
Available online at www.sciencedirect.com
Computer Networks 52 (2008) 1193–1219

www.elsevier.com/locate/comnet
Jetmax: Scalable max–min congestion control
for high-speed heterogeneous networks q

Yueping Zhang *, Derek Leonard, Dmitri Loguinov

Department of Computer Science, Texas A&M University, College Station, TX 77843, United States

Received 11 March 2007; received in revised form 24 October 2007; accepted 12 November 2007
Available online 18 January 2008

Responsible Editor: Marco Ajmone Marsan
Abstract

Recent surge of interest towards congestion control that relies on single-link feedback (e.g., XCP, RCP, MaxNet,
EMKC, VCP), suggests that such systems may offer certain benefits over traditional models of additive packet loss. Besides
topology-independent stability and faster convergence to efficiency/fairness, it was recently shown that any stable single-
link system with a symmetric Jacobian tolerates arbitrary fixed, as well as time-varying, feedback delays. Although delay-
independence is an appealing characteristic, the EMKC system developed in exhibits undesirable equilibrium properties
and slow convergence behavior. To overcome these drawbacks, we propose a new method called JetMax and show that
it admits a low-overhead implementation inside routers (three additions per packet), overshoot-free transient and steady
state, tunable link utilization, and delay-insensitive flow dynamics. The proposed framework also provides capacity-inde-
pendent convergence time, where fairness and utilization are reached in the same number of RTT steps for a link of any

bandwidth. Given a 1 mb/s, 10 gb/s, or googol (10100) bps link, the method converges to within 1% of the stationary state
in six RTTs. We finish the paper by comparing JetMax’s performance to that of existing methods in ns2 simulations and
discussing its Linux implementation.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Congestion control; Multi-link stability; Max–min fairness; High-speed networks
1. Introduction

In the light of TCP’s scalability issues in high-
speed networks [9], explicit-feedback congestion
1389-1286/$ - see front matter � 2008 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2007.11.021

q An earlier version of this paper has appeared in IEEE
INFOCOM 2006.

* Corresponding author. Tel.: +1 979 862 9347; fax: +1 419 831
9347.

E-mail addresses: yueping@cs.tamu.edu (Y. Zhang), dleonard
@cs.tamu.edu (D. Leonard), dmitri@cs.tamu.edu (D. Loguinov).
control has gained renewed interest in the last sev-
eral years [16,22,32,33]. Sometimes referred to as
Active Queue Management (AQM) congestion con-

trol, these algorithms rely on routers to provide con-
gestion feedback in the form of changes to the
congestion window [16], packet loss [33], single-bit
congestion indication [12,18,26], queuing delay
[14,29], or link prices [17,20,23]. This information
helps end-flows converge their sending rates to some
social optimum and achieve a certain optimization
objective.
.

mailto:yueping@cs.tamu.edu
mailto:dleonard @cs.tamu.edu
mailto:dleonard @cs.tamu.edu
mailto:dmitri@cs.tamu.edu

1194 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
Unlike some of the largely ineffective AQM
aimed at improving the performance of TCP [4],
properly designed explicit congestion control prom-
ises to provide scalability to arbitrary bandwidth
(i.e., terabits and petabits per second1), tunable link
utilization, low delay, zero loss, oscillation-free
steady state, and exponential convergence to fair-
ness/efficiency, all of which suggests that such algo-
rithms, once deployed in the Internet, may remain
in service for many years to come. Note that the
purpose of this paper is not to settle the debate of
whether or when explicit congestion control will
be adopted by the Internet, but to explore the vari-
ous properties of existing AQM methods, propose a
new controller we call JetMax, and compare its ns2
and Linux performance with that of the existing
methods.

The first half of the paper deals with understand-
ing delayed stability and convergence performance
of several recently proposed AQM approaches:
eXplicit Control Protocol (XCP) [16], Rate Control
Protocol (RCP) [7], Exponential Max–min Kelly
Control (EMKC) [33], and a hybrid method sug-
gested in [33] that combines EMKC with Adaptive
Virtual Queue (AVQ) [20,19]. We find from this
study that both XCP and RCP are sensitive to
RTT estimation and is prone to instability even in
single-link topologies where the average RTT dl

estimated by the router is significantly different from
the maximum RTT Dmax of end-flows. Although
this issue can be overcome by utilizing Dmax instead
of dl, additional problems may occur under time-
varying delays. Moreover, XCP may become unsta-
ble in certain multi-link networks when the flows
receive feedback on different time scales (i.e., under
heterogeneous delay). The root of this problem lies
in the oscillatory switching between the bottlenecks
(i.e., changes in the bottleneck link) and inability of
each XCP flow to permanently decide its most-con-
gested resource in the presence of delayed feedback.
This phenomenon in turn arises from the discontin-

uous nature and non-monotonic transient properties
of the feedback function used in the control equa-
tion of XCP. Discontinuity of feedback follows
from XCP’s algorithm for selecting the most-con-
gested link along its path, while non-monotonicity
is caused by the oscillatory nature of the controller
1 If network bandwidth continues to double every year, these
speeds will become mainstream in 10 and 20 years, respectively.
when the feedback delays of competing flows are
heterogeneous.

To further understand the reasons for XCP’s
instability in multi-link networks, we analyze the
problem of bottleneck oscillation in more depth
and show that only consistent (i.e., agreed upon by
every flow) bottleneck assignment allows one to
reduce stability analysis of max–min protocols in
multi-link networks to that of the single-link case
studied in prior work [7,16,29,33]. In all other cases,
max–min methods require a much more compli-
cated analysis not available within the current
framework of congestion control. We additionally
observe that feedback that remains monotonic when
a flow changes its most-congested resource allows
the protocol to achieve a consistent bottleneck
assignment and thus remain stable. This partially
explains EMKC’s stability in multi-link networks
observed in simulations.

Although EMKC remains stable in multi-link
topologies, we find that its transient and equilibrium
properties (such as linear convergence to fairness
and steady-state packet loss) are potential draw-
backs for its use in practice. The problem of
EMKC’s equilibrium packet loss can be overcome
using EMKC-AVQ; however, the resulting method
exhibits undesirable oscillations and transient over-
shoot of link’s capacity. Combined with a large
number of flows, transient overshoot leads to
long-lasting packet loss and non-negligible increase
in queuing delay, both of which are highly
undesirable.

