4.75)

The asymptotic variance of GN is also bounded by a constant irrespective

of s due to the fact that all the three additive terms on the right hand side

of (4.63) have so bounded asymptotic variance. We denote this variance upper

bound by KN .

So far, we finished the proof for the case when s/γN−1 < AN . For the case

when s/γN−1 > AN , we have the following due to Lemma 11 and the one-hop

persistent routing assumption:

GN =
Y N

GN−1
(eN , t)GN−1

CN

+
s

CN

+ ĨN (4.76)
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We now examine the asymptotic mean and variance for each of the additive

terms on the right hand side of (4.76). For the first term we have

lim
s→∞

E

[

Y N
GN−1

(eN , t)GN−1

CN

]

=
1

CN

lim
s→∞

∫ ∞

0

E
[

Y N
GN−1

(eN , t)GN−1

∣

∣

∣GN−1 = x
]

dP (x)

=
ΨTeN

CN

lim
s→∞

∫ ∞

0

xdP (x) =
λNγN

CN

, (4.77)

where P (x) is the distribution function of GN−1. Similarly, we can get the

asymptotic variance as follows

lim
s→∞

V ar

[

Y N
GN−1

(eN , t)GN−1

CN

]

=
λ2

N

C2
N

lim
s→∞

V ar[GN−1] ≤
λ2

NKN−1

C2
N

, (4.78)

where the last inequality is due to induction hypothesis. Note that the limiting

variance is bounded by a constant irrelevant to s.

The second additive term in (4.76) is a constant. For the third term ĨN , we

now show that it converges to 0 in mean-square sense as s→ ∞. Consequently,

both the asymptotic mean and the asymptotic variance of this term is 0. Note

that E[Ĩ2
N ] can be decomposed as

E
[

Ĩ2
N

]

=

∫ s/AN

0

E
[

Ĩ2
N(x)

]

dPs(x) +

∫ ∞

s/AN

E
[

Ĩ2
N(x)

]

dPs(x), (4.79)

where AN = CN −λN is the available bandwidth of LN , Ps(x) is the distribution

function of GN−1 given packet size s, and E[Ĩ2
N(x)] denotes the conditional

second moment E[Ĩ2
N |GN−1 = x]. Note that the first term in (4.79) approaches
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0 as s→ ∞. That is,

lim
s→∞

∫ s/AN

0

E
[

Ĩ2
N(x)

]

dPs(x)

= lim
s→∞

∫ ∞

AN

E
[

Ĩ2
N

(s

r

)]

dP̃s(r)

≤ lim
s→∞

E

[

I2
N

(

s

AN

)]

= 0, (4.80)

where P̃s(r) is the distribution function of the random variable s/GN−1 given s

fixed. The inequality is due to fact that ĨN(x) is a monotone decreasing function

of x given s fixed, as stated in Theorem 6. The last equality in (4.80) is due to

Lemma 14.

The second term in (4.79) also approaches 0 as s→ ∞. Note that ĨN(x) ≤ x,

so we have

lim
s→∞

∫ ∞

s/AN

E
[

Ĩ2
N(x)

]

dPs(x) ≤ lim
s→∞

∫ ∞

s/AN

x2dPs(x)

= lim
s→∞

(

E[G2
N−1(s)] −

∫ s/AN

0

x2dPs(x)

)

= lim
s→∞

E[G2
N−1(s)] − lim

s→∞
E[G2

N−1(s)] = 0. (4.81)

Combining (4.80) and (4.81), we get

lim
s→∞

E[Ĩ2
N ] = lim

s→∞
E[ĨN ] = 0. (4.82)

Combining (4.82) and (4.77), we get

lim
s→∞

E[GN ] =
λNγN−1 + s

CN

= γN . (4.83)

Combining induction hypothesis, (4.78), and (4.83), we get

lim
s→∞

V ar[GN ] ≤ λ2
N

C2
N

lim
s→∞

V ar[GN−1] = KN , (4.84)

which is a constant irrelevant to s. Combining the two cases, we complete the

inductive step for any probing input rate rI . Hence, the theorem follows.
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Note that the bounded variance, as stated in (4.62), is not an extra result in

addition to the mean convergence given by (4.61). Rather, it is an inseparable

part of the whole theorem. Without bounded variance of the output dispersion

random variable GN−1, we can not obtain the mean convergence of GN to γN .

We further point that by assuming one-hop persistent cross-traffic routing,

we have avoided analyzing the departure processes of cross-traffic flows. When

a traversing flow fj of link Li enters the path from some upstream link of

Li, the arrival process of fj at Li is its departure process at Li−1, which is

usually not the same as that at the entrance link of fj. Unfortunately, in the

queueing theory literature, there is no exact result for departure processes in

FCFS queueing network models if one goes beyond the assumption of Poisson-

arrival. Motivated by the intractability of the models, researchers have focused

their attentions on approximations [30][24].

To prove Theorem 13 in arbitrary cross-traffic routing, we also need an

approximation assumption which says that any cross-traffic flow (and conse-

quently flow aggregation) that traverses link Li (regardless wether it enters the

path from Li or some upstream link of Li) exhibits ergodic stationary arrival

at Li. Under this assumption, which we call “stationary departure approxima-

tion”, it becomes easy to show that Theorem 13 holds for arbitrary cross-traffic

routing. We skip the details of this extension and next apply the stationary

departure approximation to examine the impact of packet-train length n.

4.4.3 Impact of Packet-Train Length

We now show that when packet-size s is kept constant, as the packet-train length

n→ ∞, the output dispersion random variable GN(gI , s, n) of path P converges
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in mean-square sense to its fluid lower bound γN(gI , s), for any gI and any s.

