
C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1

On Efficient External-Memory
Triangle Listing
On Efficient ExternalOn Efficient External--Memory Memory
Triangle ListingTriangle Listing

Yi Cui,Yi Cui, Di Xiao, and Dmitri LoguinovDi Xiao, and Dmitri Loguinov

Internet Research Lab (IRL)Internet Research Lab (IRL)
Department of Computer Science and EngineeringDepartment of Computer Science and Engineering
Texas A&M University, College Station, TX, USA 77843Texas A&M University, College Station, TX, USA 77843
December 13, 2016December 13, 2016

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2

AgendaAgendaAgenda

• Introduction

• Background

• Analysis

• Pruned Companion Files

• Implementation

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

3

IntroductionIntroductionIntroduction
• Given a simple undirected graph G

= (V, E), list all

triangles ∆ijk

such that i,j,k

∈ V

and (i,j),(j,k),(i,k)

∈E

• Triangle listing has many important applications
━

Network analysis: clustering coefficient, transitivity
━

Web/social networks: spam/community detection
━

Graphics, databases, bioinformatics, theory of computing

• It may seem like a simple problem at first glance;
however, there are many open issues
━

Modeling CPU cost under different acyclic orientations,
choosing the best search order, understanding I/O
complexity, and designing faster algorithms

━

Our goal here is to address some of these questions

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

4

AgendaAgendaAgenda

• Introduction

• Background

• Analysis

• Pruned Companion Files

• Implementation

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

5

BackgroundBackgroundBackground
• There are 3! = 6 ways to list each triangle ∆ijk

━

Doing so involves redundant computation and requires
additional effort for duplicate elimination

━

Worse yet, complexity is a function of the second moment of
undirected degree

• Significantly better results are possible by converting
the graph into a directed version and checking each
possible triangle exactly once
━

Second moments of directed degree are much smaller
━

CPU cost improves not just by 6x, but often by orders of
magnitude (e.g., 1000x on Twitter)

• Suppose G

has n

nodes and m

edges

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

6

BackgroundBackgroundBackground

• All prior work on creation of directed graphs can be
unified by a two-step process
━

Relabeling: Shuffle nodes with some permutation θ, then
sequentially label nodes from 1

to n

━

Acyclic orientation: Direct edges from nodes with larger labels
to those with smaller

• There are a total of n! possible permutations of nodes

• Well-known orientations
━

Ascending (A) / Descending (D) degree
━

Round-Robin (RR) / Complementary Round-Robin (CRR)
━

See the paper for details

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

7

AgendaAgendaAgenda

• Introduction

• Background

• Analysis

• Pruned Companion Files

• Implementation

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

8

Search Order AnalysisSearch Order AnalysisSearch Order Analysis
• Suppose the search starts with i,

continues to j, and finishes with k
━

But how to choose the relationship between these nodes?

• There are six search orders in oriented graphs
━

For example: i > j > k

starts from the
largest node, continues to the middle node,
and finishes with the smallest

━

Some search orders visit only in-neighbors, some only out-
neighbors, and others do both

• Interestingly, the search order coupled with
permutation θ

greatly affects CPU and I/O complexity!

━

Not formally observed or studied before

i

j

k

i

j

k

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

9

Generalized Iterators (GI)Generalized Iterators (GI)Generalized Iterators (GI)

• To study this further, we propose a framework of 18
triangle-search techniques that subsumes all previous
methods

• Generalized Vertex Iterator (GVI)
━

Methods T1 -T6

• Generalized Lookup Edge Iterator (GLEI)
━

Methods L1 -L6

• Generalized Scanning Edge Iterator (GSEI)
━

Methods E1 -E6

• The first two rely on hash tables, the last one on
sequential intersection of neighbor lists

i

j

k

?

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

10

Comparison ObjectivesComparison ObjectivesComparison Objectives

• Triangle listing has four performance metrics
━

CPU cost (# of hash table lookups for GVI, GLEI and
intersection length for GSEI)

━

Amount of sequential I/O (our focus today)
━

Auxiliary hash table lookups (see the paper)
━

Minimum RAM that the method supports (see the paper)

• The CPU cost is modeled in our PODS 2017 paper
━

Among the 18 methods, only 4 have non-equivalent CPU cost

• But what about I/O?
━

Can all 18 methods be
implemented in a single
algorithm? How many I/O-equivalence classes are there?
Which method is best? Under what permutation?