Our conclusion from the first half of the paper is
that any new designs of max–min AQM congestion
control should decouple feedback delay from con-
trol equations and converge to stationarity mono-
tonically. Thus, the second part of the paper
designs a new method we call JetMax that satisfies
these criteria while offering additional features:

� Capacity-independent convergence time. The algo-
rithm reaches fairness and efficiency in the same

number of RTT steps regardless of link’s
capacity.
� Zero packet loss. Loss-free operation is ensured

both in the transient and stationary state.
� Tunable link utilization. Each router can be inde-

pendently configured to control its steady-state
link utilization.
� RTT-independent max–min fairness. Resource

allocation is max–min fair regardless of end-user
delays.

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1195
� Global multi-link stability under consistent bottle-

neck assignment for all types of delay. Flows con-
verge to the equilibrium and maintain their
steady-state rates in generic networks regardless
of any fluctuation in the RTT as long as end-
users can correctly choose their bottleneck links
(see below for more).
� Low overhead. The AQM algorithm requires only

three additions per arriving packet and no per-
flow state information inside routers.

We finish the paper by repeating the same ns2

simulations that earlier highlighted the limitations
of existing methods and demonstrate that JetMax
outperforms its predecessors using a number of met-
rics such as multi-link stability, convergence rate,
transient overshoot, and steady-state rate alloca-
tion. We also show that JetMax can be easily inte-
grated into the Linux router kernel and present
the results of Linux experiments with JetMax run-
ning over 1 gb/s links, both in single- and multi-bot-
tleneck topologies.

The rest of the paper is organized as follows. We
review the existing explicit congestion control algo-
rithms in Section 2 and identify their problems in
Section 3. We then highlight the importance of
studying multi-link stability of max–min systems
in Section 4. Following that, we introduce JetMax in
Section 5 and discuss its implementation issues in
Section 6. We then demonstrate JetMax’s perfor-
mance through ns2 simulations and Linux experi-
ments in Sections 7 and 8, respectively. We
conclude the paper in Section 9.

2. Background

We start by describing the notation used
throughout the paper. Assume N users in the net-
work whose rates at time t are given by fxrðtÞgN

r¼1.
Following notation in [15], we denote the RTT of
each flow by DrðtÞ and the forward/backward delays
of user r to/from link l by D!r;lðtÞ and D r;lðtÞ, respec-
tively. The aggregate arrival rate of all users at link l

is written as ylðtÞ ¼
P

r2lxrðtÞ, where r 2 l is the set
of flows r passing through link l. Similarly, notation
l 2 r refers to the set of links l used by flow r.

Since its appearance in 2002, XCP [16] has
become a de-facto standard for explicit congestion
control in IP networks [8]. XCP is a window-based
framework, in which routers continuously estimate
aggregate flow characteristics (e.g., arrival rate,
average RTT) and feed back the desired changes
to the congestion window to each bottlenecked flow
through its packet headers. Stability of XCP under
heterogeneous delay is unknown at this time; how-
ever, for homogeneous delay DrðtÞ ¼ D, the paper
shows that the combined rate ylðtÞ is stable if
0 < a < p=4

ffiffiffi
2
p

and b ¼ a2
ffiffiffi
2
p

, where a and b are
constants used in the XCP control equation.

XCP’s design goals [16] include max–min fairness
and high link utilization; however, a recent study of
its equilibrium properties [22] shows that XCP does
not generally achieve max–min fairness in multi-link
networks and its link utilization may sometimes be
as low as 80%. The paper further demonstrates sce-
narios where XCP allocates arbitrarily small
(unfair) fractions of bandwidth to certain flows
[22]. Another study [32] reports experiments with a
10-mb/s XCP Linux router and identifies several
implementation issues including uncertainty in
accurate selection of link’s capacity, sensitivity to
receiver buffer size, and various problems with par-
tial deployment.

The recently proposed Rate Control Protocol
(RCP) [7] is a rate-based max–min AQM algorithm
in which each link l periodically computes the
desired sending rate rlðtÞ for flows bottlenecked at
l and inserts rlðtÞ into their packet headers. This rate
is overridden by other links if their suggested rate is
less than the one currently present in the header.
Links decide the fair rate rlðtÞ by implementing a
controller

rlðtÞ ¼ rlðt � DÞ 1� D
dlCl

aðylðtÞ � ClÞ � b
qlðtÞ

dl

� �� �
;

ð1Þ

where D is the router’s control interval, a and b are
constants, dl is a moving average of RTTs sampled
by link l, Cl is its capacity, and qlðtÞ is its queue
length at time t. Compared to XCP, RCP has lower
implementation overhead, offers quicker transient
dynamics, and achieves max–min fairness [7].

Two additional max–min methods are inspired
by Kelly’s optimization framework [17] and aim to
improve stability and convergence properties of tra-
ditional models of additive packet loss [19,23]. The
first approach called MaxNet [29] obtains feedback
frðtÞ ¼ maxl2rplðtÞ from the most-congested link
along each path of user r and applies an unspecified
end-user control function to frðtÞ so as to converge
the sending rates of all flows to max–min fairness.
To avoid equilibrium packet loss, link prices are dri-
ven by a controller

1196 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
_plðtÞ ¼
ylðtÞ � cCl

Cl
; ð2Þ

where 0 < c < 1 is the desired link utilization.
The second method is Exponential Max–min

Kelly Control (EMKC) [33], which elicits packet-
loss from the most-congested resource along each
flow’s path and uses a modified version of the dis-
crete Kelly equation to achieve delay-independent
stability. End-user rates xrðnÞ are adjusted using

xrðnÞ ¼ xrðn� DrÞ þ a� bprðnÞxrðn� DrÞ; ð3Þ
where Dr

2 is the RTT of flow r; a > 0 and 0 < b < 2
are constants, and prðnÞ 2 ð�1; 1Þ is the packet-loss
feedback received by flow r at time n. The feedback
function allows negative values and assumes the fol-
lowing shape [33]

prðnÞ ¼ max
l2r

P
s2lxsðn� D!s;l � D r;lÞ � ClP

s2lxsðn� D!s;l � D r;lÞ
: ð4Þ

We remark that throughout the paper, we use the
same time unit (say, ms) for time n, delay Dr, and
control interval D. Therefore, all these metrics are
assumed to be integers.

For a single-link network, systems (3) and (4) are
locally asymptotically stable for all time-varying
delays. Due to the steady-state overshoot of link’s
capacity [33], EMKC does not reach max–min fair-
ness. However, as suggested in [33], EMKC can be
combined with AVQ [20] to guarantee max–min fair
rates and zero loss in the stationary state.