This means that not only E[GN ] converges to γN , but also the variance of GN

decays to 0 as n increases. We first prove this result over a single-hop path. We

then apply mathematical induction to extend this conclusion to any multi-hop

path with arbitrary cross-traffic routing under the assumption of “stationary

departure approximation”.

Theorem 14 Under the first assumption of this chapter, for a single-hop path

P with capacity C and cross-traffic intensity λ < C, for any input dispersion

gI ∈ (0,∞) and probing packet size s, the output dispersion random variable G

converges to its fluid lower bound γ in mean-square sense as n→ ∞,

lim
n→∞

E

[

(

G(gI , s, n) − max

(

gI ,
λgI + s

C

))2
]

= 0. (4.85)

Proof: First consider the case when s/gI < C − λ. We first examine

the output sampling interval random variable ∆ = (n − 1)G. The key is to

view the first and last packets in the input packet-train as a packet-pair and

view the other packets in between as if they were from another cross-traffic flow

f ′. The real cross-traffic and f ′ together form a flow aggregation denoted by

p. Obviously, the packet arrival in p is still ergodic stationary. The long term

arrival rate of p is λ+ s/gI < C. The workload-difference process Dδ(p, t) is a

zero-mean process. According to Lemma 11, ∆ can be expressed as follows

∆ = (n− 1)gI +Dδ(p, t) +R, (4.86)

where t is the arrival time of the first probing packet into the hop, δ = (n−1)gI

is the sampling interval of the input packet-train, R = max (0, s−Bδ(p, t)δ)

is the intrusion residual with respect to the flow aggregation p. The output
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dispersion G = ∆/(n− 1) can be expressed as

G = gI +
Dδ(p, t)

n− 1
+

max(0, s−Bδ(p, t)δ)

n− 1
, (4.87)

Notice that, as n increases, the second additive term converges to 0 in mean-

square sense. That is,

lim
n→∞

E

[

(

Dδ(p, t)

n− 1

)2
]

=
2V ar[W (p, t)]

limn→∞(n− 1)2
= 0, (4.88)

where the first equality is due to Lemma 10. The third term on the right hand

side of (4.87) also converge to 0 in mean-square sense.

lim
n→∞

E

[

(

max(0, s−Bδ(p, t)δ)

n− 1

)2
]

≤ lim
n→∞

s2

(n− 1)2
= 0. (4.89)

Combining (4.87), (4.88), and (4.89), we get

lim
n→∞

E
[

(G(gI , s, n) − gI)
2] = 0. (4.90)

Now consider the case when s/gI > C − λ. We still examine the sampling

interval interval ∆, and according to Lemma 11, we have

∆ =
Yδ(p, t)δ

C
+
s

C
+ Ĩ , (4.91)

where t and δ have the same meanings as those in (4.87). Ĩ = max (0, Bδ(p, t)δ − s)

is the hop idle time during the interval [t, t + ∆]. The output dispersion

G = ∆/(n− 1) can be expressed as

G =
Yδ(p, t)δ

(n− 1)C
+

s

(n− 1)C
+

max (0, Bδ(p, t)δ − s)

n− 1
. (4.92)

The first additive term in (4.92) converges in mean-square sense to (λgI +s)/C,

showed in the following:

lim
n→∞

E

[

(

Yδ(p, t)δ − (n− 1)(λgI + s)

(n− 1)C

)2
]

=
g2

I

C2
lim
δ→∞

E

[

(

Yδ(p, t) −
(

λ+
s

gI

))2
]

= 0, (4.93)
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where the second equality is due to the mean-square ergodicity of the flow aggre-

gation p. The second term in (4.92) is deterministic, and its square converges

to 0 as n → ∞. The third term in (4.92) converges in mean-square sense to 0

when n increases. To show that, first notice that since the arrival rate of p is

greater than hop capacity C, we have

lim
δ→∞

E[Bδ(p, t)] = 0. (4.94)

further notice that Bδ(p, t) is distributed in a finite interval [0, C]. Hence, (4.93)

implies that the second moment of Bδ(p, t) also converges to 0 as δ increases,

lim
δ→∞

E
[

(Bδ(p, t))
2
]

= 0. (4.95)

This leads to the following

0 ≤ lim
n→∞

E

[

(

max (0, Bδ(p, t)δ − s)

n− 1

)2
]

≤ lim
n→∞

E

[

(

Bδ(p, t)δ

n− 1

)2
]

= lim
δ→∞

g2
IE
[

(Bδ(p, t))
2] = 0. (4.96)

Combining (4.92), (4.93), and (4.96), we get

lim
n→∞

E

[

(

G(gI , s, n) − λgI + s

C

)2
]

= 0. (4.97)

Combining (4.90) and (4.97), the theorem follows.

Our next theorem extends this result to multi-hop path with arbitrary cross-

traffic routing.

Theorem 15 Under the first two assumptions of this chapter5 and the “ sta-

tionary departure approximation”, for any N -hop path P with arbitrary cross-

traffic routing, for any input dispersion gI ∈ (0,∞) and probing packet size s,

5Note that Assumption 5 is not necessary in this theorem.
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the output dispersion random variable GN converges to its fluid lower bound γN

in mean-square sense as n→ ∞,

lim
n→∞

E
[

(GN(gI , s, n) − γN(gI , s))
2] = 0. (4.98)

Proof: We apply induction on i. When i = 1, the conclusion holds due

to Theorem 14. Assuming that (4.98) holds for all i < N , we next show it also

holds for i = N .

We apply the same trick as we do in the proof of Theorem 14. We view the

first and last probing packets p1 and pn as a packet-pair, and view the rest of

probing packets in the train as if they were from another cross-traffic flow f ′.