T1
L2

T6 -L6

L1
T2

E1
E2

E6

θD θRR θD θCRR
optimal permutations

for CPU cost

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

11

Does Orientation Affect I/O?Does Orientation Affect I/O?Does Orientation Affect I/O?

• MGT [Hu SIGMOD13]
━

Load the graph in chunks of memory size (one edge), scan
the entire G

to pick up the remaining two edges

━

Assuming RAM size M, MGT reads m2/M edges from disk

• Pagh [Pagh PODS14]
━

Randomly color nodes with colors and partition
edges into c2

subgraphs; run MGT over c3

triples of subgraphs
for a total I/O of 9m1.5/M

• Neither method depends on acyclic orientation and
thus search order; however, can we do better?
━

We know orientation reduces CPU cost, can it help with I/O?
━

We consider this novel idea below

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

12

AgendaAgendaAgenda

• Introduction

• Background

• Analysis

• Pruned Companion Files

• Implementation

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

13

Pruned Companion Files (PCF)Pruned Companion Files (PCF)Pruned Companion Files (PCF)

• Our framework for external-memory triangle listing
━

Two steps: graph partitioning and creation of companion files
━

Due to random lookups, edge (j,k) must be loaded in RAM;
however, the other two edges of each triangle can be
scanned from the corresponding companion file

• Partitioning
━

Split V

into p

exhaustive, pair-wise non-overlapping sets V1

,
V2

, …, Vp
━

Partition G

into subgraphs G1

, G2

, …, Gp

, where Gl

has all
edges with either k

(PCF-A) or j

(PCF-B) in Vl

• The paper shows that PCF-A produces different I/O
from PCF-B, provides algorithms for deterministically
load-balancing partitions (omitted here)

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

14

Pruned Companion Files (PCF)Pruned Companion Files (PCF)Pruned Companion Files (PCF)
• For each Gl

, we create a companion file Cl

that
contains the missing edges
━

The paper covers all 18 methods in one simple algorithm
━

Extra care is taken to minimize the size of Cl

• Theorem 1: For all p

≥

1, PCF finds each triangle

exactly once and its CPU cost remains constant

j

k

i

j

k

i

j

k

i

j

RAM

DISK

i

j

k

i
k

Type-1 Type-2 Type-3

Gl

Cl

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

15

Pruned Companion Files (PCF)Pruned Companion Files (PCF)Pruned Companion Files (PCF)

• When combining CPU cost and I/O, we find 16
algorithms (PCF-A/B for each of the 8 CPU classes)
━

Each cell is different from
every other

• Findings
━

As it turns out, E1 has
better I/O than E2 !

━

Only two methods
(T1 and E1) require the
same θ

to achieve optimal CPU cost and I/O

━

T1 and E1 are winners in their categories
━

PCF-B outperforms PCF-A, achieves minimal number of
auxiliary lookups, and lowest RAM usage

T1
L2

T6 -L6

L1
T2

E1
E2

E6

θD θRR θD θCRR
optimal permutations

for CPU cost

θD
θRR
θA

optimal permutations
for I/O

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

16

Scaling Rate of I/OScaling Rate of I/OScaling Rate of I/O

• Theorem 2: Under PCF-B and mild constraints on
degree, both T1 and E1 have linear I/O for all M

• In contrast, prior work requires M to scale at least as
fast as m

for this to happen

━

Consider Twitter as an illustration (9.3 GB, 1.2B edges)
━

For M

= 1

MB, PCF shows a 75x improvement over MGT

and 10x over Pagh

RAM (MB)
1024 512 256 128 64 32 16 8 4 2 1

MGT 5.39 10.77 21.55 43.10 86.19 172.4 344.8 689.5 1379 2758 5516
Pagh 22.91 32.39 45.81 64.79 91.63 129.6 183.3 259.2 366.5 518.3 733.0
PCF 1.48 2.75 4.76 7.64 11.67 17.17 24.52 33.97 45.56 58.90 73.11