3. Understanding existing methods

This section discusses the desired properties of
future congestion control and examines whether
the existing methods satisfy these requirements.
We focus on such issues as flow dynamics under het-
erogeneous (both time-invariant and time-varying)
feedback delay, stability in multi-link scenarios,
convergence behavior, and overshoot properties in
transient and equilibrium states.

3.1. Ideal congestion control

During the design and analysis of congestion
control, many issues are taken into consideration;
however, one of the most fundamental requirements
2 Since all MKC-based methods examined in the paper and the
later introduced scheme JetMax do not estimate the RTT and are
delay-independent, we replace time-varying delay DrðtÞ by its
constant version Dr for ease of presentation.
on modern congestion control is its asymptotic sta-
bility under heterogeneous (including time-varying)
delays. The reason we focus on non-deterministic
delay is to understand the various deployment issues
that a protocol may face in real networks, where the
forward delay between the source and each link, as
well as the corresponding backward feedback delay,
are dynamic (often random) metrics [25]. Tradi-
tional models of congestion control [16,19,23,27]
usually assume a certain ‘‘determinism” about the
RTT (i.e., queuing delays are either fixed or based
on fluid approximations) and sometimes produce
results that no longer hold under more realistic con-
ditions [21]. It thus becomes important to examine
how protocols behave in highly heterogeneous envi-
ronments and whether fluctuating feedback delay
may cause them to oscillate.

Besides stability, ideal congestion control should
exhibit fast convergence to both efficiency and fair-
ness, avoid overshooting capacity in transient and
stationary states, and converge to the desired link
utilization c. While the first few factors are mostly
important to end-users, the last metric is of interest
to network operators, who usually run their back-
bones at well below capacity and may not appreci-
ate protocols (such as [14,16]) that always try to
achieve 100% utilization.

Our results below show that none of the existing
methods satisfies all of these requirements simulta-
neously. Some protocols exhibit oscillations and
instability under heterogeneous RTTs or in certain
multi-link topologies, while others demonstrate
undesirable stationary and/or transient properties.
As a result of this study, we first come to understand
the need for and then develop a new method that is
capable of simultaneously meeting the design crite-
ria above while admitting a simple implementation
inside routers.

3.2. Methodology

Our main focus in this comparison study is on
XCP [16], RCP [7], and EMKC [33] as completely
different approaches to max–min congestion control.
At the time of this writing, MaxNet [29] did not have
a publicly available ns2 implementation; however,
we found that a combination of EMKC and AVQ
[20] possessed transient and stationary behavior sim-
ilar to that of MaxNet. Recall that AVQ dynami-
cally adjusts the virtual capacity of each link until
the arrival rate ylðtÞ is stabilized at cCl, where c is
the desired link utilization. This method is similar

R3 R4

10 mb/s
100 ms

10 mb/s
 1 sec

10 mb/s
 10 ms

R1

R2
0 50 1000

2

4

6

8

10

12

time (sec)

cw
nd

/R
TT

 (m
b/

s)

0 50 100
0

2

4

6

8

10

12

time (sec)

ra
te

 (m
b/

s)

0 100 200 3000

2

4

6

8

10

12

time(sec)

ra
te

 (m
b/

s)

0 100 200 3000

2

4

6

8

10

12

time(sec)

ra
te

 (m
b/

s)

Fig. 1. XCP, RCP, EMKC, and EMKC-AVQ in topology T1.

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1197
to the price integrator (2) in MaxNet with the excep-
tion that AVQ is not feedback-specific.

Throughout this section, we use ns2 simulations
with AVQ code that comes with the simulator (ver-
sion 2.27), and XCP, RCP, and EMKC code used in
[16,7,33], respectively. We also experimented with
the modified XCP code from ISI [30] and found it
to offer no stability benefits over the original code.
We thus limit our XCP discussion to the algorithms
used in [16].

We should finally emphasize that simulation sce-
narios shown below are meant to highlight the pos-
sibility of unstable behavior and demonstrate the
undesirable convergence properties of the studied
protocols rather than providing their exhaustive
evaluation under ‘‘realistic” Internet conditions.
3 For all rate-based methods examined in the paper (i.e., RCP,
EMKC, EMKC-AVQ, and JetMax), we refer to ‘‘rate” as the
sending rate. In addition, since JetMax does not build up queues
or drops packets, its sending rate equals the receiving rate.
3.3. Stability under heterogeneous delay

We first study how each method handles hetero-
geneous delay over a single link. We use topology
T1 shown in Fig. 1a, where two flows x1 and x2 with
round-trip delays 220 and 2020 ms, respectively,
start with a 5-s delay and share a 10-mb/s link.
For XCP, we use the parameters suggested in [16]
(i.e., a ¼ 0:4 and b ¼ 0:226) and set the buffer size
sufficiently large (i.e., at least Cl �RTT). As
Fig. 1c shows, XCP is stable under heterogeneous
delay, even though it exhibits oscillations and rela-
tively slow (compared to the case of homogeneous
D) convergence to fairness.

We next examine RCP with a ¼ 0:4 and b ¼ 1:0,
whose simulation result3 is given in Fig. 1c. As seen
in the figure, RCP exhibits stable behavior and con-
verges the sending rates to the fair share of the bot-
tleneck bandwidth. However, we can also observe
from the figure the ‘‘spike” in x2’s sending rate as
it joins the system. This results in instantaneous
overshoot of the link capacity and buildup of queue
backlog in the router. This problem becomes pro-
gressively serious in the presence of multiple arriv-
ing flows, in which case any buffer can be overflow
by a sufficiently large number of new users.

For EMKC we set a ¼ 0:2 mb=s, b ¼ 0:5, and con-
trol interval D ¼ 100 ms, and repeat the simulation in

R3 R4

10 mb/s
100 ms

10 mb/s
 1 sec

10 mb/s
 10 ms

R1

R2
0 100 200 3000

0.05

0.1

0.15

0.2

time (sec)

cw
nd

/R
TT

 (m
b/

s)

0 50 10010

10

10

100

101

time (sec)

ra
te

 (m
b/

s)

0 100 200 3000

0.05

0.1

0.15

0.2

0.25

time (sec)

ra
te

 (m
b/

s)

0 100 200 3000

0.05

0.1

0.15

0.2

time (sec)

ra
te

 (m
b/

s)

Fig. 2. XCP, RCP, EMKC, and EMKC-AVQ in topology T2.