We denote the aggregation of rN and f ′ as p. Due to the “stationary departure

approximation”, the traffic arrival in p can be viewed as ergodic stationary

when n is sufficient large. We now examine the average arrival rate of p at link

LN . That is, we compute

λp = lim
n→∞

E[ΩN ]

(n− 1)E[GN−1(gI , s, n)]
(4.99)

where ΩN is the random variable indicating the volume of traffic buffered be-

tween p1 and pn in the outgoing queue of LN . Notice that

E[ΩN ] = E

[

N
∑

k=1

Y∆k−1
(Γk

N , tk)∆k−1

]

+ (n− 1)s, (4.100)

where tk is the arrival time of p1 at Lk, ∆k−1 = (n − 1)Gk−1 is the sampling

interval of the input packet-pair p1 and pn at Lk. Substitute (4.100) back into

(4.99), we get the following due to induction hypothesis:

λp = lim
n→∞

∑N
k=1E[Y∆k−1

(Γk
N , tk)Gk−1] + s

E[GN−1(gI , s, n)]

=

∑N
k=1 ΨT Γk

Nγk−1 + s

γN−1

. (4.101)
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We now consider the case when λp < CN . This leads to γN = γN−1 due to

Theorem 10 and (4.101). Further, due to Lemma 11, we have

∆N = ∆N−1 +DN
∆N−1

(p, t) +RN , (4.102)

where t is the arrival time of p1 at LN , and RN = max(0, s−BN
∆N−1

(p, t)∆N−1)

is the intrusion residual of p1 on pn with respect to WN(p, t). Dividing n− 1 at

both sides of (4.102), we get

GN = GN−1 +
DN

∆N−1
(p, t)

n− 1
+

max
(

0, s−BN
∆N−1

(p, t)∆N−1

)

n− 1
. (4.103)

As n → ∞, the first additive term GN−1 on the right hand side of (4.103)

converges to γN−1 in mean-square sense due to induction hypothesis. The other

two terms converge to 0 in mean-square. The proofs are similar to what showed

in (4.88) and (4.89), and we omit the details. Hence, GN converges to γN = γN−1

in mean square sense:

lim
n→∞

E
[

(GN − γN)2
]

= 0. (4.104)

For the case when λp > CN . Due to Theorem 10, we have

γN =

∑N
k=1 ΨT Γk

Nγk−1 + s

CN

. (4.105)

Further according to Lemma 11, we have

∆N =
Y N

∆N−1
(p, t)∆N−1

CN

+
s

CN

+ ĨN , (4.106)

where t is the arrival time of p1 at LN , Ĩ is the hop idle time of LN during the

interval [t, t+ ∆N ], and can be expressed as

ĨN = max
(

0, BN
∆N−1

(p, t)∆N−1 − s
)

. (4.107)
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Dividing n− 1 at both sides of (4.106), we get

GN =
Y N

∆N−1
(p, t)GN−1

CN

+
s

(n− 1)CN

+
ĨN
n− 1

. (4.108)

The first additive term on the right hand side of (4.108) converges in mean-

square to λpγN−1/CN . We omit the proof details but point out that it requires

the condition that the variance of Y N
δ (p, t) is uniformly bounded by some con-

stant for all δ, which we have justified previously. The second term is deter-

ministic, and its square converges to 0 as n→ ∞. The third term converges to

0 in mean-square as n increases. To prove this, we first show that BN
∆N−1

(p, t)

converges in mean-square to 0. Let P (x) be the distribution function of GN−1,

we have

lim
n→∞

E

[

(

BN
∆N−1

(p, t)
)2
]

= lim
n→∞

∫ ∞

0

E
[

(

BN
(n−1)x(p, t)

)2
]

dP (x)

=

∫ ∞

0

lim
n→∞

E
[

(

BN
(n−1)x(p, t)

)2
]

dP (x), (4.109)

where the interchange between the limit and the integration is valid, because

BN
δ (p, t) is distributed in a finite interval [0, CN ] and its second-order moment

is uniformly bounded by C2
N for all δ. Further, recall that for any x > 0,

lim
n→∞

E
[

(

BN
(n−1)x(p, t)

)2
]

= 0. (4.110)

Combining (4.109) and (4.110), we get

lim
n→∞

E

[

(

BN
∆N−1

(p, t)
)2
]

= 0. (4.111)

Using an argument similar to (4.96) and further recalling (4.107), we can

easily get

lim
n→∞

E





(

ĨN
n− 1

)2


 = 0. (4.112)
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Combining the results for all three additive terms in (4.108), we get the conclu-

sion that when λp > CN , GN converges in mean-square to λpγN−1/CN , which

equals to γN due to (4.101) and Theorem 10. Combining the two cases, we

complete the inductive step and the Theorem follows.

4.4.4 Discussion

Among the assumptions made in this chapter, some are critical in leading to

our results while others are meant to simplify discussions. We point out that

the stationarity assumption can be greatly relaxed without harming our major

results. However, this comes at the expense of more technical derivations. When

cross-traffic arrival is non-stationary, the output dispersion process GN(m) is no

longer an identically distributed random sequence. Consequently, the analysis

of probing response curve can not be simply reduced to the analysis of an

individual output dispersion random variable. Instead, we have to directly

examine the sample-path frequency distribution of the output dispersion process

{GN(m), 1 ≤ m ≤ ∞}. We also have to rely on an ASTA assumption on packet-

train probing as we did in chapter 3, which we have avoided in the stationary

settings of this chapter. We leave as future work the identification of the settings

that best fit the Internet traffic environments.

