On Delay-Independent Diagonal Stability of Max-Min Congestion Control

Yueping Zhang

Joint work with Dmitri Loguinov

Internet Research Lab
Department of Computer Science
Texas A&M University, College Station, TX 77843

December 13, 2006
Agenda

• Introduction
 — Modeling of Internet congestion control
 — Current stability results

• Main results

• Applications
 — Delay-independent stable matrices
 — Stability of Max-min Kelly Control (MKC)

• Wrap-up
Max-Min Congestion Control

- Many existing congestion control protocols, such as XCP, RCP, MaxNet, MKC, VCP, and JetMax, are max-min methods.

- In max-min congestion control, each user i calculates its sending rate $x_i(n)$ based on feedback $p_i(n)$ generated by the most-congested link.

- Network feedback is subject to delays, which are not only heterogeneous but also directional.
Feedback Delay

\[x_i(n) = f_i(p_i(n - D_i^\rightarrow)) \]

\[p_i(n) = g\left(\sum_j x_j(n - D_j^\rightarrow)\right) \]

\[D_i^\rightarrow + D_i^\leftarrow = D_i \]

RTT

sender_i

bottleneck router

receiver_i
Linearized Max-Min Congestion Control

- Then, the closed-form control equation is

\[x_i(n) = f_i\left(g\left(\sum_j x_j(n - D_j^\rightarrow - D_i^\leftarrow) \right) \right) \]

- Let \(x^* \) be the equilibrium point of the system, then the linearized system model becomes

\[x_i(n) = \sum_j a_{ij} x_j(n - D_j^\rightarrow - D_i^\leftarrow) \quad (*) \]

\[a_{ij} = \frac{\partial f_i}{\partial x_j} \bigg|_{x^*} \]
Equivalent System Model

• Consider following linear system

\[x_i(n) = \sum_j a_{ij} x_j(n - D_i) \quad (+) \]

• Lemma 1: System (*) is stable under all heterogeneous directional delays \(D_i^\rightarrow \) and \(D_i^\leftarrow \) if and only if system (+) is stable under all round-trip delays \(D_i \)

• System (+) has a simpler shape than (*), so we only consider stability of (+) in the rest of the talk
Assume that the Jacobian matrix A does not involve any delay.

Definition 1: We call a system stable independent of delay if its stability condition does not depend on delays.

Clearly, system $(+)$ under zero delay is stable if and only if $\rho(A) < 1$.

Consider $(+)$ under arbitrary delay D_{ij}:

$$x_i(n) = \sum_j a_{ij} x_j(n - D_{ij}),$$

which is proved to be stable if and only if $\rho(|A|) < 1$.
Current Stability Results II

arbitrary delay D_{ij} stable iff $\rho(|A|) < 1$

no delay, stable iff $\rho(A) < 1$

diagonal delay D_i stability condition?

stable under diagonal delay D_i but with $\rho(|A|) > 1$
Agenda

• Introduction
 — Modeling of Internet congestion control
 — Current stability results

• Main results

• Applications
 — Delay-independent stable matrices
 — Stability of Max-min Kelly Control (MKC)

• Wrap-up
Induced Matrix Norm

• Definition 2: The **induced matrix norm** \(\| \cdot \| \) of a given vector norm \(\| \cdot \| \) is defined as follows:

\[
\| A \| = \sup_{x \neq 0} \frac{\| Ax \|}{\| x \|}
\]

• Examples

 – Spectral norm \(\| A \|_2 = \sqrt{\rho(A^*A)} \) (where \(A^* \) is the conjugate transpose of \(A \)) is induced by the \(L^2 \) vector norm

 – Maximum absolute column sum norm
 \[
 \| A \|_1 = \max_j \sum_{i=1}^{N} |a_{ij}| \]
 is induced by the \(L^1 \) vector norm

 – Maximum absolute row sum norm
 \[
 \| A \|_1 = \max_i \sum_{j=1}^{N} |a_{ij}| \]
 is induced by the \(L^\infty \) vector norm
Extending A Previous Result

- It is proved by Zhang et al. (SIGCOMM04) system (+) is stable if A is symmetric and $\rho(A) < 1$
- However, this result is very restrictive
- Utilizing induced matrix norms, we can obtain an alternative proof of this result and have the following observation
- Corollary 1: System (+) is stable for all delays D_i if $\|A\|_2 < 1$
- Clearly, this condition is tighter (i.e., less restrictive) than the previous result
Verification of Corollary 1

• Matlab simulations
 — Generate 3000 random two-by-two matrices and plot \((x, y)\) where \(x = \rho(A)\) and \(y = \|A\|_2\) of stable and unstable matrices on a 2-D plane

