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Abstract— Stability proofs of nonlinear congestion control
systems under heterogeneous feedback delays are usually
difficult and involve a fair amount of effort. In this paper,
we show that there exist a class of congestion control methods
that admit very simple proofs of asymptotic stability and allow
control equations to bedelay-independent. This is in contrast
to most previous work, which requires that each flow (and
sometimes each router) adapt its control-loop constants based
on the feedback delay and/or the length of the corresponding
end-to-end path. Our new congestion control method, which
we call Max-min Kelly Control (MKC), builds upon Kelly’s
original work in [4] and allows end-flows to be stable and
fair regardless of network feedback delays or the number of
hops in their end-to-end paths. Using basic matrix algebra
and discrete control theory, we showMKC’s local asymptotic
stability under heterogeneous, directional feedback delays. We
also offer a simple proof of its global asymptotic stability
assuming constant feedback delay.

I. I NTRODUCTION

Recent research efforts [2], [3], [4], [5], [6], [7], [8], [9],
[10], [13], [14] offer an innovative interpretation of Internet
congestion control mechanisms from the perspective of
economics. One representative method in this category is
the framework originated by Kellyet al. [4], in which both
optimization and game theory are used to model the network
and the end-flows. Kelly’s approach models end-users as
distributed and non-cooperative entities, where each entity
implements an independent strategy to maximize its locally
maintained utility and minimize the prices paid for using
network resources. Stimulated by Kelly’s work, subsequent
studies [2], [10], [11], [13], [14] and various extensions [5],
[6], [7], [8], [9] of Kelly controls have formed a distinct
research area inside current Internet congestion control.

Most current studies [4], [5], [7], [8], [9], [12], [13], [14]
of Kelly controls are conducted on the basis of acontinuous-
time fluid model; however, all real networks are discrete and
thus may exhibit different stability conditions from those
derived using continuous fluid models. Moreover, local
stability conditions derived in prior work [2], [10], [13], [14]
require that parameters of the control equation be adaptively
tuned according to feedback delaysDi, which is undesirable
in practice since it leads to unfairness between the flows and
oscillations when the delays are not properly estimated by
the users. Finally, prior work typically assumes thatDi(t) =

∗Supported by NSF grants CCR-0306246, ANI-0312461, and CNS-
0434940.

Di is constant over time, which leads to uncertainty as
to whether (and how) their stability conditions hold under
random (stochastic) delayDi(t) often found in the real
Internet.

To overcome these limitations, this paper provides a new
insight into discrete Kelly controls and demonstrates how
to stabilize them under random (heterogeneous) feedback
delays andconstantgain parameters of the control equation.
We accomplish this task through a simple modification to
the control loop of Kelly’s controller and offer a fresh
look at this framework by associating it with max-min
fairness instead of the originalproportional fairness[4].
Accordingly, we call this new controllerMax-min Kelly
Control (MKC) and demonstrate that it is bothlocally
asymptotically stable regardless of feedback delays (which
can be random or otherwise) andglobally asymptotically
stable under constant delayD.

The rest of this paper is organized as follows. In section
II, we construct the system model and clarify the assump-
tions used throughout the paper. In section III, we discuss
the details ofMKC. In section IV, we present several generic
results on stability of delayed systems and prove local
asymptotic stability ofMKC under heterogeneous delay. In
section V, we examineMKC’s global asymptotic stability
under constant feedback delay. In section VI, we conclude
our work and suggest directions for future research.

II. M ODELING ASSUMPTIONS ANDPREVIOUS WORK

A. Delayed Congestion Control Systems

Assume that a network system consists ofN users,M
resources, and a certain number of data links that connect all
these components. Each useri is identified by a routeri. All
network resources (routers) continuously send congestion
feedback to those users in whose path they appear (typically,
this information is inserted into all passing packets and then
relayed back to the source in positive acknowledgments).
Using this feedback information, each source updates its
sending rate according to some control equation with the
goal to maintain a fair and oscillation-free sharing of
network resources.