4 All delays are computed using XCP’s smoothed EWMA
estimator with the default weight 0.4 and (5) is normalized by
Dmax to ensure stability of the resulting system under delayed
feedback [19].

1198 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
T1. The result is plotted in Fig. 1d, which demon-
strates that EMKC converges to the stationary state
much more smoothly than XCP and RCP; however,
it spends over 250 s before reaching fairness and even-
tually overshoots link’s capacity by 8%. Although
EMKC’s convergence rate can be improved by
increasing a, this leads to more steady-state packet
loss and larger overshoot [33]. We delay further dis-
cussion of this issue until later in the section.

The fourth method to examine is the combina-
tion of EMKC and AVQ. We experimented with
the default ns2 code of AVQ, but found it to be
too noisy due to the random fluctuations in inter-
packet arrival delays and the fact that AVQ esti-
mates ylðtÞ on a per-packet basis. To make the
method actually converge to its stationary state,
we modified AVQ to estimate the aggregate input
rate ylðnÞ every D time units and adjust the virtual
capacity fCl at the end of this interval:

eClðnÞ ¼ eClðn� DÞ þ sDðcCl � ylðnÞÞ
Dmax

; ð5Þ

where s ¼ 0:2 is the gain parameter used throughout
this paper, c is the desired link utilization, Dmax is
the maximum RTT of end-flows, and Cl is the true
capacity of the link.4 It is not difficult to notice that
(5) is in fact an Integral controller [31] on virtual
capacity eClðnÞ and converges combined rate ylðnÞ
to its target value cCl. The final step of EMKC-
AVQ is to limit eCl to the range ð�1; cCl� and then
apply its value in (4) to compute the feedback.
Using this implementation, we repeat the above
simulation and plot the result in Fig. 1e, which indi-
cates that EMKC-AVQ is indeed max–min fair in
the steady state (i.e., both flows achieve 5 mb/s) as
well as stable under heterogeneous delays; however,
the convergence rate to fairness remains painfully
slow (i.e., over 200 s).

3.4. Sensitivity to RTT estimation

The situation can become complicated by slight
modifications of topology T1, in which flow x1 is
replaced by a group of 99 flows x1 � x99. Simulation
results of these methods in this new topology T2 are
given in Fig. 2.

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1199
As seen from Fig. 2d and e, both EMKC and
EMKC-AVQ are stable in this scenario and con-
verge their sending rates to the expected stationary
values. On the contrary, neither XCP nor RCP is
stable and XCP even exhibits a denial-of-service
effect on flow x100. Instability of these two protocols
arises when the average RTT dl significantly devi-
ates from the maximum RTT Dmax of all flows.
Notice that in topology T2, the average delay mea-
sured by the bottleneck router is only 200 ms, while
the ‘‘slowest” flow x100 receives feedback with a 2-s
delay. This results in unstable oscillations shown
in Fig. 2b and c.

An obvious solution to this problem is to utilize
Dmax instead of dl in XCP and RCP’s control equa-
tions. We changed ns2 packet headers to carry the
smoothed RTT of each end-flow and adapted XCP
and RCP’s router code to use the maximum RTT
observed in any control interval instead of dl.
The resulting systems did in fact exhibit expected
performance and were stable in T2 (results not
shown for brevity). Nevertheless, this change does
not solve all XCP and RCP’s problems related to
delay.
R3 R4

10 mb/s
10 ms

10 mb/s
 1 sec

10 mb/s
 10 ms

R1

R2
0 500

2

4

6

8

10

12

time (s

cw
nd

/R
TT

 (m
b/

s)

0 50 1000

2

4

6

8

10

12

time (sec)

ra
te

 (m
b/

s)

1

1

ra
te

 (m
b/

s)

Fig. 3. XCP, RCP, EMKC, and E
3.5. Time-varying delay

Although using the maximum RTT Dmax is effec-
tive under fixed heterogeneous delays, it may have
problems when the RTT is time-varying. This can
be demonstrated with the help of topology T3 illus-
trated in Fig. 3a, where we generate random feedback
delays by forcing the receiver to pass its acknowledg-
ments through a local queue, which randomly delays
the packets before sending them to the source. The
algorithm applies a random d-second delay-spike to
the head packet of the queue every m successfully
transmitted acknowledgments and delays the remain-
ing m� 1 packets by 10 ls, where d and m are uni-
formly distributed in [0.5,1.0] and [5000,10 000],
respectively. This delay pattern ensures that the
queue is completely emptied before the next spike
and approximates periodic congestion in the Internet
caused by flash crowds, routing changes, and oscilla-
tory behavior of cross-traffic flows.

From Fig. 3, we can see that EMKC is the only
stable method in this variable-delay scenario since
it does not rely on RTT estimation and its stability
is delay-independent. Instability of XCP, RCP and
100
ec)

0 50 1000

2

4

6

8

10

12

time (sec)

ra
te

 (m
b/

s)

0 100 200 300 4000

2

4

6

8

0

2

time (sec)

MKC-AVQ in topology T3.

1200 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
EMKC-AVQ (all of which use Dmax in the router
equations) arises from delay fluctuation, since by
the time the router ‘‘learns” the new Dmax, it may
become out-dated in the next control interval and
the system is already unstable. Additional filters
and fixes may make these methods stable in this sce-
nario; however, our next set of simulations show
that a more fundamental problem prevents XCP
(and potentially other max–min methods) from
operating well in highly heterogeneous networks.

3.6. Multi-link stability

Our next stability issue is to examine the perfor-
mance of these protocols in multi-link networks
where bottlenecks shift over time and there exists
a possibility for incorrect inference of the most-con-
gested link. For the purpose of this section, we study
the four-bottleneck case T4 shown in Fig. 4a, where
four flows x1; . . . ; x4 are routed over a grid-type net-
work. We customize the routing rules at nodes R1

and R4 to always route their traffic (including any
ACKs) in the clockwise direction. This ensures that
acknowledgments of flow x1 travel together with
flow x3 and vice versa. At the same time, the
R3 R4

17 mb/s
1 sec

17 mb/s
 1 sec

20 mb/s
 10 ms

R1 R2

20 mb/s
 10 ms

0 50 10
0

5

10

15

20

time (

cw
nd

/R
TT

 (m
b/

s)

0 50 100 150 2000

5

10

15

20

time (sec)

ra
te

 (m
b/

s)

1

1

2

ra
te

 (m
b/

s)

Fig. 4. XCP, RCP, EMKC, and EMKC
acknowledgments of flows x2 and x4 are routed
along their corresponding shortest paths (i.e.,
R2 � R1 and R3 � R4). Flows start in sequence from
x1 to x4 with a 30-s delay. Given this order of user
join, flow x1 should originally converge to 17 mb/s
and shifts its bottleneck to accommodate flow x2.
The same expected behavior also applies to flows
x3 and x4. The final max–min assignment of rates
is 10 mb/s for each flow.