• Thus, Corollary 1 is a sufficient but not necessary
Tighter Sufficient Conditions I

- **Definition 3**: A vector norm $\| \cdot \|$ is monotonic if for all x, y in \mathbb{R}^n such that $\|x\| \leq \|y\|$, it follows $\|x\| \leq \|y\|

- **Theorem 1**: If there exists a monotonic vector norm $\|\cdot\|_\alpha$ such that the induced matrix norm $\|A\|_\alpha < 1$, system $(+)$ is stable regardless of delay D_i

- Monotonic norms can be generated using the following result

- **Theorem 2**: Matrix norm $\|A\|_2^w = \|WAW^{-1}\|_2$ for any non-singular diagonal matrix $W = \text{diag}(w)$ is a monotonic induced matrix norm
Tighter Sufficient Conditions II

- **Corollary 2**: System $(+)$ is stable for all delays D_i if
 \[||A||_s = \inf_{W \in \mathcal{P}^*} ||WA W^{-1}||_2 < 1 \]
 where \mathcal{P}^* is the set of all positive diagonal matrices

- **Theorem 3**: For any matrix A, we have $||A||_s \leq \rho(|A|)$

- Therefore, Corollary 2 does not hold for arbitrary D_{ij}. But, is it tight for D_i?
Verification of Corollary 2

- We next use Matlab simulations to verify Corollary 2
 - Generate 10000 random two-by-two matrices and plot 3535 stable/unstable matrices

- Conjecture: Condition in Corollary 2 is both sufficient and necessary for $\rho(A) + \rho(\hat{A})$ to be stable under any delay D_i.
Agenda

- **Introduction**
 - Modeling of Internet congestion control
 - Current stability results

- **Main results**

- **Applications**
 - Delay-independent stable matrices
 - Stability of Max-min Kelly Control (MKC)

- **Wrap-up**
Delay-Independent Stable Matrices I

- \mathcal{N}: normal matrices, A is in \mathcal{N} if $AA^* = A^*A$
- **Definition 4**: Matrix A is *diagonally similar* to B if there exists a non-singular diagonal matrix W such that $WAW^{-1} = B$
- \mathcal{DN}: the set of matrices that are diagonally similar to \mathcal{N}
- \mathcal{P}: the set of *non-negative/non-positive* matrices
- \mathcal{DP}: the set of matrices that are diagonally similar to \mathcal{P}
- \mathcal{R}: the set of *radial matrices*, A is in \mathcal{R} if $\|A\|_2 = \rho(A)$
- \mathcal{DR}: the set of matrices that are diagonal similar to \mathcal{R}
• **Theorem 4**: The following matrices are stable under all diagonal delay D_i if and only if $\rho(A) < 1$: \mathcal{N}, \mathcal{DN}, \mathcal{P}, \mathcal{DP}, \mathcal{R}, \mathcal{DR}

• These matrix classes satisfy the following relationship, where $A \rightarrow B$ denotes $A \subset B$

```
\mathcal{N} \leftarrow \mathcal{DN} \rightarrow \mathcal{DR} \leftarrow \mathcal{DP} \leftarrow \mathcal{P}
```

• \mathcal{DR} is the largest class of matrices that are stable under all diagonal delay D_i if and only if $\rho(A) < 1$
Application to Max-min Kelly Control

• MKC end-user equation:

\[x_i(n) = (1 - \beta p_i(n - D_i^-))x_i(n - D_i) + \alpha \]

sending rate of user \(i \) feedback \(p_i(n) = g\left(\sum_j x_j(n - D_j^-)\right) \)

• Stability of MKC under homogeneous parameters \(\alpha \) and \(\beta \) has been proved

• Theorem 5: Single-link MKC with heterogeneous \(\alpha_i \) and \(\beta_i \) is stable under all diagonal delay \(D_i \) if

\[0 < \beta_i(p^* + \sum_{i=1}^{N} x_i^*p_i') < 2, \quad i = 1, \ldots, N \]

where \(x_i^* \) and \(p^* \) are stationary points of \(x_i(n) \) and \(p(n) \)
Wrap-up

• In this paper, we studied stability of max-min congestion control systems under diagonal delays.

• Our results improved the understanding of delay-independent stability from the requirement that $\rho(A) < 1$ and A is symmetric to the simple condition that $\|A\|_s < 1$.

• Simulations suggest that $\|A\|_s < 1$ is also a necessary condition.

• The obtained results are of broader interest and apply to any system that can be modeled by (+) or (*)
