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Abstract— Stability proofs of nonlinear congestion control D, is constant over time, which leads to uncertainty as
systems under heterogeneous feedback delays are usuallyto whether (and how) their stability conditions hold under

difficult and involve a fair amount of effort. In this paper, ; ) ;
we show that there exist a class of congestion control methods Et?r?]g (stochastic) delap;(t) often found in the real

that admit very simple proofs of asymptotic stability and allow L . .
control equations to be delay-independentThis is in contrast To overcome these limitations, this paper provides a new
to most previous work, which requires that each flow (and insight into discrete Kelly controls and demonstrates how

sometimes each router) adapt its control-loop constants based to stabilize them under random (heterogeneous) feedback
on the feedback delay and/or the length of the corresponding delays anctonstanigain parameters of the control equation.

end-to-end path. Our new congestion control method, which lish thi K th h imol dificati

we call Max-min Kelly Control (MKc), builds upon Kelly's We accomplish this tas f rough a simple modification to
original work in [4] and allows end-flows to be stable and the control loop of Kelly’s controller and offer a fresh
fair regardless of network feedback delays or the number of look at this framework by associating it with max-min
hops in their end-to-end paths. Using basic matrix algebra fairness instead of the originaroportional fairness[4].
and discrete control theory, we showyKc's local asymptotic Accordingly, we call this new controlleMax-min Kelly

stability under heterogeneous, directional feedback delays. We -
also offer a simple proof of its global asymptotic stability Control (MKC) and demonstrate that it is botlocally

assuming constant feedback delay. asymptotically stable regardless of feedback delays (which
can be random or otherwise) amibbally asymptotically
I. INTRODUCTION stable under constant deldy.

The rest of this paper is organized as follows. In section

Recent research efforts [2], [3], [4], [5], [6], [7], [8], [9], .
[10], [13], [14] offer an innovative interpretation of Internetl_I , We construct the system model and clarify the assump-

congestion control mechanisms from the perspective 6‘{3”3 Lisﬁd throug?out t?_e pla\l/per. In sectltt)n i, vvle d'SCL_JSS
economics. One representative method in this category tge etails oKC. In section IV, we present several generic

the framework originated by Kellgt al. [4], in which both results on stability of delayed systems and prove local

optimization and game theory are used to model the netwoi';}éyr.nptOtIC stability O.fMKC l’mder heterogenequs dela}y. n
and the end-flows. Kelly’s approach models end-users ction V, we examing/KC's global asymptotic stability

distributed and non-cooperative entities, where each enti der constant feedbacl_< de!ay. In section VI, we conclude
ur work and suggest directions for future research.

implements an independent strategy to maximize its local
maintained utility and minimize the prices paid for using 1I. M ODELING ASSUMPTIONS ANDPREVIOUS WORK
network resources. Stimulated by Kelly's work, subsequerg Delayed Congestion Control Systems

studies [2], [10], [11], [13], [14] and various extensions [5],
[6], [7], [8], [9] of Kelly controls have formed a distinct

research area inside current Internet congestion control.

Most current studies [4], [5], [7], [8], [9], [12], [13], [14] X .
of Kelly controls are conducted on the basis abatinuous network resources (rout.ers) continuously send conge_snon
time fluid model; however, all real networks are discrete anf .ed.b ackto t.hos'e Users in \_/vhose path Fhey appear (typically,
thus may exhibit different stability conditions from thoset is information is inserted mt_o all passing packets and then
derived using continuous fluid models. Moreover, loc elgyed Igack to the source in positive acknowledgment;).
stability conditions derived in prior work [2], [10], [13], [14] sing this feedback_ information, each source upda_tes Its
require that parameters of the control equation be adaptiveZ)?ndmg rate ac.cordmg. to some C.O”tfo' equation V.V'th the
tuned according to feedback delays, which is undesirable oal to maintain a fair and oscillation-free sharing of

IJ?&:twork resources.

in practice since it leads to unfairness between the flows al - . .
P We next describe how directional and heterogeneous

oscillations when the delays are not properly estimated t% . ;
, . , — edback delays are introduced in the control loop. De-
the users. Finally, prior work typically assumes thatt) = lays in network feedback arise from both the transmis-

