Improving I/O Complexity of Triangle Enumeration

Yi Cui, Di Xiao, Daren B.H. Cline, and Dmitri Loguinov

Internet Research Lab (IRL)
Department of Computer Science and Engineering
Texas A&M University, College Station, TX, USA 77843
November 20, 2017
Agenda

- Introduction
- Background
- Analysis of Previous Work
 - Pagh and Pruned Companion Files (PCF)
 - Comparison
- Trigon
- Experiments
Introduction

• Problem definition: Given a simple undirected graph $G = (V, E)$ with m edges and n nodes, find all three-node tuples (u, v, w), such that there exists an edge between any two of them.

• Triangles are important in data mining
 – Clustering coefficient, graphics, databases
 – Spam/community detection, theory of complexity

• Challenges: With the explosion of big data, modern graphs normally do not fit in memory
 – Google web graphs consist of trillions of edges
 – Facebook maintains social networks of billions of users
Agenda

• Introduction
• Background
• Analysis of Previous Work
 – Pagh and Pruned Companion Files (PCF)
 – Comparison
• Trigon
• Experiments
Background

- There are $3! = 6$ ways to list each triangle according to different orders of its three nodes.
- To avoid duplicates and improve efficiency, preprocessing is required to convert the input graph into a directed version:
 - **Relabeling**: Shuffle nodes with some permutation, then sequentially label nodes from 1 to n.
 - **Acyclic orientation**: Direct edges from nodes with larger labels to those with smaller.
 - Neighbors of each node are split into out-neighbors with smaller labels than source and in-neighbors with larger labels, and the graph is split into out-graph and in-graph.
Background

• Given n nodes, there exist $n!$ different permutations, which can split neighbor lists in different ways.
 - Which ones achieve optimal triangle-listing cost?

• Our previous studies [Cui16], [Xiao17] reveal 18 triangle-enumeration methods and model their in-memory cost under optimal permutations.
 - Descending-degree permutation with edge-iterator E_1 is identified as the best in-memory solution.
 - See paper for details.

• This work assumes usage of E_1 and focuses on I/O performance.
Agenda

• Introduction
• Background
• Analysis of previous work
 – Pagh and Pruned Companion Files (PCF)
 – Comparison
• Trigon
• Experiments
Analysis of Previous Work

- A majority of previous work, e.g., MGT [Hu13] and its successors, assumes a simple I/O model:
 - Given memory size M, in each iteration, load a size M chunk of the graph into memory, scan the rest from disk
 - Requires quadratic I/O complexity m^2/M
 - Does not scale well for large graphs

- More recent work proposes two methods that achieve much better I/O than quadratic
 - Pagh (PODS 2014)
 - Pruned Companion Files (PCF, ICDM 2016)
Pagh

- Pagh *randomly* colors nodes with c colors
 - Creates c partitions of nodes and c^2 partitions of edges
- To detect all triangles, the method must consider all c^3 different combination of colors
- Since Pagh does not have a reference implementation, we develop our version that works with E_1 and oriented graphs
 - We call this method Pagh+ since it achieves the best I/O constants in the literature, i.e., $2m^{1.5}/\sqrt{M}$
- Always better than MGT, but some drawbacks exist
 - Requires special handling and complex algorithms for large-degree nodes (e.g., in star graphs)
Pruned Companion Files (PCF)

- PCF splits nodes \(\textit{sequentially} \) into \(p \) mutually exclusive and jointly exhaustive subsets \(V_1, \ldots, V_p \)
 - Edges are then partitioned by either destination (PCF-A) or source (PCF-B) nodes
 - PCF achieves deterministic load-balancing and requires \(p = m/M \) partitions

- A special \textit{companion file} is created for each subgraph, which is scanned sequentially from disk
 - The size of all companion files determines the amount of I/O
 - The paper goes into extensive modeling of PCF I/O under its optimal permutation and different scaling rates of RAM size, average degree, and variance of out-degree as \(n \to \infty \)
 - See the paper as the model is quite complex
Agenda

• Introduction
• Background
• Analysis of previous work
 – Pagh and Pruned Companion Files (PCF)
 – Comparison
• Trigon
• Experiments
Comparison

• Our comparison shows that neither Pagh+ nor PCF is asymptotically better than the other
 - PCF has less I/O if the graph is sparse, out-degree variance is small, or graph size is large compared to memory
 - Pagh is better when the conditions are reversed
 - Each method can beat the other by \sqrt{n}

Sparse graphs with constant average degree

Dense graphs with average degree $n^{0.5}$

Model predicts Pagh+ is worse by $n^{0.25}$

Model predicts PCF is worse by $n^{3/8}$
Comparison

• An ideal method should combine the strengths of Pagh+ and PCF, i.e.,
 – Prevent redundant edges from being loaded into RAM
 – Split each neighbor list into at most \sqrt{p} files
 – Use sequential ranges to decide partitioning
 – Deterministically load-balance subgraphs
 – Be able to operate with $O(1)$ memory
 – Handle special cases (e.g., star graphs) without additional workarounds

• By doing so, it should also beat both previous methods in terms of I/O
 – We next offer such an approach
Agenda

• Introduction
• Background
• Analysis of Previous Work
 – Pagh and Pruned Companion Files (PCF)
 – Comparison
• Trigon
• Experiments
Trigon

- **Idea**: apply 2D sequential partitioning with c_1 primary colors along destinations nodes and c_2 secondary colors along source nodes.