On the other hand, the mean-square ergodicity plays a central role in the

proofs for Theorem 13, Theorem 14, and Theorem 15. Although in stochas-

tic process theory, ergodicity is always discussed in the context of stationary

process, we can certainly maintain an ergodicity-like condition that is decou-

pled from stationarity. That is, we can assume (4.24), where ψj is just the

long-term arrival rate of flow fj. Such a flow, when observed in a large time-
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intervals, almost has constant arrival rate. We call this type of cross-traffic

flow “asymptotically CRF-like (ACL)”. A simple example of non-stationary

ACL flow is an on-off cross-traffic flow which alternates between two stationary

states. We note that the vast majority of traffic models in stochastic literature

are asymptotically CRF-like and consequently that our results have a broad

applicability in practice.

Next, we provide experimental evidence for our theoretical results using

simulation, testbed experiment, and real Internet measurement data.

4.5 Experimental Verification

To get the response curve, we need to obtain the asymptotic average of the

probing output dispersions. The period testing and trace-driven testing methods

proposed in chapter 3 produce very smooth and accurate curves. Unfortunately,

they only work for single-hop paths. In a multi-hop path, we have to rely on

measurements using a large number of probing samples. Even though this

approach can hardly produce a smooth response curve, the bright side is that

it allows us to observe the output dispersion variance, which is reflected by the

degree of smoothness of the measured response curve.

4.5.1 Testbed Experiments

In our first experiment, we measure in the Emulab testbed [1] the response

curves of a three-hop path with the following configuration matrix (all in mb/s)
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and one-hop persistent cross-traffic routing

H =





96 96 96

20 40 60



 . (4.113)

We generate cross-traffic using three NLANR [2] traces. All the inter-packet

delays in each trace are scaled by a common factor so that the average rate

during the trace interval becomes the desired value. The trace durations after

scaling are 1-2 minutes. We measure the average output dispersions at 100

input rate points, from 1mb/s to 100mb/s with 1mb/s increasing step. For each

input rate, we use 500 packet-trains with packet size 1500 bytes. The packet

train length n is 65. The inter-probing delay is controlled by an exponentially

distributed random variable with sufficiently large mean. The whole experiment

lasts for about 73 minutes. All the three traffic traces are made circulatory and

they are replayed at random starting points once the previous round is finished.

By recycling the same traces in this fashion, we make the cross-traffic last until

the experiment ends without creating periodicity. Note that the packet-trains

are injected with their input rates so arranged that the 500 trains for each input

rate is evenly separated during the whole testing period.

This experiment not only allows us to measure the response curve for n =

65, but also for any packet-train length k such that 2 < k < n = 65, by

simply taking the dispersions of the first k packets in each packet-train. Fig.

4.2(a) shows the rate response curve Z̃(rI , s, n) for k = 2, 3, 5, 9, 17, 33 and 65

respectively. For comparison purposes, we also plot in the figure the multi-hop

fluid curve F̃ (rI) and the single-hop fluid curve S̃(rI) of the tight link L3 . The
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Figure 4.2: Measured response curves using different packet train-length in

Emulab testbed.

rate response curves Z̃(rI , s, n) and S̃(rI) are defined as follows

Z̃(rI , s, n) =
rI

s/E[GN(s/rI , s, n)]
(4.114)

S̃(rI) = max

(

1,
λb + rI

Cb

)

. (4.115)

First note that the multi-hop fluid rate curve comprises four linear segments

separated by turning points 36mb/s, 56mb/s, and 76mb/s. The last two linear

segments have very close slops and they are not easily distinguishable from
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each other in the figure. We also clearly see that the rate curve asymptotically

approaches its fluid lower bound as packet-train length n increases. The curve

for n = 65 almost coincides with the fluid bound. Also note that the smoothness

of the measurement curve reflects the variance of the output dispersion random

variables. As the packet train length increases, the measured curve becomes

smoother, indicating the fact that the variance of the output dispersions is

decaying. These observations are all in agreement with those stated in Theorem

15.

Unlike single-hop response curves, which have no deviation from the fluid

bound when the input rate rI is greater than the link capacity, multi-hop re-

sponse curves usually deviate from its fluid counterpart in the entire input range.

As we see from Fig. 4.2(a), even when the input rate is larger than 96mb/s, the

measured curves still appear above their multi-hop fluid counterpart. We also

see from the figure that the single-hop fluid curve S̃ of the tight link L3 coin-

cides with the multi-hop fluid curve F̃ within the input rate range (0, 56) but

falls below F̃ in the input rate range (56,∞). Consequently, S̃ is only partially

obtainable by probing the multi-hop path P using long packet-trains.

Finally, we explain why we choose the link capacities to be 96mb/s instead

of the fast ethernet capacity 100mb/s. In fact, we did set the link capacity

to be 100mb/s. However, we noticed that the measured curves can not get

arbitrarily close to their fluid bound F̃ computed based on the fast ethernet

capacity. Using pathload to examine the true capacity of each Emulab link, we

found that their IP layer capacities are in fact 96mb/s, not the same as their

nominal value 100mb/s.

In our second experiment, we change the cross-traffic routing to path-

persistent while keeping the path configuration matrix the same as given by
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(4.113). That is,

RT Ψ =











1 1 1

0 1 1

0 0 1











T

×











20

20

20











=











20

40

60











. (4.116)

We repeat the same packet-train probing experiment and the results are

plotted in Fig. 4.2(b). The multi-hop fluid rate curve F̃ still coincides with

S̃ in the input rate range (0, 56). When input rate is larger than 56mb/s, F̃

positively deviates from S̃. However, the amount of deviation is smaller than

that in one-hop persistent routing. The measured curves approach to the fluid

lower bound F̃ with decaying variance as packet-train length increases. For

n = 65, the measured curve becomes hardly distinguishable from F̃ .