*Supported by NSF grants CCR-0306246, ANI-0312461, and CNsSiON/propagation time along the data links and the queuing
0434940. delays at each of the intermediate routers. Consider an

Assume that a network system consistsMofusers, M
resources, and a certain number of data links that connect all
these components. Each usés identified by a route;. All



where z is the stationary point of usex and p;(-) is
assumed to be differentiable &}. Additionally, Massouk
and Vinnicombe investigate Kelly’s framework under het-
erogeneous feedback delays based on a continuous-time
fluid model and derive sufficient stability conditions, which
refine the upper bound in (3) tb/D; [10] and «/(2D;)
[13], respectively. However, the analysis of discrete stability
under heterogeneous delays or the analytical understanding
of global stability are missing from the current picture.
Note that all recent studies and proposed controllers [2],
Rev, Rev, Rev, Rev,, [10], [13], [14] based on Kelly’'s framework require that
end-users adapt their parameigr inverse proportionally
Fig. 1. Model of the network and directional feedback delays. g D; (observe in (3) that the right-hand side tends to zero
for large D). Forcing the end-flows to keep;, ~ 1/D;

] o ) leads to problems since users are often not aware of the
illustration in Figure 1, where routeysandk are on the path j,crease in their delayntil after oscillations have started

of sender (user). The time lag for a packet to travel from g are not able in practice to properly adjust their gain
senderi to router; is denoted by forward delag;;, while harametens; in response to such increasesin. Even if
the delay from routerj to the receiver and subsequentlywe assume that each user can track delayand keepe;
from the receiver back to the sender is denoted by backwagdmalized byD;, the resulting system becomes unfair and
delay D;; . Itis clear that the sum of directional delays with¢aors users with smaller RTTS.
respect to each router is the round trip delay of usee., The second problem with Kelly’s framework is that its
D; = D;; +_Di7 = Dy + Djy. . stability condition depends on the number of routers along
Under this framework, we next review the class Okne end-to-end path; (observe in (3) that the summation
utility-based controllers proposed in [4] and investigate thelfarm can be arbitrarily high when the number of resources
delayed stability in the rest of this paper. in setr; is high). This leads to another practical issue since
each user must now keep inversely proportional to the
B. Related Work length of the path, i.e., k; ~ 1/|r;|. Besides the fact that
Recall that the classic Kelly control implements themany flows may not know their exact value |of|, there is
primal algorithm of the network optimization problem de-also the issue of unfairness since not everyone agrees that
scribed in [4]. In contrast to the significant research effortisers with shorter paths should get more throughout.
[4], [5], [7], [8]. [9], [12], [13], [14] put into the continuous- ~ We should also note that Yinet al. [15] recently estab-
time analysis of Kelly control, Johaet al. introduced a lished delay-independent stability conditions for a family
discrete-time version of Kelly’s control equation [2]: of utility functions and a generalized controller (1). Their
work is similar in spirit to ours; however, the analysis and
zi(n) = zi(n—1)+r; (Wi —x(n—D;) >  pi(n— D;})), proposed methods are different.
JETi

(1) [1l. M AX-MIN KELLY CONTROL (MKC)

where «; is a strictly positive gain parameter ang is To improve the practical aspects of discrete Kelly controls
interpreted as the willingness of userto pay the priceé and decouple the delay and path length from gain param-
for using the network. According to this notatio; =1  eters, in [16], we proposed a new discrete-time congestion

means instantaneous (i.e., most-recent) feedbackkan®  control method based on several modifications to the classic
2 means delayed feedback. In (1);(n) is the congestion Kelly control (1)-(2).

indication function of resourcg, which is given by: Our first change involves proper selection of the reference
_ rate in (1), which currently applies feedback information
pj(n) = pj( Z Tu(n — Duj)>’ (@ about ratec(n — D;) to the most-recent rate(n — 1). Our
uJETy second improvement removes the dependency of stability on

wherep; (-) is the price charged by resourgeNotice that —the number of resources along pathwhich we accomplish

p; depends only on theombinedrate of all flows passing Py feeding back the packet loss from theost congested
through router; at timen. router inr;. Thus, the end-user equation becomes:

Next, recall that for afixed feedback delayD, system zi(n) = zi(n — Di) + a — Bi(n)zi(n — Di),  (4)

(2)-(2) is locally asymptotically stable if [2]:
where parameters = k;w;, 8 = k; are fixed for all users
) <9sin [ — " andn;(n) is the congestion indication function of user
w 202D —1) )"’

mZ((pj +p) Y )

JET W JETy

3) ni(n) = maxp;(n — Djj). ()



Here, p;(-) is the packet loss of router and depends on where{f;|f; : R¥ — R} is the set of nonlinear functions

the aggregate input rate: defining the system. If the Jacobian mat#iof this system
N is symmetric and real-valued, systeMp with arbitrary
pi(n) =i (Y wuln = D3))), 6)  delay:
uESs;
wheres; is the set of users passing through roytewe call zi(n) = fi(z1(n = Di” = D7), 2a(n — Dy” = D7),
this new controller (4)-(6)Max-min Kelly Control(\MKC) ~-,an(n— Dy — D)) (11)
[16].

is locally asymptotically stable in the stationary paitit if
and only if M is stable inx*.
Based on the principle demonstrated above, we next ex-
Zuesj Tu(n — DZj) - C; - ?mijrge Iokc?jl sl,tability ofyKc under random (heterogeneous)
=\ eedback delays.
Z’U,ESJ‘ xu(n - Duj) y

where C; is the capacity of routerj. Besides proving B. Loc_al Asyr_nptotlc Stabfh_ty aiKe ) .
max-min fairmess, (7) also allows “negative” packet-loss We first derive the condition of local asymptotic stability
feedback when the bottleneck resource is under-utilizetf MKC (4)-(6), whose feedback generating functiof)
(ie., the combined rate of all flows passing through thé assumeed to be differentiable in the stationary point and
resource is less than its capacity). As we show later in tHeas the same first-order partial derivative for all end-users.
paper, this change improves the convergence rate to lifjellowing that, we will specialize this result to/EC with
utilization from linear to exponential. Hence, the resulting"® Particular packet loss function (7).
controller is called ExponentiayKc (BvKe) [16]. We approach this problem by applying Theorem 1, whose
In what follows in this paper, we seek to gain an infirst step is to show stability of the following undelayed
depth understanding and provide analytical proofgig’s ~ SYStem:
_delaygd s_tabilit_y in_ the control-the_oret_ic sense. We start our zi(n) = (1 = Bp(n —1)zi(n — 1) + a, (12)
investigation with its local properties in the next section.

In particular, we can also specify;(n) with the follow-
ing standard packet loss function:

pj(n) =

wherep(n) is the undelayed version of (6).
IV. DELAYED LOCAL STABILITY Theorem 2:The undelayedV-dimensionalyKc system

A. Delayed Linear Stability is locally asymptotically stable if and only if:

Before focusing onyKc, we first show the existence 0<pp* <2

of a class of delayed control systems, whose stability . .
directly follows from that of the corresponding undelayed 0 < fBp" +fNw
systems, and later show thgiKc falls into this category. where z*
Examine the following theorem that formalizes the generi¢. _ (z*,2*,--- %) is the fixed point of the entire
law mentioned above. ) ) system, ang* is the stationary packet loss.

Theorem 1:Assume an undelayed linear systehwith Proof: See [16]
N flows: ' '

, (13)

P
Pl <9

81‘1' x*

is the fixed point of each individual user, vector

|
N According to the proof of Theorem 2, Jacobiah of
zi(n) = Z agz;(n —1). (8) th*e _undelayed system (12) evalu_ated in the stationary point
= x* is real-valued and symmetric. Thus, combining this
observation with the result of Corollary 1, we obtain that