Fig. 4b shows the behavior of XCP in T4. Notice
in the figure that the protocol not only oscillates for
over 200 s, but also denies service to flow x3, which
never obtains its share of the link even in the aver-
age sense. The reason for oscillation can be traced
to the fact that both x1 and x3 continuously switch
between their bottlenecks and are unable to settle
down in the selection of their most-congested link.
This is caused by non-monotonicity of feedback at
each link, discontinuous control actions of end-
users, and random fluctuation of the RTT that
forces XCP to become unstable on small timescales.
In contrast, RCP in Fig. 4c, EMKC in Fig. 4d, and
EMKC-AVQ in Fig. 4e have no visible stability
problems and converge their sending rates exactly
as expected.
0 150 200
sec)

0 100 2000

5

10

15

20

time (sec)

ra
te

 (m
b/

s)

0 50 100 150 2000

5

0

5

0

time (sec)

-AVQ in multi-link topology T4.

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1201
3.7. Convergence speed

Besides stability, another metric we evaluate is
the convergence speed to stationarity. XCP gener-
ally converges quickly over links with homogeneous
delay; however, its convergence rate may be com-
promised by heterogeneity of delay and oscillations
of the controller inside routers. One example of this
behavior is shown in Fig. 1b, where it takes XCP
over 1.5 min to reach fairness on a 10 mb/s link.
At the time of this writing, there are no known
expressions for XCP’s convergence rate to efficiency
or fairness and future analysis of these metrics
appears difficult due to the complex behavior of
the controller under delay.

As to the best of our knowledge, there does not
exit an explicit expression of RCP’s convergence
speed. However, we can empirically observe that
RCP, in its stable cases, exhibits the best conver-
gence properties among all methods studied in this
section. In both Figs. 1c and 4c, it takes RCP
around 30 s (i.e., 15 RTTs) to reach the stationarity.

For EMKC and small Na� C, [33] shows that
flows reach fairness in HðC log N=ðNaÞÞ steps, which
scales linearly with resource capacity C. In Fig. 1c,
for instance, it takes two EMKC flows over 4 min
to reach fairness on a 10-mb/s link. Furthermore,
the major problem with EMKC’s convergence rate
to fairness is the tradeoff between convergence speed
and stationary packet loss in the network. For small
fixed a, EMKC’s linear rate of convergence is
clearly undesirable, especially in high-speed net-
works. To achieve capacity-independent conver-
gence, a must be on the order of C, which results
in large stationary packet loss since the amount of
steady-state overshoot Na=b is now comparable to
C [33]. In general, there is no algorithmic way for
end-flows to select their a so as to keep loss low
and convergence to fairness quick. This is one of
the main drawbacks of EMKC.

Similar arguments apply to EMKC-AVQ. Even
though it does not suffer from steady-state packet
loss, as we show next, EMKC-AVQ’s transient
packet loss that is proportional to a keeps the pro-
tocol from quickly converging to fairness.

3.8. Overshoot properties

Another issue to consider when designing conges-
tion control is the amount of overshoot and oscilla-
tion before the stationary state is reached. For
discussion purposes below, we semantically equate
overshoot of network capacity with packet loss,
even though small overshoots (in terms of amount
and/or duration) can often be absorbed by buffers
and do not necessarily lead to packet loss. Neverthe-
less, we aim to stress that any overshoot (especially
by 10000 concurrent flows) leads to stressful condi-
tions at the router and, in the least, increases the
queuing delay. In addition, depending on how long
the feedback is delayed on the way to the sender,
any ‘‘innocent” overshoot of C may lead to substan-
tial packet loss and create a hostile environment for
other flows.

Among the four controllers in this comparison
study, XCP, according to the simulations, does
not encounter a severe challenge imposed by tran-
sient overshoot. In contrast, EMKC has the worst
equilibrium properties since its combined stationary
rate y� ¼ C þ Na=b is strictly above the bottleneck
capacity C. Moreover, this packet loss scales line-
arly with the number of connections and becomes
worse if one increases a to accelerate the conver-
gence rate to fairness.

EMKC’s problem of steady-state packet loss can
be overcome by AVQ; however, the latter may
exhibits transient overshoot before settling in its
max–min fair stationary state. To understand this
effect in detail, we repeat the simulation in topology
T1 and increase a to 2 mb/s. As Fig. 5a shows, the
instantaneous rate reaches 13 mb/s and the transient
overshoot lasts for over 50 s. Moreover, this situa-
tion becomes even worse when the number of com-
peting flows increases. As seen in Fig. 5b, where 20
EMKC-AVQ users share the same 10-mb/s link in
T1, the transient overshoot reaches 400% and lasts
for tens of seconds. This situation is a consequence
of the steady-state dynamics inherited from EMKC
and the same term Na=b responsible for the over-
shoot, which is a linear function of the number of
flows N and parameter a. This leads to a similar
tradeoff between packet loss and convergence rate
as in EMKC.

As mentioned in Section 3.3, RCP also suffers
transient overshoot. This is because when a new
flow joins the network, it simply sets its sending rate
to the current rate rlðtÞ at the bottleneck link l. For
a link that is already in its equilibrium (i.e.,
ylðtÞ ¼ Cl), this immediately leads to overflow of
the link and a sudden surge in the queue size (rele-
vant plots are omitted for brevity). In addition,
the amount of overshoot is proportional to the
number of arriving flows and its effect becomes pro-
gressively severe when many flows simultaneously

0 20 40 60 80
0

2

4

6

8

10

12

14

time (sec)

ra
te

 (
m

b/
s)

combined rate
individual rate

0 50 100
0

10

20

30

40

50

time (sec)

ra
te

 (
m

b/
s)

combined rate
individual rate

Fig. 5. Transient overshoot of EMKC-AVQ (a ¼ 2 mb=s, b ¼ 0:5, and s ¼ 0:2).

30 30.2 30.4
0

20

40

60

80

100

time (sec)

pa
ck

et
 lo

ss
 (

%
)

0 50 100
0

20

40

60

80

time (sec)

pa
ck

et
 lo

ss
 (

%
)

Fig. 6. Transient overshoot of RCP (a ¼ 0:4 and b ¼ 1).