We have also conducted experiment with paths of more hops and much

complicated routing pattern and path configuration. Results obtained (not

shown for brevity) all perfectly support our theory. Next, we examine the

impact of probing packet size. Since in practice, packet size is usually limited

by ethernet MTU and can not be more than 1500 bytes. We decide to use ns2

simulation, where packet size can be set to any large value we wish.

4.5.2 Simulation Results

The path settings and cross-traffic used in our simulation are the same as those

in Emulab testbed experiments. However, the link capacities in ns2 simulation

are what they are set to be – 100mb/s. In the first simulation experiment,

cross-traffic routing is one-hop persistent. We use packet-pairs of different sizes

to measure the rate response curves. For each probing packet size, we probe the

path at 45 input rates, from 10 mb/s to 100 mb/s with 2mb/s increasing step.



120

For each input rate, we use 500 packet-pairs to estimate the average output

rate s/E[GN ]. Fig. 4.3(a) plots the rate curves for probing packet sizes 500,

1000, 2000, 4000, and 8000 (all in bytes). We see that as packet-size increases,

the response curve approaches its multi-hop fluid counterpart. This trend is

obvious even though with the largest size used (8,000bytes), the convergence is

still not sufficient in certain input rate range.

In the second simulation experiment, we change the cross-traffic routing to

path-persistent while keep all other factors the same. The rate curves associated

with the five different probing packet sizes are plotted in Fig. 4.3(b), where we

see the same convergence pattern even though the multi-hop fluid curve becomes

different.

4.5.3 Real Internet Measurements

We conducted packet-train probing experiments on several Internet paths in

RON testbed to verify our analysis on real networks. Since neither the path

configuration nor the cross-traffic routing information is available for those In-

ternet paths, we are unable to provide the fluid bounds. Therefore, we verify

our theory by observing the convergence of the measured curves to a piece-wise

linear curve as packet-train length increases.

In the first experiment, we measure the rate response curve of the path from

the RON node lulea at Sweden to the RON node at CMU. The path has 19 hops

and a fast-ethernet bottleneck, as we find out using traceroute and pathrate.

We probe the path at 29 different input rates, from 10mb/s to 150mb/s with a

5mb/s increasing step. For each input rate, we use 200 packet-trains of 33-packet

length to estimate the output probing rate s/E[GN ]. The whole experiment
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Figure 4.3: Measured response curves using different packet sizes in ns2 simu-

lation.

took about 24 minutes. Again, the 200 packet-trains for each of the 29 input

rates are so arranged that they are approximately evenly separated during the

24-minute testing period. The measured rate response curves associated with

packet-train length 2, 3, 5, 9, 17, and 33 are plotted in Fig. 4.4(a), where we see

that the response curve approaches a piece-wise linear bound as packet-train

length increases. At the same time, response curves measured using long trains

are smoother than those measured using short trains, indicating the decaying
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variance of output dispersions. In this experiment, the curve measured using

probing trains of 33-packet length exhibits sufficient smoothness and clear piece-

wise linearity. We only observed two linear segments from the figure, possibly

because the other linear segments are located outside the input rate range we

measured.

Based on (4.20), we apply linear regression on the second linear segment to

compute the capacity Cb and the cross-traffic intensity λb at the bottleneck link

and get Cb = 96mb/s and λb = 2mb/s. Using these results, we retroactively plot

the single-hop fluid bounds and observe that it almost overlaps with the mea-

sured curve using packet-trains of 33-packet length. Notice that the bottleneck

link is under very light utilization during our 24-minute measurement period.

We can infer based on our measurement that the available bandwidth of the

path is constrained mainly by the capacity of the bottleneck link and that the

probing packet-trains have undergone significant interaction with cross-traffic at

non-bottleneck links. Otherwise, according to Theorem 3, the response curves

measured using short train lengths would not have appeared above the single-

hop fluid bound when input rate is larger than the tight link capacity 96mb/s.

We believe that the tight link of the path is one of the last-mile lightly uti-

lized fast-ethernet links and that the backbone links are transmitting significant

amount of cross-traffic even though they still have available bandwidth much

more than the fast-ethernet capacity. Also notice that similar to our testbed

experiments, fast-ethernet links only have 96mb/s IP-layer capacity.

We repeat the same experiment on another path from RON node pwh at

Sunnyvale California to NYU RON node. This path has 13 hops and fast-

ethernet bottleneck capacity. Due to substantial cross-traffic burstiness along

the path, we use packet-trains of 129-packet length in our probing experiment.
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Figure 4.4: Measured response curves of two Internet paths in RON testbed .

The other parameters such as the input rates and the number of trains used for

each rate are all the same as in the previous experiment. The whole measure-

ment duration is about 20 minutes. The measured response curves are plotted

in Fig. 4.4(b). As we see, the results exhibit more measurement variability

compared to the lulea→CMU path. However, as packet-train length increases,

the variability is gradually smoothed out and the response curve converges to a

piece-wise linear bound. We again apply linear regression on the response curve

for 129 train length to obtain tight link information. We get Cb = 80mb/s
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and λb = 3mb/s, which does not agree with pathrate. We believe that it is

because there are links along the path with very similar available bandwidth.

Consequently, the second linear segment become too short to detect. The linear

segment we are acting linear regression upon is probably a later one, whose con-

gestible hop set includes several links. This experiment confirms our analysis,

at the same time shows some of the potential difficulties in exacting tight link

information from the response curves.