We next describe how directional and heterogeneous
feedback delays are introduced in the control loop. De-
lays in network feedback arise from both the transmis-
sion/propagation time along the data links and the queuing
delays at each of the intermediate routers. Consider an
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Fig. 1. Model of the network and directional feedback delays.

illustration in Figure 1, where routersj andk are on the path
of sender (user)i. The time lag for a packet to travel from
senderi to routerj is denoted by forward delayD→

ij , while
the delay from routerj to the receiver and subsequently
from the receiver back to the sender is denoted by backward
delayD←

ij . It is clear that the sum of directional delays with
respect to each router is the round trip delay of useri, i.e.,
Di = D→

ij + D←
ij = D→

ik + D←
ik .

Under this framework, we next review the class of
utility-based controllers proposed in [4] and investigate their
delayed stability in the rest of this paper.

B. Related Work

Recall that the classic Kelly control implements the
primal algorithm of the network optimization problem de-
scribed in [4]. In contrast to the significant research effort
[4], [5], [7], [8], [9], [12], [13], [14] put into the continuous-
time analysis of Kelly control, Johariet al. introduced a
discrete-time version of Kelly’s control equation [2]:

xi(n) = xi(n−1)+κi

(
ωi−x(n−Di)

∑

j∈ri

µj(n−D←
ij )

)
,

(1)
where κi is a strictly positive gain parameter andωi is
interpreted as the willingness of useri to pay the price
for using the network. According to this notation,Di = 1
means instantaneous (i.e., most-recent) feedback andDi ≥
2 means delayed feedback. In (1),µj(n) is the congestion
indication function of resourcej, which is given by:

µj(n) = pj

( ∑

u:j∈ru

xu(n−D→
uj)

)
, (2)

wherepj(·) is the price charged by resourcej. Notice that
pj depends only on thecombinedrate of all flows passing
through routerj at timen.

Next, recall that for afixed feedback delayD, system
(1)-(2) is locally asymptotically stable if [2]:

κi

∑

j∈ri

(
(pj + p′j

∑

u:j∈ru

xu)
∣∣∣
x∗u

)
< 2 sin

(
π

2(2D − 1)

)
,

(3)

where x∗u is the stationary point of useru and pj(·) is
assumed to be differentiable atx∗u. Additionally, Massoulíe
and Vinnicombe investigate Kelly’s framework under het-
erogeneous feedback delays based on a continuous-time
fluid model and derive sufficient stability conditions, which
refine the upper bound in (3) to1/Di [10] and π/(2Di)
[13], respectively. However, the analysis of discrete stability
under heterogeneous delays or the analytical understanding
of global stability are missing from the current picture.

Note that all recent studies and proposed controllers [2],
[10], [13], [14] based on Kelly’s framework require that
end-users adapt their parameterκi inverse proportionally
to Di (observe in (3) that the right-hand side tends to zero
for large D). Forcing the end-flows to keepκi ∼ 1/Di

leads to problems since users are often not aware of the
increase in their delayuntil after oscillations have started
and are not able in practice to properly adjust their gain
parameterκi in response to such increases inDi. Even if
we assume that each user can track delayDi and keepκi

normalized byDi, the resulting system becomes unfair and
favors users with smaller RTTs.

The second problem with Kelly’s framework is that its
stability condition depends on the number of routers along
the end-to-end pathri (observe in (3) that the summation
term can be arbitrarily high when the number of resources
in setri is high). This leads to another practical issue since
each user must now keepκi inversely proportional to the
length of the pathri, i.e., κi ∼ 1/|ri|. Besides the fact that
many flows may not know their exact value of|ri|, there is
also the issue of unfairness since not everyone agrees that
users with shorter paths should get more throughout.

We should also note that Yinget al. [15] recently estab-
lished delay-independent stability conditions for a family
of utility functions and a generalized controller (1). Their
work is similar in spirit to ours; however, the analysis and
proposed methods are different.

III. M AX -MIN KELLY CONTROL (MKC)

To improve the practical aspects of discrete Kelly controls
and decouple the delay and path length from gain param-
eters, in [16], we proposed a new discrete-time congestion
control method based on several modifications to the classic
Kelly control (1)-(2).