- Because of orientation, only the bottom half of the matrix is split.
 - Each partition can be a rectangle, triangle, or trapezoid in the picture.

- This creates $c_1c_2 = p$ subgraphs.
 - The paper shows how to achieve deterministic load-balancing.
 - Similar to PCF, a companion file is created for each subgraph.
 - A model is derived for the size of companion files.
Trigon

- With $c_1 = 1$, Trigon becomes PCF-B and with $c_2 = 1$ it is exactly PCF-A (i.e., they are special 1D cases)
- We also show that Trigon beats Pagh+ when $c_1 = c_2 = \sqrt{p}$
 - Thus, with an optimal choice of (c_1, c_2), Trigon’s I/O is always no worse than either of its predecessors
- The paper also takes into account the number of hash-table lookups and intersection, where Trigon again beats the previous methods
- The derived models can be used to decide the best c_1 for each G, while $p = m/M$ and $c_2 = p/c_1$ are known
Agenda

- Introduction
- Background
- Analysis of Previous Work
 - Pagh and Pruned Companion Files (PCF)
 - Comparison
- Trigon
- Experiments
Experiments

- Experiment setup: single 3-TB magnetic hard drive that can read @ 160 MB/sec
- Datasets

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Nodes</th>
<th>Edges</th>
<th>Size</th>
<th>Triangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>41M</td>
<td>1.2B</td>
<td>9.3 GB</td>
<td>35B</td>
</tr>
<tr>
<td>Yahoo</td>
<td>720M</td>
<td>6.4B</td>
<td>53.3 GB</td>
<td>86B</td>
</tr>
<tr>
<td>IRL-domain</td>
<td>86M</td>
<td>1.7B</td>
<td>13.3 GB</td>
<td>133B</td>
</tr>
<tr>
<td>IRL-host</td>
<td>642M</td>
<td>6.4B</td>
<td>52.7 GB</td>
<td>437B</td>
</tr>
<tr>
<td>IRL-ip</td>
<td>1.6M</td>
<td>818M</td>
<td>6.1 GB</td>
<td>1040B</td>
</tr>
<tr>
<td>ClueWeb</td>
<td>8.2B</td>
<td>51B</td>
<td>358 GB</td>
<td>879B</td>
</tr>
<tr>
<td>Complete</td>
<td>100K</td>
<td>5.0B</td>
<td>37.2 GB</td>
<td>167T</td>
</tr>
<tr>
<td>Bipartite</td>
<td>100K</td>
<td>2.5B</td>
<td>18.6 GB</td>
<td>0</td>
</tr>
</tbody>
</table>
Experiments

- Comparison of I/O (billion edges)

<table>
<thead>
<tr>
<th>Graphs</th>
<th>p</th>
<th>Pagh+</th>
<th>PCF</th>
<th>Trigon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>1,024</td>
<td>75.6</td>
<td>43.5</td>
<td>19.5</td>
</tr>
<tr>
<td>Yahoo</td>
<td>1,024</td>
<td>392.3</td>
<td>25.5</td>
<td>25.5</td>
</tr>
<tr>
<td>IRL-domain</td>
<td>1,024</td>
<td>104.8</td>
<td>98.4</td>
<td>33.8</td>
</tr>
<tr>
<td>IRL-host</td>
<td>1,024</td>
<td>386.5</td>
<td>137.9</td>
<td>59.7</td>
</tr>
<tr>
<td>IRL-ip</td>
<td>1,024</td>
<td>51.5</td>
<td>145.7</td>
<td>23.4</td>
</tr>
<tr>
<td>ClueWeb</td>
<td>1,024</td>
<td>2,869.9</td>
<td>457.1</td>
<td>326.2</td>
</tr>
<tr>
<td>Complete</td>
<td>10,000</td>
<td>995.0</td>
<td>15,742</td>
<td>493.0</td>
</tr>
<tr>
<td>Bipartite</td>
<td>10,000</td>
<td>497.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

- On real graphs, Trigon beats Pagh+ by up to 15x and PCF by up to 6x; on the complete graph, it is better than PCF by 32x and on the bipartite graph it needs 200x less I/O than Pagh+
- For the actual runtime and other metrics, see the paper
Thank you!
Any questions?