4.6 Implications

We now discuss the implications of our results on existing measurement tech-

niques. Except for pathChirp, all other techniques such as TOPP, pathload,

PTR, and Spruce are related to our analysis.

4.6.1 TOPP

TOPP is based on multi-hop fluid rate response curve F̃ with one-hop persistent

cross-traffic routing. TOPP uses packet-pairs to measure the real rate response

curve Z̃, and assumes that the measured curve will be the same as F̃ when

large number of packet-pairs are used. However, our analysis shows that the

real curve Z̃ is different from F̃ , especially when packet-trains of short length

are used (e.g., packet-pairs). Note that there is not much path information in Z̃

that is readily extractable unless it is sufficiently close to its fluid counterpart F̃ .

Hence, to put TOPP to work in practice, one must use long packet-trains instead

of packet-pairs. We also point out that when the fluid curve F̃ is obtained with

decent precision, we might be able to extract from F̃ the capacity information

Cb and the cross-traffic intensity information λb of the tight link. However,
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Figure 4.5: Illustration of two types of curve deviations.

it is unlikely to extract such information for non-bottleneck links due to their

dependence on cross-traffic routing and practical difficulties in linear segment

detection.

4.6.2 Spruce

Using our notations system , we can write spruce’s available bandwidth estima-

tor as follows

Cb

(

1 − GN(s/Cb, s, n) − s/Cb

s/Cb

)

, (4.117)

where the probing packet size s is set to 1500bytes, the packet-train length

n = 2, and the bottleneck link capacity Cb is assumed known.

It is showed in chapter 3 that spruce estimator is unbiased in single-hop

paths regardless of the packet-train parameters s and n. This means that the

statistical mean of (4.117) is equal to AP for any s > 0 and any n ≥ 2. Next,

we derive a necessary condition for this unbiasedness property to hold in a
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multi-hop path P. Note that

E

[

Cb

(

1 − GN(s/Cb, s, n) − s/Cb

s/Cb

)]

= Cb

(

2 − Z̃(Cb, s, n)
)

, (4.118)

where Z̃(Cb, s, n) is the rate response of path P at input rate Cb with packet-

train parameters s and n. Unbiasedness property of spruce estimator is satisfied

only when

Cb(2 − Z̃(Cb, s, n)) = AP = Cb − λb, (4.119)

which is equivalent to the following condition

Z̃(Cb, s, n) =
λb + Cb

Cb

= S̃(Cb). (4.120)

This means that at the input rate point Cb, the real rate response of path P

must be equal to the single-hop fluid rate response at the tight link of P.

This condition is usually not satisfied. Instead, due to Theorem 11 and

Property 4, we have

Z̃(Cb, s, n) ≥ F̃ (Cb) ≥ S̃(Cb). (4.121)

Combining (4.121) and (4.118), we see that (4.117) is a negatively biased esti-

mator of AP . The amount of bias is given by

Cb

(

Z̃(Cb, s, n) − S̃(Cb)
)

(4.122)

= Cb

(

Z̃(Cb, s, n) − F̃ (Cb)
)

+ Cb

(

F̃ (Cb) − S̃(Cb)
)

.

The first additive term in (4.122) is the measurement bias caused by the curve

deviation of Z̃ from F̃ at input rate Cb, which vanishes as n → ∞ due to

Theorem 15. Hence we call it “elastic bias”. The second additive term is the

portion of measurement bias caused by the curve deviation of F̃ from S̃ at

input rate Cb, which remains constant with respect to packet-train parameters
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s and n. Therefore it is “non-elastic bias”. We illustrate the two types of curve

deviations in Fig. 4.5. Note that when Cb < s/α2, non-elastic bias is 0. Further

recall that s/α2 ≥ Ab2 as stated in Property 3. Hence, a sufficient condition for

zero“non-elastic” bias is Cb ≤ Ab2. Conceptually, elastic deviation stems from

cross-traffic burstiness and non-elastic deviation is a consequence of “multi-hop”

effect.

In Table 4.2, we give the amount measurement bias caused by the two types

of curve deviations in both the Emulab testbed experiments and real Internet

probing measurements on the path from lulea to CMU. Note that in the testbed

experiment using a 3-hop path with one-hop persistent routing, spruce suffers

about 74mb/s measurement bias, which is twice as much as the actual path

available bandwidth 36mb/s. In the second Emulab experiment using path-

persistent cross-traffic, the measurement bias is drastically reduced to 38.8mb/s,

which however is still more than the actual available bandwidth. In both cases,

spruce estimator converges to negative values. We use spruce to estimate the two

paths and it does give 0mb/s results in both cases. For the Internet path from

lulea to CMU, spruce suffers 24mb/s negative bias and produces a measurement

result less than 70mb/s, while the real value is around 94mb/s. We also use

pathload to measure the three paths and it produces pretty accurate results.

The way to reduce elastic-bias is to use long packet-trains instead of packet-

pairs. In the lulea→CMU experiment, using packet-trains of 33-packet, spruce

can almost completely overcome the 24mb/s bias and produce an accurate re-

sult. However, there are two problems of using long packet-trains. First, there is

not a deterministic train length that guarantees negligible measurement bias on

any network path. Second, when router buffer space is limited and packet-train

length are too large, the later probing packets in each train may experience
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experiment elastic bias non-elastic bias total bias

Emulab-1 0.56 × 96 0.315 × 96 74.4

Emulab-2 0.28 × 96 0.125 × 96 38.8

lulea-cmu 0.25 × 96 0 24

Table 4.2: Spurce bias in Emulab and Internet experiment (in mb/s).

frequent loss, making it impossible to accurately measure F̃ (Cb). After all,

spruce uses input rate Cb, which can be too high for the bottleneck router to

accommodate long packet-trains. On the other hand, note that non-elastic bias

is an inherit problem for spruce. There is no way to overcome it by adjusting

packet-train parameters.

