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Max-Min Congestion Control

« Many existing congestion control protocols , such
as XCP, RCP, MaxNet, MKC, VCP, and JetMax,
are max-min methods

* |In max-min congestion control, each user ;
calculates its sending rate x,(n) based on feedback
p.(n) generated by the most-congested link

* Network feedback is subject to delays, which are
not only heterogeneous but also directional
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Feedback Delay

zi(n) = filpi(n — D;7)) RP

sender; D7+ D = D,

I . (n) = g(Zj xj(n — D7)>
=
-

bottleneck router

receiver;
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Linearized Max-Min Congestion Control

* Then, the closed-form control equation is
vi(n) = fi(9(Sj25(n - D7 = D))

« Let x* be the equilibrium point of the system, then
the linearized system model becomes

xz(n)—z vj(n —D;” — D7) (%)

.._%
333]
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Equivalent System Model

« Consider following linear system

ri(n) = Zaz‘jwj(n —D;) (+)
J

« Lemma 1: System (*) is stable under all
heterogeneous directional delays D, and D, if
and only if system (+) is stable under all round-
trip delays D,

« System (+) has a simpler shape than (*), so we
only consider stability of (+) in the rest of the talk
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Current Stability Results |

« Assume that the Jacobian matrix A does not
iInvolve any delay

« Definition 1: We call a system stable independent
of delay if its stability condition does not depend on
delays

 Clearly, system (+) under zero delay is stable if
and only if p(A) <1

» Consider (+) under arbitrary delay D;;

zi(n) =) aj;zi(n— Dij),
J

which is proved to be stable ifand only if p(lAl) <1
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Current Stability Results Il

arbitrary delay D,
stable iff p(JA]) <1

no delay, stable
iff p(A) < 1

diagonal delay D,
stability condition?

stable under diagonal delay
D, but with p(1A4l) > 1
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Main results

Applications

— Delay-independent stable matrices
— Stability of Max-min Kelly Control (MKC)

Wrap-up
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Induced Matrix Norm

« Definition 2: The induced matrix norm IL.Il of a given
vector norm II.Il is defined as follows:

Ax
1A]] = sup | Az||
z#0 ||z||

« Examples

— Spectral norm ||All2 = W)(A*A) (where A* is the conjugate
transpose of A) is induced by the L? vector norm

— Maximum absolute column sum norm

|All1 = max; SN, |a;;] is induced by the L! vector norm

— Maximum absolute row sum norm
|All1 = max; 3524 |ais] is induced by the L* vector norm
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Extending A Previous Result

|t is proved by Zhang et al. (SIGCOMMO04) system
(+) is stable if A is symmetric and p(A4) <1

* However, this result is very restrictive

 Utilizing induced matrix norms, we can obtain an
alternative proof of this result and have the following
observation

« Corollary 1: System (+) is stable for all delays D, if
All2 < 1

» Clearly, this condition is tighter (i.e., less restrictive)
than the previous result

=
Z
O
2=
C
)
>
o
<
9p)
O
x
0
—
O
O
C
RO
O
)
—
O
L
2
Q
&
O
O

11



Verification of Corollary 1

« Matlab simulations

> ]
1% — Generate 3000 random two-by-two matrices and plot (z,y)
2 where z = p(A) and y = llAll, of stable and unstable
5 matrices on a 2-D plane
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8] ° Thus, Corollary 1 is a sufficient but not necessary




Tighter Sufficient Conditions |

e Definition 3: A vector norm Il.Il is monotonic if for all «,
y in R" such that |z| < |yl,it follows ||z|| < ||y]

« Theorem 1: If there exists a monotonic vector norm
I.Il, such that the induced matrix norm llAll , < 1,
system (+) is stable regardless of delay D,

* Monotonic norms can be generated using the
following result

« Theorem 2: Matrix norm llAll,¥ = IWAW I, for any
non-singular diagonal matrix W = diag(w) is a
monotonic induced matrix norm
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Tighter Sufficient Conditions ||

« Corollary 2: System (+) is stable for all delays D; if

|A||s = inf |[WAW 1| < 1
Wep*
where P* is the set of all positive diagonal matrices

> All <1 <

no delay
p(A)<1

no delay
p(A)<1

» Theorem 3: For any matrix 4, we have ||A|[s < p(|A])

» Therefore, Corollary 2 does not hold for arbitrary D, .
But, is it tight for D.?
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Verification of Corollary 2

« We next use Matlab simulations to verify Corollary 2

ﬂg — Generate 10000 random two-by-two matrices and plot 3535
0 stable/unstable matrices
S . unstable . stable
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- g
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@ 0 T T T T 1 0 . T T T 1
()] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
"5 rho(A) rho(A)
= °* Conjecture: Condition in Corollary 2 is both sufficient
S and necessary for (+) to be stable under any delay D,
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Delay-Independent Stable Matrices |

e AN:normal matrices, Aisin Nif AA* = A*A

Definition 4: Matrix A is diagonally similar to B if there

exists a non-singular diagonal matrix W such that
WAW! =B

DN: the set of matrices that are diagonally similar to
P: the set of non-negative/non-positive matrices

DP: the set of matrices that are diagonally similar to P
R: the set of radial matrices, Aisin R if llAll, = p(A)

DR: the set of matrices that are diagonal similar to R
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Delay-Independent Stable Matrices ||

 Theorem 4: The following matrices are stable under
all diagonal delay D, if and only if p(A) <1: N, DN,
P, DP, R, DR

* These matrix classes satisfy the following
relationship, where A — B denotes A C B

DN
N< /\éDPA—DPHP
R

DR is the largest class of matrices that are stable
under all diagonal delay D, if and only if p(A) <1
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Application to Max-min Kelly Control

« MKC end-user equation:
| » constant < ‘

zi(n) = (1 = fpi(n — D;7))zi(n — D) +a
sending rate of user i feedback Pi(n) = Q(Zj zi(n — Df))

 Stability of MKC under homogeneous parameters «
and 3 has been proved

« Theorem 5: Single-link MKC with heterogeneous «;,
and 3, is stable under all diagonal delay D, if

N
0 < B;(p* + Zazfp/)<2, i=1,...,N
=1

where x.* and p* are stationary points of x.(n) and p(n)
19

=
Z
O
2=
C
)
>
o
<
9p)
O
x
0
—
O
O
C
RO
O
)
—
O
L
2
Q
&
O
O



=
Z
O
2=
C
)
>
o
<
9p)
O
x
0
—
O
O
C
RO
O
)
—
O
L
2
Q
&
O
O

Wrap-up

In this paper, we studied stability of max-min
congestion control systems under diagonal delays

Our results improved the understanding of delay-
independent stability from the requirement that p(A)
<1 and A is symmetric to the simple condition that
IAIl, <1

Simulations suggest that l1All, < 1 is also a
necessary condition

The obtained results are of broader interest and
apply to any system that can be modeled by (+)
or (*)
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