If the coefficient matrixA = (a;;) is real-valued andym-  poiarogeneously delayagic is also locally asymptotically

metrig then systenCp with arbitrary directional delays:

stable inx*.
N Corollary 2: The heterogeneously delaygKc system
xi(n) = Z aijrj(n — D" — D;7) (9) (4)-(6) is locally asymptotically stable if and only if (13) is
j=1 satisfied.
is asymptotically stable if and only if is stable. Corollary 2 is a generic result that is applicable to
Proof: See [16]. MKc with a wide class of congestion-indicator functions

u . . o
Theorem 1 opens an avenue for inferring stability oP(n). Note further that, for a given controller with pricing

a delayed linear system based on the stability propertiégmtionp(n)’ condition (13) is easy FO verify and doast
and coefficient matrix4 of the corresponding undelayed epend on feedback delays. This is in contrast to all current

system. Moreover, Theorem 1 is also applicable to nonlineSfudies [2], [10], [13], [14], whose results are dependent on
systems as we show in the following corollary. individual feedback delayD,;. We next extend the above

Corollary 1: Assume an undelayed¥-dimensional non- analysis to gKc with the particular feedback given in (7).
linear system\': Theorem 3:The hetgrogeneously delayephlﬁz; systgm
defined by (4) and (7) is locally asymptotically stable if and
xi(n) = f,(a:l(n —1),z9(n—1),-- ,zny(n— 1)), (10) onlyif 0 < g < 2.



12 12 Proof: We define a new set of variables such that
g o 2 Yn = Tntng» Bn = Qntng, @NAU, = Uy qy, to shift system
e, 2, (14) by ny time units forward and skip the transient region
g §, . of the evolution ofz,, when «,, can potentially be larger
jo2}
5 5 than 1:
S 4 S 4
172} (2]

2 2 Yn = ﬂnynfl + Unp. (15)

G0 500 1000 1500 2000 2500 3000 00 500 1000 1500 2000 2500 3000

control steps control steps

Using these assignments,, | is less tharl —¢ for all n > 0.
@ () We next demonstrate that sequengeconverges to zero,

Fig. 2. The delayed behavior qfikc: (a) dynamics under constant Which implies thatz,, does too. Recursively expanding,
delay D = 20 time units; (b) dynamics under delays randomly distributedfor n > 2, we get:
between 1 and 100 time units.

n n—1 n
n = Yo + Up + U i 16
Proof: See [16] | Y gﬂyo ; jzlllﬁj (16)
To better understand the implication of this theorem,
consider an illustration in Figure 2, where twgkC flows
(o = 200 mb/s andg = 0.5) share a bottleneck link of

capacity 10 gb/s. Recall that for the same setup, the classic

For convenience of presentation, let

Kelly control is unstable for any delayp > 3 time units Si(n) = H@.yo + Uy, (17)
[16]. In the first example, the feedback delay is 20 time i=1

units for each flow, while in the second example, delays of n—1 n

each flow randomly fluctuate between 1 and 100 time units Sa(n) = Y (ul 11 ﬁj). (18)
at each control step. As seen in both examples in Figure i=1 =i+l

2, full link utilization is reached without oscillations (even
though individual delays are different) and eventually the Since|3,| < 1 — ¢ andu, is a time-shifted version of
two flows share the resource fairly. These simulation resulis we immediately obtain tha$; (n) — 0 asn — co. We

support our previous conclusion thayikC is a stable and next examines, () and show that it also tends to zero for
fair controller underandomdelays, which is a requirement large n. Re-writing (18):

for any practical method to be used in the current Internet.

Additional simulation results suggest thaylkC is also 1 n
globally asymptotically stable since flows starting from any 1S2(n)| < Z (Iuil H |5j‘)_ (19)
initial conditions always converge to the same unique fixed
point z*. Thus, we are motivated to analytically prove this
observation by conducting the global analysis gfKEg in
the next section.

i=1 j=it1
Again since|8,| < 1 — ¢, we have:

V. GLOBAL STABILITY UNDER CONSTANT DELAY n—1 _

Recall that global asymptotic stability of a nonlinear [Sa(n)| < Z uil(1 = )" = Gi(n) + Gz(n),  (20)
dynamic system requires both Lyapunov stability and global i=1
guasi-asymptotic stability (whose definition follows later) h define:
in the unique stable fixed point [1]. Note that we provedW ere we define:
local asymptotic stability of |gKc in the preceding section,
which implies Lyapunov stability of the system. Thus, our B i
remaining task is to prove thap&c will converge to the Gi(n) = Z Jul(1 = )", (21)
unique fixed point regardless of its initial conditions. To =l

n/2

n—1
accomplish this, we first consider several auxiliary results. Go(n) = Z g (1 — )™ (22)
A. Preliminaries i=n/2+1

We start with a very simple lemma.