5 Note that RCP does not specify how flows react to packet loss
or recover dropped packets ([7] uses very large buffers for all
simulations to prevent packet loss). However, a common
technique [16] is to use TCP’s recovery mechanism (i.e., reducing
rate in half) until all lost packets are recovered.

1202 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
join the system. To better see this, consider the
following simulation, where a single link, whose
capacity is 100 mb/s, RTT is 100 ms, and buffer size
equals the bandwidth-delay product (i.e., 1.25 MB),
is shared by 51 RCP flows with homogeneous RTT.
For ease of reference, we denote this topology by
T5. One flow starts first and the other fifty flows
join after 30 s. We monitor at the bottleneck link
the packet loss rate, which is calculated using the
ratio between the numbers of dropped and received
packets every link’s control interval, i.e.,
minðdl; 10 msÞ. As illustrated in Fig. 6a, when the
fifty flows arrive into the system, the combined
incoming rate at the bottleneck immediately over-
flows the router buffer, resulting in transient packet
loss as high as 98% and up to 66 MB dropped data.
Thus, in highly dynamic scenarios, such as the Inter-
net, where multiple flows frequently join and leave
the network, RCP may experience significant packet
loss (unless unrealistically large buffers are provi-
sioned inside routers). This situation is demon-
strated in the simulation given in Fig. 6b, in which
every 10 s ten RCP flows arrive at a 100-mb/s link
and each flow has a random lifetime between 1
and 15 s. As seen from the figure, the bottleneck link
suffers periodic packet loss high as 72%. This packet
loss may further lead to drastic rate reductions,5

retransmissions, slow convergence, and even
instability.

4. Max–min bottleneck assignment

This section highlights the importance of analyz-
ing discontinuous stability of max–min congestion
control and explains some of the phenomena
observed in the previous section.

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1203
4.1. General stability considerations

One of the most overlooked issues in the analysis
of max–min feedback systems is instability arising
from bottleneck oscillations and/or inconsistent bot-
tleneck assignment (i.e., when flows incorrectly infer
their bottlenecks). Analysis of max–min stability in
multi-router networks is difficult (if not intractable)
within the literature of modern congestion control
as it involves non-linear systems that may switch
between stationary points corresponding to different
bottleneck assignments. Traditional switching the-
ory [6] usually assumes that (1) the stationary point
is preserved between the discontinuous jumps and
(2) each subsystem corresponding to a fixed bottle-
neck assignment has only one stationary point.
Under max–min feedback, both conditions may be
violated since not only does each subsystem have a
different stationary point, but it also may exhibit
multiple equilibrium states or be unstable altogether.

Due to the complexity of the problem, the goal of
this section is not to rigorously derive max–min sta-
bility of the existing methods, but to uncover the
conditions that lead to instability and understand
how to design stable max–min controllers in the
future.

4.2. Why bottleneck assignment is important

We start with the following definition of
bottleneck.

Definition 1 [2]. A link is a bottleneck of flow r, if it
is fully utilized and the rate of flow r is no less than
that of any other flow accessing the link.
Under max–min feedback [16,33], it is usually
assumed that each flow xr has a fixed bottleneck
br, which does not change over time. It is further
assumed that flows not bottlenecked by br do not
contribute to feedback pr generated by br. In
multi-link topologies, this is certainly not the case
R39 mb/s 5 mb/sR1 R2

Fig. 7. Example that shows the e
since each flow xs bottlenecked at some other link
and passing through br clearly affects the value of
pr and thus the rate of flow xr. If it also happens
that xr in turn affects xs at bottleneck bs, the system
forms a closed loop that may become unstable. We
study the formation of such loops in the context of
MKC (Max–min Kelly Control) [33]; however, a
similar question arises in other max–min feedback
systems.

Assume that N users share M links in the net-
work and suppose that R 2 RN�M is the routing
matrix of end-flows (i.e., Rrl ¼ 1 if user r uses link
l and 0 otherwise). Similarly, we define bottleneck

assignment B 2 RN�M of this multi-link system as
an N �M matrix, where entry Brl ¼ 1 if user r is
bottlenecked at link l and Brl ¼ 0 otherwise. Define
br to be the bottleneck resource of user r and re-
write the general form of MKC [33] as follows:

xrðnÞ ¼ ð1� bprðn� D r;br
ÞÞxrðn� DrÞ þ a; ð6Þ

where

prðnÞ ¼ p
XN

s¼1

Rsbr xsðn� D!s;br
Þ

 !
: ð7Þ

Notice that the sum in (7) includes the users bottle-
necked by br (which we call responsive with respect
to br), as well as any additional flows (which we call
unresponsive) passing through the link. Even though
each flow’s feedback in (6), (7) is still delayed by
only one backward delay D r ¼ D r;br

, each flow s

may affect other flows through as many as M for-
ward delays D!s;1; . . . ;D!s;M . This presents a problem
in stability analysis since the z-transform of the de-
lay matrix and the Jacobian of the system are no
longer block-diagonal and the proof in [33] does
not hold.

Analysis below uses notation xs ! xr to represent
the fact that an unresponsive flow xs passes through
bottleneck br and affects flow xr through feedback
prðnÞ. For the example in Fig. 7a and max–min
1 mb/s

ffect of unresponsive flows.

1204 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
assignment of bottlenecks, we have b1 ¼ 1; b2 ¼
b3 ¼ 2; b4 ¼ 3 and the corresponding dependency
graph is shown in Fig. 7b.

Lemma 1. For any system with max–min feedback

that can stabilize its bottleneck assignment b1; . . . ; bN ,

the resulting dependency graph of (6), (7) is

acyclic.

Proof. Suppose that the bottleneck assignment does
not change over time and the dependency graph has
a directed cycle xi1 ! . . .! xik ! xi1 for some
k P 2. Notice that since flow xi1 is unresponsive
with respect to flow xi2 , its stationary feedback p�i1
must be larger than p�i2 (otherwise, xi1 would have
switched its bottleneck to bi2). Generalizing this to
the entire cycle, we immediately get a contradiction
p�i1 > p�i2 > � � � > p�ik > p�i1 . Assuming a consistent tie-
breaking rule obeyed by all flows, the above argu-
ment applies to cases where multiple links have
equal steady-state loss. h

Generalizing this lemma, we define a bottleneck
assignment as consistent if it has an acyclic depen-
dency graph. Then, we have the following result.