Our first change involves proper selection of the reference
rate in (1), which currently applies feedback information
about ratex(n−Di) to the most-recent ratex(n− 1). Our
second improvement removes the dependency of stability on
the number of resources along pathri, which we accomplish
by feeding back the packet loss from themost congested
router inri. Thus, the end-user equation becomes:

xi(n) = xi(n−Di) + α− βηi(n)xi(n−Di), (4)

where parametersα = κiωi, β = κi are fixed for all users
andηi(n) is the congestion indication function of useri:

ηi(n) = max
j∈ri

pj(n−D←
ij ). (5)

2



Here, pj(·) is the packet loss of routerj and depends on
the aggregate input rate:

pj(n) = pj

(∑
u∈sj

xu(n−D→
uj)

)
, (6)

wheresj is the set of users passing through routerj. We call
this new controller (4)-(6)Max-min Kelly Control(MKC)
[16].

In particular, we can also specifypj(n) with the follow-
ing standard packet loss function:

pj(n) =

∑
u∈sj

xu(n−D→
uj)− Cj∑

u∈sj
xu(n−D→

uj)
, (7)

where Cj is the capacity of routerj. Besides proving
max-min fairness, (7) also allows “negative” packet-loss
feedback when the bottleneck resource is under-utilized
(i.e., the combined rate of all flows passing through the
resource is less than its capacity). As we show later in the
paper, this change improves the convergence rate to link
utilization from linear to exponential. Hence, the resulting
controller is called ExponentialMKC (EMKC) [16].

In what follows in this paper, we seek to gain an in-
depth understanding and provide analytical proofs ofMKC’s
delayed stability in the control-theoretic sense. We start our
investigation with its local properties in the next section.

IV. D ELAYED LOCAL STABILITY

A. Delayed Linear Stability

Before focusing onMKC, we first show the existence
of a class of delayed control systems, whose stability
directly follows from that of the corresponding undelayed
systems, and later show thatMKC falls into this category.
Examine the following theorem that formalizes the generic
law mentioned above.

Theorem 1:Assume an undelayed linear systemL with
N flows:

xi(n) =
N∑

j=1

aijxj(n− 1). (8)

If the coefficient matrixA = (aij) is real-valued andsym-
metric, then systemLD with arbitrary directional delays:

xi(n) =
N∑

j=1

aijxj(n−D→
j −D←

i ) (9)

is asymptotically stable if and only ifL is stable.
Proof: See [16].

Theorem 1 opens an avenue for inferring stability of
a delayed linear system based on the stability properties
and coefficient matrixA of the corresponding undelayed
system. Moreover, Theorem 1 is also applicable to nonlinear
systems as we show in the following corollary.

Corollary 1: Assume an undelayedN -dimensional non-
linear systemN :

xi(n) = fi

(
x1(n− 1), x2(n− 1), · · · , xN (n− 1)

)
, (10)

where{fi|fi : RN → R} is the set of nonlinear functions
defining the system. If the Jacobian matrixJ of this system
is symmetric and real-valued, systemND with arbitrary
delay:

xi(n) = fi

(
x1(n−D→

1 −D←
i ), x2(n−D→

2 −D←
i ),

· · · , xN (n−D→
N −D←

i )
)

(11)

is locally asymptotically stable in the stationary pointx∗ if
and only ifN is stable inx∗.

Based on the principle demonstrated above, we next ex-
amine local stability ofMKC under random (heterogeneous)
feedback delays.

B. Local Asymptotic Stability ofMKC
We first derive the condition of local asymptotic stability

of MKC (4)-(6), whose feedback generating functionp(n)
is assumeed to be differentiable in the stationary point and
has the same first-order partial derivative for all end-users.
Following that, we will specialize this result to EMKC with
the particular packet loss function (7).

We approach this problem by applying Theorem 1, whose
first step is to show stability of the following undelayed
system:

xi(n) = (1− βp(n− 1))xi(n− 1) + α, (12)

wherep(n) is the undelayed version of (6).
Theorem 2:The undelayedN -dimensionalMKC system

is locally asymptotically stable if and only if:




0 < βp∗ < 2

0 < βp∗ + βNx∗
∂p

∂xi

∣∣∣∣
x∗

< 2
, (13)

wherex∗ is the fixed point of each individual user, vector
x∗ = 〈x∗, x∗, · · · , x∗〉 is the fixed point of the entire
system, andp∗ is the stationary packet loss.