I/O (billion edges) vs. RAM in Twitter (1.2B edges)

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

17

AgendaAgendaAgenda

• Introduction

• Background

• Analysis

• Pruned Companion Files

• Implementation

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

18

ImplementationImplementationImplementation

• Besides cost, we consider the speed of operations
━

Hash table lookups for GVI/GLEI and intersection for GSEI
━

We dismiss GLEI as it is always inferior to GVI

• The optimal choice boils down to T1 vs E1
━

They have the same I/O, but CPU cost differs
━

T1 has fewer operations, but they are inherently slower
━

Google hash table: 19M/sec
━

Naive scalar intersection: 264M/sec (14x faster)

• In real-world graphs, E1 has only 2-3x more CPU cost
━

However, our PODS 2017 paper shows existence of graphs
where the cost ratio goes unbounded as n

→∞, i.e., T1 is

always faster in the limit

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

19

ImplementationImplementationImplementation

• PaCiFier: Our implementation of E1 under PCF-B
━

Efficient preprocessing (i.e., relabeling and orientation)
━

Intersection with SIMD (Single Instruction Multiple Data)
━

Compressed labels to 16 bits for faster intersection

━

Multi-core parallelization
━

CPU and I/O parallelization

Speed (M/sec)

Branchless intersection 416

SIMD 32-bit intersection 1,119

SIMD 16-bit intersection 1,801

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

20

AgendaAgendaAgenda

• Introduction

• Background

• Analysis

• Pruned Companion Files

• Implementation

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

21

ExperimentsExperimentsExperiments

• Setup: six-core Intel i7-3930K 4.4 GHz, 8 GB RAM

• PaCiFier’s preprocessing is over 2x faster than the
closest competitor (see the paper)

• Compare to the fastest vertex iterator (MGT) and the
fastest edge iterator (PDTL from [Giechaskiel ICPP15])
━

PaCiFier is 14-79x faster than MGT and 5-10x than PDTL
Graph Nodes Edges Triangle Size (GB) MGT PDTL PaCiFier

WebUK 62.3M 1.9B 179.1B 7.5 599 94 17

Twitter 41.7M 2.4B 34.8B 9.3 2,238 327 63

Yahoo 720.2M 12.9B 85.8B 53.3 1,080 619 79

IRL-domain 86.5M 3.4B 112.8B 13.3 5,946 849 148

IRL-host 642.0M 12.9B 437.4B 52.7 11,099 1,773 367

IRL-IP 1.6M 1.6B 1.0T 6.1 18,617 2,358 237

ClueWeb 8.2B 102.4B 879.3B 358 failed 13,782 1,737

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

22

ExperimentsExperimentsExperiments

• PaCiFier requires 195x less I/O than MapReduce
methods, 35-65x less than MGT (M=256

MB)

• In ClueWeb with M =256

MB, estimated time to finish

I/O

Graph RAM (MB) GP TTP MGT PaCiFier
Yahoo
(in GB)

4,096 3,271 1,599 178 48

1,024 7,632 3,198 710 65

256 16,408 6,663 2,841 84

ClueWeb
(in TB)

4,096 68 28 8 0.9

1,024 142 56 31 1.4

256 291 114 125 1.9

I/O Device MGT PaCiFier
1 GB/sec RAID 35 hrs 32 min
100 MB/sec HDD > 2 weeks 5.3 hrs

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

23

Thank you!
Any questions?

Contact: yicui@cse.tamu.edu

	On Efficient External-Memory Triangle Listing
	Agenda
	Introduction
	Agenda
	Background
	Background
	Agenda
	Search Order Analysis
	Generalized Iterators (GI)
	Comparison Objectives
	Does Orientation Affect I/O?
	Agenda
	Pruned Companion Files (PCF)
	Pruned Companion Files (PCF)
	Pruned Companion Files (PCF)
	Scaling Rate of I/O
	Agenda
	Implementation
	Implementation
	Agenda
	Experiments
	Experiments
	Slide Number 23