Lemma 2. Systems (6) and (7) with a consistent

bottleneck assignment b1; . . . ; bN contains at least one

router that has no unresponsive flows.

Proof. Assume in contradiction that each link l has
some unresponsive flow ul passing through it and
that this situation persists over time. Take the first
unresponsive flow u1 and notice that it is affected
by some other unresponsive flow, which we label
u2, passing through u1’s bottleneck bu1

. This leads
to u1 u2. Repeating this reasoning for u2, we get
u1 u2 u3, for some unresponsive flow u3 at bot-
tleneck bu2

. This process continues and creates an
infinite sequence u1 u2 u3 . . . Since the
number of unresponsive flows is finite, there is a
point k when the sequence repeats itself (i.e.,
uk ¼ uj; j < k) and we obtain a cycle in the depen-
dency graph. h

Equipped with Lemmas 1 and 2, we next prove
MKC’s stability under any time-invariant bottle-
neck assignment.

Theorem 1. Under any bottleneck assignment B that

does not change over time, MKC (6) and (7) is locally
asymptotically stable regardless of delay if and only if

for each link l, the subsystem composed of link l and

flows fxr j Brl ¼ 1g is stable regardless of delay.
Proof. Since bottlenecks do not shift and MKC
relies on max–min feedback, Lemma 1 implies that
the dependency graph is acyclic and bottleneck
assignment is consistent. Using Lemma 2, there
exists at least one link l1 with no unresponsive flows.
Then, it follows that all flows passing through l1 are
bottlenecked by l1 and their stability is independent
of the dynamics of the remaining flows. After the
users bottlenecked by l1 converge to their stationary
rates, we can remove l1 and all of its (constant-rate)
flows from the system. The new network still exhib-
its max–min bottleneck assignment and thus con-
tains some link l2 that has no unresponsive flows.
Repeating this argument for all links l1; . . . ; lM , we
obtain that the local dynamics of the entire system
can be viewed as a system of linear block-diagonal
equations with matrix A ¼ diagðA1; . . . ;AMÞ, where
Al 2 RNl�Nl is the Jacobian matrix of Nl flows bot-
tlenecked at link l ð

PM
l¼1Nl ¼ NÞ. Thus, we arrive

at the conclusion that the entire system achieves
delay-independent stability if and only if the indi-
vidual bottlenecks do. h

While the general issue of bottleneck oscillation
still remains open, this section shows that as long
as flows can properly select their most-congested
links and avoid dependency cycles, the dynamics
of multi-link systems are in fact described by those
of individual links. Also notice that if flows con-
verge their feedback monotonically for any bottle-
neck assignment, all cycles in the dependency
graph are self-correcting (i.e., they eventually lead
to a contradiction similar to the one in Lemma 1).
This is schematically shown in Fig. 8a, where two
flows x1 and x2 sample monotonic feedback p1 and
p2 from two links common to both flows. While
their initial inference of bottlenecks may be incon-
sistent, the situation is eventually self-correcting
and both flows agree that feedback p2 should be
applied to their equations.

On the other hand, when feedback oscillates
there is a possibility of having a directed cycle
xi1 ! � � � ! xik ! xi1 that persists over time. This
can be shown using the example of two flows. Sup-
pose cycle x1 ! x2 ! x1 exists and is not self-cor-
recting. This implies that flow x2 affects x1 at
bottleneck b1 and x1 affects x2 at link b2. Since the
two flows sample feedback p1 and p2 from their
respective bottlenecks at different times, the appar-
ent contradiction p1 > p2 > p1 is actually a perfectly
legitimate set of two independent conditions:
p1ðn1Þ > p2ðn1Þ and p2ðn2Þ > p1ðn2Þ for some time

Fig. 8. Types of multi-router feedback.

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1205
instants n1 6¼ n2. Therefore, as long as p1 and p2

oscillate, it is possible that x1 at time n1 infers that
p1 > p2, while x2 at time n2 infers the opposite
(i.e., p2 > p1). An example of this is illustrated in
Fig. 8b, where both p1 and p2 are individually (i.e.,
without the max function) stable, but create a cyclic
dependency graph with potential for instability.

As the XCP examples show, non-monotonic
feedback allows flows to continuously switch
between bottlenecks and maintain persistent cycles
in the dependency graph, which eventually leads
to instability. It thus becomes imperative that flows
correctly choose their bottlenecks, which is what
EMKC achieves in practice due to its more predict-
able (i.e., monotonic) evolution of feedback at each
link. We summarize the conclusion of this section in
the following corollary.

Corollary 1. Max–min congestion control that con-
verges its feedback plðnÞ at each link l monotonically

to some stationary point, regardless of the bottleneck

assignment, is stable over multi-link topologies if and

only if the corresponding bottlenecks are.

Note that EMKC in general does not satisfy this
requirement (i.e., there are delay patterns that create
small disturbances to the ideal convergence behav-
ior); however, out of the studied methods, it has
the best control over delay and exhibits dynamics
that can be deemed monotonic in many practical
cases.

5. JetMax

In this section, we present JetMax and provide an
analytical study of its properties. The next section
discusses implementation and performance details
of this protocol.

5.1. Design

Consider link l at time n. Assume that NlðnÞ is the
number of responsive flows in this router at time n
and wlðnÞ is their combined rate. Also, assume that
ulðnÞ ¼ ylðnÞ � wlðnÞ is the aggregate rate of unre-

sponsive flows at the router and 0 < cl 6 1 is its
desired utilization level. The main idea of JetMax
is to equally divide the residual bandwidth
clCl � ulðnÞ between all flows bottlenecked by the
router and then provide this average rate to all
responsive users. Knowing ulðnÞ and NlðnÞ (meth-
ods of computing these are discussed later in Sec-
tions 6.1 and 6.2), the router periodically (i.e.,
every Dl time units) calculates and feeds back to
the senders the fair rate glðnÞ:

glðnÞ ¼
clCl � ulðnÞ

NlðnÞ
; ð8Þ

which is later utilized by end-users in their control
equations:

xrðnÞ ¼ ð1� sÞxrðn� DrÞ þ sglðn� D r Þ; ð9Þ

where constant s > 0. Clearly, xrðnÞ is in fact an
exponential weighted moving average of glðnÞ with
weight s. An alternative interpretation of (9) can
be obtained by rewriting it as xrðnÞ ¼ xrðn� DrÞ
�sðxrðn� DrÞ � glðn� D r ÞÞ. In this view, Eq. (9)
is actually an Integral controller of signal xrðnÞ with
a time-varying set point glðn� D r Þ. Note that uti-
lizing classical PID control theory, Blanchini et al.
[3] proposed another method that is robust to delay.
However, these two schemes are developed based on
different theoretical foundations. In addition, in
contrast to this method, JetMax does not monitor
queue length in the router or estimate the maximum
RTT to achieve stability.