4.6.3 PTR and pathload

PTR searches the first “turning point” in the response curve Z̃(rI , s, n) and takes

the input rate of the turning point as the path available bandwidth AP . This

method can produce accurate result when the real response curve Z̃ is close to

F̃ , which requires packet-train length n be sufficiently large. Otherwise, PTR is

also negative biased and produces underestimation ofAP . The minimum packet-

train length needed is dependent on the path conditions. The current version of

PTR use packet train length n = 60, which can produce pretty accurate results

for the paths experimented in this chapter.

Pathload is in spirit similar to PTR. However, it searches the available band-

width region by detecting the one-way-delay increasing trend within a packet-

train, which is different from examining wether the rate response Z̃(rI , s, n) is

greater than one [19]. However, since there is a strong statistical correlation
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between a high rate response Z̃(rI , s, n) and the one-way-delay increasing tend

within packet-trains, our analysis can explain the behavior of pathload to a

certain extent. It is reported in [18] that pathload underestimates available

bandwidth when there are multiple tight links along the path. This is because

in the input rate range (0, AP), the deviation of Z̃(rI , s, n) from F̃ is maximized

when non-bottleneck links have the same available bandwidth as AP , given

that the other factors are kept the same. It is our new observation that by fur-

ther increasing the packet-train length, the underestimation can be mitigated

in pathload.

Our analysis sheds new light on the essence of available bandwidth. Even

through multiple tight links cause one-way-delay increasing trend for packet-

trains with input rate less than AP , this is not an indication that the network

can not sustain such an input rate. Rather, the increasing trend is a transient

phenomenon resulting from “probing intrusion residual”, and it disappears when

the input packet-train is sufficiently long. The concept of path available band-

width has an intrinsic nature regardless of path configuration. It is the largest

long-term input rate the network can sustain without causing steady one-way-

delay increasing.

4.7 Conclusion

In this chapter, we provide a theoretical understanding of packet-train band-

width estimation in a multi-hop path with arbitrarily routed cross-traffic flows.

Our main contributions includes the derivation for both the multi-hop fluid re-

sponse curve and the real response curve, an investigation of the convergence

properties of the real response curve with respect to packet-train parameters,
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and the implications of our analysis outcomes on existing techniques.

We leave as future work the investigation of new approaches that help detect

and eliminate the measurement bias caused by bursty cross-traffic in multi-hop

paths.
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Chapter 5

Summary

In this chapter, we briefly summarize the main results of this thesis and present

several potential applications of our analysis. We then point out our future

research directions.

5.1 Main Results

Among all results we obtained in this dissertation, Theorem 10, Theorem 4,

and Theorem 15 are of the most practical relevance. Existing measurement

techniques are mostly based on the single-hop fluid response curve. The validity

of this foundation is that in certain input probing range, the single-hop fluid

response curve is a lower bound of the real response curve, approachable when

packet-train length is sufficiently large. On the other hand, the inadequacy of

existing techniques comes from the lack of understanding for the significance of

both the packet-train length and the input probing rate.
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5.2 Practical Applications

Our analysis outcomes have several important practical applications, which we

briefly discuss in the following.

The first application of our theory is that it suggests a well-grounded

methodology to measure several characteristics of the available bandwidth bot-

tleneck link such as its capacity and utilization. Previous work either measure

path available bandwidth without any knowledge of the bottleneck capacity, or

assume it is the same as the narrow link capacity, which can be measured using

capacity estimation tools. The capacity information about the bottleneck link is

very useful. It tells weather the path available bandwidth is mainly constrained

by the link capacity (when utilization is low) or it is constrained by the heavy

utilization. This is especially useful for network managers to conduct effective

capacity planning.

Being able to measure tight link capacity also allows us to verify the previous

assumption that the tight link is also the narrow link. Several techniques, such

as IGI [15], Spruce [38], and Delphi [36] rely on this assumption to conduct

measurements. Therefore, a verification of this assumption is important in that

it determines the applicability of these tools in real Internet environments.

A second application of our multi-hop theory is to locate the bottleneck

link using packet-train probing. By collecting the output dispersion random

variable Gi(gI , s, n) at each link1, we can compute the available bandwidth for

each path prefix, consequently locating the link that constrains path available

bandwidth. There are several proposals for bottleneck localization [14], [43],

however, they are all based on fluid analysis. Our multi-hop theory can help

1This can be done using the approach in [14].
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improve the accuracy of current bottleneck localization tools.

5.3 Future Work

There are several research directions we are interested in pursuing in our future

work.

In the single-hop analysis, we made two stability assumptions on cross-traffic

arrival and most of our results rely on PASTA sampling. In the multi-hop

analysis, we assumed stationary increments on cross-traffic arrival, consequently

the output dispersion process {GN(m)} has time-invariant distribution. The

results obtained therein requires no conditions on inter-probing pattern. The

cross-traffic assumptions made in multi-hop analysis is stronger than the ones in

single-hop analysis. It still remains as an open problem which assumptions are

best suited for Internet cross-traffic environment. Understanding the statistical

structure of the output dispersion process in the current Internet is important

in the design of inter-probing pattern in bandwidth measurement techniques.

We are interested in exploring the answer to this problem through extensive

real measurements in a near future.