Proof: See [16].
According to the proof of Theorem 2, JacobianJ of

the undelayed system (12) evaluated in the stationary point
x∗ is real-valued and symmetric. Thus, combining this
observation with the result of Corollary 1, we obtain that
heterogeneously delayedMKC is also locally asymptotically
stable inx∗.

Corollary 2: The heterogeneously delayedMKC system
(4)-(6) is locally asymptotically stable if and only if (13) is
satisfied.

Corollary 2 is a generic result that is applicable to
MKC with a wide class of congestion-indicator functions
p(n). Note further that, for a given controller with pricing
functionp(n), condition (13) is easy to verify and doesnot
depend on feedback delays. This is in contrast to all current
studies [2], [10], [13], [14], whose results are dependent on
individual feedback delayDi. We next extend the above
analysis to EMKC with the particular feedback given in (7).

Theorem 3:The heterogeneously delayed EMKC system
defined by (4) and (7) is locally asymptotically stable if and
only if 0 < β < 2.
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Fig. 2. The delayed behavior ofMKC: (a) dynamics under constant
delayD = 20 time units; (b) dynamics under delays randomly distributed
between 1 and 100 time units.

Proof: See [16]
To better understand the implication of this theorem,

consider an illustration in Figure 2, where two EMKC flows
(α = 200 mb/s andβ = 0.5) share a bottleneck link of
capacity 10 gb/s. Recall that for the same setup, the classic
Kelly control is unstable for any delayD > 3 time units
[16]. In the first example, the feedback delay is 20 time
units for each flow, while in the second example, delays of
each flow randomly fluctuate between 1 and 100 time units
at each control step. As seen in both examples in Figure
2, full link utilization is reached without oscillations (even
though individual delays are different) and eventually the
two flows share the resource fairly. These simulation results
support our previous conclusion that EMKC is a stable and
fair controller underrandomdelays, which is a requirement
for any practical method to be used in the current Internet.

Additional simulation results suggest that EMKC is also
globally asymptotically stable since flows starting from any
initial conditions always converge to the same unique fixed
point x∗. Thus, we are motivated to analytically prove this
observation by conducting the global analysis of EMKC in
the next section.

V. GLOBAL STABILITY UNDER CONSTANT DELAY

Recall that global asymptotic stability of a nonlinear
dynamic system requires both Lyapunov stability and global
quasi-asymptotic stability (whose definition follows later)
in the unique stable fixed point [1]. Note that we proved
local asymptotic stability of EMKC in the preceding section,
which implies Lyapunov stability of the system. Thus, our
remaining task is to prove that EMKC will converge to the
unique fixed point regardless of its initial conditions. To
accomplish this, we first consider several auxiliary results.

A. Preliminaries

We start with a very simple lemma.
Lemma 1:For an arbitrary sequencevn such thatvn →

0 for n → ∞ and another sequenceαn such that∀n >
n0: |αn| < 1 − ε, whereε > 0, the following recurrence
converges to zero regardless of the value ofx0:

xn = αnxn−1 + vn. (14)

Proof: We define a new set of variables such that
yn = xn+n0 , βn = αn+n0 , andun = vn+n0 to shift system
(14) by n0 time units forward and skip the transient region
of the evolution ofxn when αn can potentially be larger
than 1:

yn = βnyn−1 + un. (15)

Using these assignments,|βn| is less than1−ε for all n ≥ 0.
We next demonstrate that sequenceyn converges to zero,
which implies thatxn does too. Recursively expandingyn,
for n ≥ 2, we get:

yn =
n∏

i=1

βiy0 + un +
n−1∑

i=1

ui

n∏

j=i+1

βj . (16)

For convenience of presentation, let

S1(n) =
n∏

i=1

βiy0 + un, (17)

S2(n) =
n−1∑

i=1

(
ui

n∏

j=i+1

βj

)
. (18)

Since |βn| < 1 − ε and un is a time-shifted version of
vn, we immediately obtain thatS1(n) → 0 asn →∞. We
next examineS2(n) and show that it also tends to zero for
largen. Re-writing (18):

|S2(n)| ≤
n−1∑

i=1

(
|ui|

n∏

j=i+1

|βj |
)
. (19)

Again since|βn| < 1− ε, we have:

|S2(n)| ≤
n−1∑

i=1

|ui|(1− ε)n−i = G1(n) + G2(n), (20)

where we define:

G1(n) =
n/2∑

i=1

|ui|(1− ε)n−i, (21)

G2(n) =
n−1∑

i=n/2+1

|ui|(1− ε)n−i. (22)

To show that bothG1(n) and G2(n) converge to zero,
we need the following notations:

m1(n) = max(|u1|, . . . , |un/2|) (23)

m2(n) = max(|un/2+1|, . . . , |un−1|). (24)
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Then we have:

G1(n) ≤ m1(n)
n/2∑

i=1

(1− ε)n−i

= m1(n)
n−1∑

j=n/2

(1− ε)j

= m1(n)

(
n−1∑

j=0

(1− ε)j −
n/2−1∑

j=0

(1− ε)j

)

= m1(n)
(1− ε)n − (1− ε)n/2

ε
. (25)

Sincem1(n) is bounded and0 < ε < 1, G1(n) → 0. For
G2(n), we have:

G2(n) ≤ m2(n)
n−1∑

i=n/2+1

(1− ε)n−i

≤ m2(n)
∞∑

i=0

(1− ε)i =
m2(n)

ε
. (26)

Notice that since bothun/2 andun converge to zero, then
so mustm2(n). Therefore, we getG2(n) → 0, which leads
to S2(n) → 0 and henceyn → 0.

We next present our main result of this section.
Theorem 4:Assume a nonlinear system

xn = f(xn−1, yn−1), (27)

where functionf(x, y) is linear in both arguments:

f(x, y) = a + bx + cy + dxy, (28)

for some constantsa−d. Further assume thatyn converges
to a stationary pointy∗ asn →∞ and form another system,
which replacesyn with y∗ in (27):

x̃n = f(x̃n−1, y
∗). (29)

Then, system (27) converges if and only if system (29)
converges, in which case the two stationary points are the
same regardless of the initial pointsx0 and x̃0 in which
each system is started:

lim
n→∞

|xn − x̃n| = 0. (30)

Proof: We again only prove the sufficient condition.
The necessary condition follows by reversing the order of
steps. First notice that system (29) is stable (bounded) if
and only if |b+dy∗| < 1. Next denote by∆xn the absolute
distance between the trajectories of the two systems at time
n:

∆xn = xn − x̃n. (31)

Further let∆yn = yn − y∗ be the distance ofyn from its
stationary point. Then we can write:

∆xn+1 = xn+1 − x̃n+1

= f(xn, yn)− f(x̃n, y∗)
= f(xn, yn)− f(x̃n, yn) + f(x̃n, yn)− f(x̃n, y∗)
= (b + dyn)∆xn + (c + dx̃n)∆yn. (32)

Next notice that (32) defines a recursive relationship on
∆xn:

∆xn = αn∆xn−1 + vn, (33)

whereαn = b + dyn andvn = (c + dx̃n)∆yn. First, since
x̃n is bounded and∆yn → 0 asn →∞, we havevn → 0
for largen. Second, since|b + dy∗| < 1, there exists such
ε that:

|b + dy∗| < 1− 2ε. (34)

Since yn → y∗, there exists suchn0 that ∀n > n0,
sequenceαn is bounded by the following:

|αn| = |b + dyn| < 1− ε,∀n > n0. (35)

Thus, system (33) satisfies the conditions of Lemma 1
and therefore converges to zero asn →∞.

B. EMKC

Our next two results, respectively, show global stability
of the combined rateX(n) and convergence of packet loss
p(n) to p∗ regardless of the behavior of flow ratesxi(n).

Lemma 2:When 0 < β < 2, the combined rateX(n)
of EMKC is globally asymptotically stable under constant
delay and converges toX∗ = C +Nα/β at an exponential
rate.

Proof: Assume that feedback delayD is constant.
Combining (4)-(7) and taking the summation for allN
flows, we get that EMKC’s combined rateX(n) =

∑
i xi(n)

forms a linear system:

X(n) =
(

1− β
X(n−D)− C

X(n−D)

)
X(n−D) + Nα

= (1− β)X(n−D) + βC + Nα.

(36)

It is clear that the above linear system is stable if and only
if 0 < β < 2. Since convergence of linear systems implies
global asymptotic stability, we can conclude thatX(n)
is globally stable regardless of individual flow trajectories
xi(n).