Lemma 1:For an arbitrary sequenas, such thatv,, — To show that bothG;(n) and Go(n) converge to zero,
0 for n — oo and another sequenee, such thatvn > we need the following notations:
ng: la,| < 1 — ¢, wheree > 0, the following recurrence

converges to zero regardless of the value:gf mi(n) = max(|ul,. .., |unal) (23)

Ty = QpTp_1 + Up. (14) ma(n) = max(|up/o41ls-- -, |Un-1]). (24)



Then we have: Next notice that (32) defines a recursive relationship on

n/2 Az,
Gi(n) < mi(n)) (1—g)"" Az, = 0y ATy + Uy, (33)
lil wherea,, = b+ dy,, andv,, = (¢ + dz,)Ay,. First, since
= mi(n) Z (1—¢) Z, is bounded and&yn. — 0 asn — oo, we havepn —0
jeny2 for largen. Second, sincéb + dy*| < 1, there exists such
1 nj2—1 ¢ that:
= my(n) (Z(lg)j _ Z (1€)j> b+ dy*| < 1—2e. (34)
J=0 j:;’Q Sincey, — y*, there exists such, that ¥n > ng,
l—g)n—(1—g) i ina:
_ ml(n)( e —(A—e)"* (25) Seduencey, is bounded by the following:
9
Sincem, (n) is bounded and < ¢ < 1, G1(n) — 0. For [an| = [0+ dyn| <1 —e,¥n > no. (35)
G2(n), we have: Thus, system (33) satisfies the conditions of Lemma 1
n—1 4 and therefore converges to zeroras- cc. u
Gz(n) < ma(n) (L—e)"™

o0 4 Our next two results, respectively, show global stability
< ma(n)) (1-e) = (26)  of the combined rate&X (n) and convergence of packet loss

i=0 p(n) to p* regardless of the behavior of flow rategn).

Notice that since bothi, ,, andu,, converge to zero, then Lemma 2:When0 < 8 < 2, the combined rateX (n)
S0 mustmg(n). Therefore, we gefi2(n) — 0, which leads of ByKc is globally asymptotically stable under constant

ma(n)

to Sa(n) — 0 and hencey,, — 0. B delay and converges t§* = C'+ Na/( at an exponential
We next present our main result of this section. rate.
Theorem 4:Assume a nonlinear system Proof: Assume that feedback delal is constant.

27) Combining (4)-(7) and taking the summation for a\l

Tn = J(Tn-1,Yn-1),
f(@n—1,Yn-1) flows, we get that fgKC's combined rateX (n) = >, z;(n)

where functionf(z,y) is linear in both arguments: forms a linear system:
f(z,y) = a+bx+cy + day, (28) _D)—
X(n) = 1_5M X(n—D)+ Na
for some constants — d. Further assume that, converges X(n—D) (36)
to a stationary poin* asn — oo and form another system, =(1—-p8)X(n— D)+ BC+ No.

which replacesy,, with y* in (27):
P Y Y @ It is clear that the above linear system is stable if and only

Tp = f(@n-1,9") (29) if 0 < 3 < 2. Since convergence of linear systems implies

Then, system (27) converges if and only if system (299lobal asymptotic stability, we can conclude th&t(n)

converges, in which case the two stationary points are th@ globally stable regardless of individual flow trajectories

same regardless of the initial pointg and Z, in which zi(n).

each system is started: We next show the convergence speedXfr). Recur-
sively expanding the last equation, we have:

i [#n = Za] = 0. (30) X(n)=(1-BBXo- X+ X",  (37)

Proof: We again only prove the sufficient condition. here X, is the combined initial rate anil* = C'+ No/3
The necessary condition follows by reversing the order of 0™ " . .

