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AQM Congestion Control

« Future high-speed networks are likely to require
new types of congestion control
— Current efforts include XCP, BIC-TCP, FAST TCP,
HSTCP, Scalable TCP, etc.

* Besides improving classical E2E approaches,
another direction is to involve Active Queue
Management (AQM)

— In AQM, routers compute explicit feedback
— No per flow management is usually allowed

— Feedback is computed based on aggregate arrival
rates of all flows



Stability and Delays

* In AQM congestion control, asymptotic stability is
one of the most fundamental requirements

o Stability Is often compromised by feedback delay

 Delayed stability proofs are generally
complicated, especially under heterogeneous

delay:
— Each flow has a different RTT equal to D, time units

— Metric D, can be fixed for each flow or changing over
time (i.e., random)



Heterogeneous Directional Delays

 Not only are real Internet delays heterogeneous,

they are also directional T

— Delays to/from each router are non-negligible l
VjEri:D;—I—D;;:DZ-

<«

receiver;
For each router j in user’s path r, 5
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Classic Kelly Control

e Our analysis examines optimization-based
framework introduced by Kelly et al. in 1998

— Performance of the system is optimized when the
utilities of end-users are locally maximized

e Continuous control has been proven to be
globally asymptotically stable in the absence of
delay (Kelly 1998)

— Further analysis under delay has become an active
research field (Massoulie 2002, Kunniyur 2000,
2001, 2003, Vinnicombe 2000, 2002, etc.)



Classic Kelly Control 2

o Stabllity of Kelly control in the discrete case Is
studied by Johari in 2001

— Since all real networks are discrete, we also take
this approach

* Under heterogeneous feedback delays, Johari et
al. discretize Kelly control as follows:

.’,Ez(n) — xz(n _ ]_) < preceding sending rate

T + wi(w; —zi(n—Dy) Y pi(n— Di;)),
next sending T T t |

rate rate RTT time packet loss

positive  ynits earlier
constants

of router j
8

over all routers
In the path



Classic Kelly Control 3

 Assuming D,= D, the discrete Kelly control is
locally asymptotically stable if (Johari 2001):
L\ A
D;)
J &y
where z,” is the steady-state rate of user u

e Under heterogeneous delays, continuous Kel
control is locally stable if (Vinnicombe 2000):

cannot
support

arbitrarily
large delay!




Max-min Kelly Control (MKC)

* End-user equation (SIGCOMM 2004).
zi(n) = (1 — Bni(n))zi(n — D;) + a

| P T

constant packet loss rate RTT time constant
units earlier

o Utilize max-min fairness, where the feedback Is
the packet loss of the most-congested resource

along the path: v — pj(n — D;;),

J
set of routers in the path ——

aggregate

where: . rate
Uu " 10
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Delay-Independent Stability

 Theorem. Assume an N-dimensional undelayed
nonlinear system N

CIIZ(’I’L) — fZ(ZC]_(’n — 1)7332(77/ — 1)7 T 733]\7(77’ — 1)>7

where f,(.) are some non-linear functions.
If the Jacobian matrix J Is Hermitian, then system
Ny with arbitrary directional delays:

zi(n) = f;i(z1(n— D7’ = D;"),z2(n— D3 —D;"),
-, an(n— Dy — Di7))

is stable if and only if AVis stable
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Stability of MKC

 The Jacobian of pKc Is real and symmetric

 Theorem. Heterogeneously delayed pmKc Is
locally asymptotically stable if and only If:

0 < Ap"< 2,
O<@?+ﬁ < 2,
stationary

packet loss

7k
stationary derivative of the
sending rate packet loss function

Stablility conditions do not depend on any delays or

the routing matrix of end-flows!



Exponential mKc (EMKC)

 Assume a set S of N users congested by a
common link of capacity C

(O

N

S

]

N

* EpmKc has a particular packet loss function p(n):
Z{Ll Ty (n — D;) —C
25:1 Ty(n — D?T)

p(n) =



Exponential mMKc (EMKC) 2

 Theorem. Heterogeneously delayed EpKC IS
locally asymptotically stable if and only iIf 0 < < 2

The only parameter affecting heterogeneous

stability of EmKC Is 5

 |n fact, many other systems with a symmetric
Jacobian exhibit similar delay-independent stability

« The equilibrium individual rate is z*=C/N+a/(

EMKC Is fair regardless of end-flow RTTS!
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Exponential MKc (EMKC) 3

 Dynamics of EpKc under constant and random
delays

12} rahdonﬁ D ]E [1, 100]

For the same
parameters,

Kelly control is
unstable for
D>3

sending rate (gb/s)

0 560 1OIOO 15I00 20IOO 25IOO 3000
control steps 16
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Preliminaries

« Theorem. Assume a nonlinear system (2.

Tn(n) = f(xn—b@a

where f(.) is nonlinear, but in a special form:
f(x,y) = a—+ bx + cy + dxy.
Assume y, — 1y as n— oo and form system (2

in = f(@-1(y).

Then system (2 converges if and only If system (2
converges, In which case:

n—aoo
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Global Stability of EMKC

 Lemma. When 0 < §< 2, the combined rate X(n)

of EMKC is globally asymptotically stable under
constant delay and converges to X"=C' + Na/( at

an exponential rate

Packet loss Is expressed by:
X(n)-—-C

p(n) = X (n)
Combining with the lemma, it Is easy to obtain:

» Corollary. When 0 < < 2, the packet loss p(n) of
EMKC converges to p' = Na/(C3+ Na) under
constant delay regardless of initial conditions
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Global Stability of EMKC 2

Combining the last corollary and the preliminary
theorem, we have the following theorem

Theorem. When 0 < §< 2, individual flow rate z,(n)
of an N-dimensional EMKC system converges to

r =C/N+ «a/F under constant delay regardless of
initial conditions

— EMKC is globally quasi-asymptotically stable
Since EMKC is proven to be Lyapunov stable,

Corollary. EMKC is globally asymptotically stable
under homogeneous delay if and only If 0 < 5 < 2.
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Conclusions

* There exists a set of nonlinear control systems

whose local asymptotic stability is independent of
feedback delay

« MKC exemplifies a class of controllers which
are locally asymptotically stable regardless of

delays and globally stable under constant
delay

e Future work involves extension of these
results to the multi-router case and Non-
Hermitian Jacobian matrices
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