We next show the convergence speed ofX(n). Recur-
sively expanding the last equation, we have:

X(n) = (1− β)
n
D (X0 −X∗) + X∗, (37)

whereX0 is the combined initial rate andX∗ = C+Nα/β
is the combined stationary rate of all flows. Notice that
for 0 < β < 2, the first term in (37) approaches zero
exponentially fast andX(n) indeed converges toX∗.

Using (7), it is not difficult to see thatp(n) can be
expressed asp(n) = 1−C/X(n). Combining this observa-
tion with the result of Lemma 2, we immediately have the
following corollary.

Corollary 3: When0 < β < 2, EMKC’s packet lossp(n)
converges top∗ = Nα/(Cβ +Nα) regardless of the initial
rates of the flows or their individual ratesxi(n).

Before showing global stability of EMKC, we first review
the following stability concept that describes asymptotic
properties of a dynamic system.
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Definition 1: [1] A point x∗ is globally quasi-
asymptotically stable if and only if for allε > 0
there existsn0 such that for alln > n0 : |x(n) − x∗| < ε
regardless of the initial pointx(0).

According to Corollary 1, EMKC is locally quasi-
asymptotically stable in its unique fixed pointx∗. In what
follows, we prove that each individual flow ratexi(n) is
globally quasi-asymptotically stable, which implies that the
entire system of flowsx(n) = 〈x1(n), . . . , xN (n)〉 also
exhibits global quasi-asymptotic stability.

Theorem 5:Assuming anN -flow EMKC system with
constant delayD and an arbitrary initial pointx(0) =
〈x1(0), . . . , xN (0)〉, each flowxi(n) converges tox∗ =
C/N + α/β if and only if 0 < β < 2.

Proof: We start with the sufficient condition. Under
constant delayD, each EMKC flow activates a rate adjust-
ment everyD time units. Thus, we can define a new set
of flows {ui(t)}, which operate in time units scaled by
a factor ofD. Under this notation, we can writexi(n) =
ui(n/D) = ui(t) andxi(n−D) = ui(n/D−1) = ui(t−1).
Notice thatui(t) has the same exact stability properties as
xi(n). Select an arbitrary flowui and focus on its stability:

ui(t) = f(ui(t− 1), p(t− 1)), (38)

wherep(t) is the packet loss at timet andf(x, y) is given
by:

f(x, y) = (1− βy)x + α. (39)

Then form a new system:

ũ(t) = f(ũ(t− 1), p∗) = (1− βp∗)ũ(t− 1) + α, (40)

where ũ(0) = ui(0), and notice that the solution to this
recurrence is stable if and only if|b+dy∗| = |1−βp∗| < 1.
This condition is automatically satisfied using the proof of
EMKC’s local stability in Theorem 3. According to Corollary
3, we notice thatp(t) converges to its unique stationary
point p∗ regardless ofx(0). Since (39) is linear in each
argument, we can apply Theorem 4 and immediately obtain
that ui(n) → ũ∗ = C/N + α/β and is therefore quasi-
asymptotically stable regardless of the initial pointsui(0)
or x(0). Repeating the same argument for all flowsi, we
establish their individual convergence.

The necessity of condition0 < β < 2 directly follows
from local properties of EMKC in Corollary 3.

Combining EMKC’s Lyapunov stability and its global
quasi-asymptotic stability, we have the following result.

Corollary 4: EMKC is globally asymptotically stable un-
der constant feedback delayD if and only if 0 < β < 2.

VI. CONCLUSION

This paper offered a comprehensive stability analysis of
a new congestion controller calledMKC, which is proven
to be locally asymptotically stable with arbitrary (heteroge-
neous) feedback delays under easily verifiable conditions.
This property makesMKC a highly appealing platform
for congestion control in future high-speed networks with

heterogeneous users. Moreover, we proposed anegative
packet-loss feedback function to be used in conjunction
with MKC and called the resulting controller EMKC. We
proved that EMKC achieves both RTT-independent stability
and fairness and converges to link utilization exponentially
fast.

Our investigation of global stability shows that all EMKC
flows converge to their unique stationary points regardless
of the initial point in which the system is started. We proved
this fact for constant delaysD and our future work is to
extend the analysis to heterogenous delays.
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