IS the combined stationary rate of all flows. Notice that
or

steps. First notice that system (29) is stable (bounded)fl 0 < 3 < 2, the first term in (37) approaches zero

and only if|b+dy*| < 1. Next denote byAz,, the absolute : . B
distance between the trajectories of the two systems at tin%(popentlally fagt and((r-z).mdeed converges t”. M
Using (7), it is not difficult to see thap(n) can be

" Ao — g & (31) expressed ag(n) = 1 —C/X(n). Combining this observa-
" nooTm tion with the result of Lemma 2, we immediately have the

Further letAy,, = v, — y* be the distance of, from its following corollary.

stationary point. Then we can write: Corollary 3: When0 < < 2, ByKC's packet los(n)

ATpyr = Tpyr — Tnga converges tp* = Na/(C5+ Na) regardless of the initial

- rates of the flows or their individual rates(n).

J@nsyn) = f(@nsy7) Before showing global stability ofNgKc, we first review

= f(@n,yn) = F(@n,yn) + f(Zn,yn) — f(Zn,¥7) the following stability concept that describes asymptotic
(b+ dyn)Azy, + (¢ + dZ,) Ayy,. (32) properties of a dynamic system.



Definition 1: [1] A point x* is globally quasi- heterogeneous users. Moreover, we proposecegative
asymptotically stable if and only if for al > 0 packet-loss feedback function to be used in conjunction
there existsiy such that for alln > ng : |x(n) — x*| < e  with (Kc and called the resulting controllenEc. We
regardless of the initial point(0). proved that [gKc achieves both RTT-independent stability

According to Corollary 1, fgKc is locally quasi- and fairness and converges to link utilization exponentially
asymptotically stable in its unique fixed poirt. In what fast.

follows, we prove that each individual flow rate(n) is Our investigation of global stability shows that ajjEC
globally quasi-asymptotically stable, which implies that thélows converge to their unique stationary points regardless
entire system of flowsx(n) = (z1(n),...,zx(n)) also of the initial point in which the system is started. We proved
exhibits global quasi-asymptotic stability. this fact for constant delay® and our future work is to

Theorem 5:Assuming an N-flow ByKc system with extend the analysis to heterogenous delays.
constant delayD and an arbitrary initial pointx(0) =
(1(0),...,2n(0)), each flowz;(n) converges tox* =
C/N +a/fifand only it 0 < § < 2. " 1] P. Glendinnin ility, Instability and Chaos: an Intro-

Proof: We start with the sufﬁcn_ant condition. Upder [ duét;ioen Otlo thegTﬁéit:e;ybf ﬁéilﬂnéyaraD?ﬁ;eﬁgzl Equatti;ns
constant delayD, each K¢ flow activates a rate adjust- Cambridge University Press, 1994.
ment everyD time units. Thus, we can define a new set[2] R. Johari and D. K. H. Tan, “End-to-End Congestion Control
of flows {u;(¢)}, which operate in time units scaled by for the Internet: Delays and StabilitylEEE/ACM Transac-

a factor of D. Under this notation, we can write;(n) = tions on Networking9(6):818-832, December 2001.
[3] K. Kar, S. Sarkar, and L. Tassiulas, “A Simple Rate Control

ul(n/D) = ui(t) andz;(n—D) = uz(n/D—l) = ui(t_l_)' Algorithm for Maximizing Total User Utility,”IEEE INFO-
Notice thatu,(t) has the same exact stability properties as  com, April 2001.
x;(n). Select an arbitrary flow; and focus on its stability: [4] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate Control
for Communication Networks: Shadow Prices, Proportional
u;(t) = f(ui(t —1),p(t — 1)), (38) Fairness and StabilityJournal of the Operational Research
. . L Society 49(3):237-252, March 1998.
wherep(t) is the packet loss at timeand f(z, y) is given  [5] s. Kunniyur and R. Srikant, “Analysis and Design of an
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