In the single-hop analysis, we proposed a method called “trace-driven test-

ing” that can compute the single-hop response curve with high accuracy. The

computed curves are smooth and monotonic. In multi-hop analysis, we relied on

experimental measurement of the real response curves. The measured curves

exhibit substantial variations and less accuracy. We are interested in finding

new ways of computing the multi-hop response curves with more accuracy and

smoothness, especially for short probing packet-trains.

We proved that the response curves approach the fluid bound as packet-
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train length increases. An interesting problem is to investigate the speed of

this convergence and its deciding factors. In the single-hop analysis, we find in

experiments that the convergence can be accurately modeled using a power-law

function of the packet-train length. We are interested in extending this result to

multi-hop path and find better justification for this phenomenon. Understand-

ing the convergence pattern allows us to infer the fluid bound based on several

response curves associated with short packet-train lengths and to avoid using

excessively long packet-trains to overcome measurement bias.
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Appendix A

Remarks on Cross-Traffic

Stationarity

Cross-traffic is stationary if the cumulative traffic arrival process {V (t)} has

stationary increments, which also implies that the δ-interval cross-traffic inten-

sity process {Yδ(t)} is a stationary process for all δ > 0. Assuming ergodicity,

stationary traffic arrival leads to the intensity stability assumption made chap-

ter 3. It is also well established that stationary traffic arrival, when its long

term rate λ is less than the hop capacity C, leads to hop workload stability [29].

Hence, the results in chapter 3 are applicable to stationary cross-traffic. In our

experiment, the two cross-traffic PCS and PUS are stationary cross-traffic.

Note that, however, a lot of traffic types that are suited for stochastic mod-

eling are non-stationary. On/off traffic is one such example, which belongs

to regenerative traffic and often is at most asymptotically stationary. More

examples include time dependent Poisson traffic, transition-modulated traffic,

and even most of the renewal traffic. By avoiding stationarity assumption, our

conclusions are applicable to virtually arbitrary cross-traffic that can be stochas-
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tically modeled. The two stability assumptions are also arguably the weakest

conditions of cross-traffic measurability.



137

Appendix B

Workload Stability of the Four

Traces

We show that the four traffic traces used in the chapter 3 all lead to hop workload

stability. We omit CBR due to its triviality. For PCS, PUS, and POF, we first

apply queuing theory to calculate their hop workload time averages. We then

prove that the existence of workload time average implies workload stability.

We use γ to denote the average cross-traffic arrival rate in packet per second,

dn to denote the packet-delay sample-path, Sn to denote the packet service time

sample-path. The following is a basic result in queueing theory [42, pages 279]:

E[W (t)] = γE[Sn]E[dn] + γE[S2
n]/2. (B.1)

We now apply (B.1) to calculate the workload sample-path time-average for

PCS, PUS, and POF. First note that γ = 500 packets/sec for all three traffic

traces.

In PCS, since packet size is constantly 750 bytes, the sample-path mean of

packet service time is E[Sn] = 6 × 10−4s and E[S2
n] = 3.6 × 10−7s2. Further
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note that due to PASTA, E[W (t)] = E[dn]. Hence, we have:

E[W (t)] = 500 × 6 × 10−4 × E[W (t)] + 500 × 3.6 × 10−7/2. (B.2)

Compute E[W (t)] from (B.2), we get E[W (t)] = 128.57µ s.

In PUS, since packet size is uniformly distributed in [1, 1500] bytes, the

sample-path mean of packet service time is E[Sn] = 6 × 10−4s. The second

moment of packet service time is E[S2
n] = 4.8 × 10−7s2. Further note that due

to PASTA, E[W (t)] = E[dn]. Hence, we have:

E[W (t)] = 500 × 0.0006 × E[W (t)] + 500 × 4.8 × 10−7/2. (B.3)

Compute E[W (t)] from (B.3), we get E[W (t)] = 171.43µ s.

In POF, since packet size is constantly 750 bytes, the sample-path mean of

packet service time is E[Sn] = 6× 10−4s. The second moment of packet service

time is E[S2
n] = 3.6 × 10−7s2. Further note that in POF, all packets come see

empty queue. Thus, E[dn] = 0 and we have:

E[W (t)] = 500 × 3.6 × 10−7/2 = 90µs. (B.4)

We plot the average workload function W(t) =
∫ t

0
W (u)du/t for the three

cross-traffic traces in Figure B.1. It is clear that the plot agrees with queuing

theoretic computation.

Theorem 16 If limt→∞W(t) exists and is finite, then ∃t0, for ∀t > t0, W (t) <
√
t.

Proof: Let

lim
t→∞

W(t) = lim
t→∞

∫ t

0
W (u)du

t
= k. (B.5)
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Figure B.1: Average hop workload W(t) for PCS, PUS, and POF.

Suppose theorem 16 does not hold, then there exists an infinite series {tn},

such that limn→∞ tn = ∞ and W (tn) ≥ √
tn for ∀n. Due to basic real analysis

theorem,

lim
n→∞

∫ tn+
√

tn
0

W (u)du

tn +
√
tn

= k. (B.6)

However, due to the sample-path properties of W (t),
∫ tn+

√
tn

0

W (u)du ≥
∫ tn

0

W (u)du+
tn
2
. (B.7)

Thus, we have

lim
n→∞

∫ tn+
√

tn
0

W (u)du

tn +
√
tn

≥ lim
n→∞

(

∫ tn
0
W (u)du

tn +
√
tn

+
tn

2(tn +
√
tn)

)

= k +
1

2
. (B.8)

The contradiction proves this theorem.

Theorem 16 shows that when workload sample-path has a finite limiting

time average, then it is asymptotically bounded by
√
t. This immediately leads
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to the following:

lim
t→∞

W (t)

t
= 0. (B.9)
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