Besides the end-user equation, another important
issue is the bottleneck-switching mechanism. A
straightforward solution is that each user chooses
the link along its path with the smallest glðnÞ as
the bottleneck resource. However, as the bottleneck
assignment shifts (i.e., flows migrate from one link
to another), both N lðnÞ and ulðnÞ change accord-
ingly. Thus, the value of glðnÞ experiences sudden
changes, making the system susceptible to transient

1206 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
oscillations during bottleneck switchings. We also
observe this phenomenon in simulations and omit
the corresponding plots for brevity. This issue can
be overcome by replacing glðnÞ with packet loss rate
plðnÞ, which is a function of the combined ingress
rate ylðnÞ ¼ wlðnÞ þ ulðnÞ, i.e.,

plðnÞ ¼
ylðnÞ � clCl

ylðnÞ
: ð10Þ

Then, the bottleneck link of a given flow is the one
with the largest plðnÞ in the path. Since ylðnÞ re-
mains the same immediately after a bottleneck shift
and so does plðnÞ, JetMax, as shown in both ns2

simulations (Section 7) and Linux experiments (Sec-
tion 8), exhibits smooth transition during bottleneck
switching. We note that JetMax is a combined
framework, which employs a rate-based scheme at
end-users to adjust their sending rates and queue-
based method inside routers to decide the bottle-
neck router. We refer interested readers to [5] for
an in-depth discussion of the relationship between
rate- and queue-based congestion controls.

In the rest of this section, we prove JetMax’s
delay-independent stability, max–min fairness in
the steady state, and ideal convergence speed to
stationarity.

5.2. Delay-independent stability

We start by deriving the stationary rate of each
flow.

Lemma 3. Given that flow r is bottlenecked by a
resource l of capacity Cl together with NlðnÞ � 1
other flows, its stationary sending rate is

x�r ¼ ðclCl � u�l Þ=N�l , where u�l and N �l are the

steady-state values of ulðnÞ and N lðnÞ at link l.

In the steady state, we have xrðnÞ ¼
xrðn� DrÞ ¼ x�r and ulðnÞ ¼ u�l . Combining this with
JetMax’s end-user Eq. (9) immediately yields
x�r ¼ ðclCl � u�l Þ=N �l .

We next show that, under any consistent bottle-
neck assignment, stability analysis of systems (8)
and (9) can be reduced to that of EMKC.

Theorem 2. Under any consistent bottleneck assign-

ment, JetMax (8), (9) is stable regardless of delay if

and only if 0 < s < 2.

Proof. First, consider an undelayed JetMax system
with a single-link l. Since the bottleneck assignment
is given, N lðnÞ is fixed, i.e., N lðnÞ ¼ N �l . Then, Jaco-
bian matrix Al of the subsystem corresponding to
link l is simply Al ¼ diagð1� sÞ, which is stable if
and only if qðAlÞ ¼ j1� sj < 1, or in other words,
0 < s < 2. Next, combining the fact that Al is sym-
metric and using Theorem 1 in [33], we obtain that
single-link JetMax is stable for all types of direc-
tional and time-varying delay under the same condi-
tion on s. Finally, invoking Theorem 1, we arrive at
the conclusion that JetMax achieves delay-indepen-
dent stability in any multi-link network with a con-
sistent bottleneck assignment if and only if its
individual bottlenecks do, i.e., 0 < s < 2. h

It is worth noting that in the above proof and the
following analysis of JetMax’s convergence proper-
ties, NlðnÞ is assumed to be known to the router.
This assumption is realized by the estimation tech-
nique described in Section 6.1. As demonstrated
later in the paper, this proposed method is very
accurate in both ns2 simulations and Linux
experiments.

To better understand Theorem 2, we set s ¼ 0:6
and generate 2000 random bottleneck assignments
in random topologies with 10 routers and 50 flows.
For each case, we decide whether the topology is
consistent or not by applying DFS (depth-first
search) to the corresponding dependency graph.
As predicted by Theorem 2, the system under any
consistent bottleneck assignment is stable and has
a spectral radius qðAÞ ¼ j1� sj ¼ 0:4, which per-
fectly aligns with the simulation result illustrated
in Fig. 9a. At the same time, as Fig. 9b demon-
strates, qðAÞ under inconsistent bottleneck assign-
ments may exceed 1, in which case even the
undelayed system is unstable.

5.3. Max–min fairness

From Lemma 3, notice that the stationary packet
loss p�l of all congested links is zero. Thus, if there
are multiple links with zero packet loss in the path
of a flow r, it will be uncertain which link should
be chosen such that the resulting bottleneck assign-
ment is max–min fair. To deal with this situation,
we introduce a simple tie-breaking rule based on
the average rate of the responsive flows at each link.
Assuming that several links tie in zero packet loss,
the user prefers the link with the smallest value of
gl ¼ ðclCl � ulÞ=N l, i.e., it sets

br ¼ arg min
l2r:p�l¼0

glðnÞ: ð11Þ

To maintain stability, switching based on the largest
packet loss (10) may be performed at any time n;

0 500 1000 1500 2000
0.3

0.35

0.4

0.45

0.5

bottleneck assignment #

ρ

0 500 1000 1500 2000
0

1

2

3

4

5

6

bottleneck assignment #

ρ

Fig. 9. Spectral radius qðAÞ of systems (8) and (9) with s ¼ 0:6 under 2000 random bottleneck assignments.

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1207
however, that based on (11) is conducted only when
flow r’s sending rate reaches the e-neighborhood of
stationarity under the current bottleneck assign-
ment. We next prove max–min fairness of the result-
ing system.

Theorem 3. The stationary resource allocation of

JetMax (9), (11) is max–min fair.
Proof. Suppose in contradiction that JetMax is not
max–min fair in its steady state. Then, using max–
min results in Bertsekas–Gallager [2, pp. 527], there
must exist flow r that is not bottlenecked by any link
in its path. Let l 2 r be the link that provides feed-
back to flow r. Then, from Lemma 3 we must have
that link l is fully utilized and stationary rate
x�r ¼ ðclCl � u�l Þ=N �l . According to Definition 1, flow
r is not bottlenecked by this link if and only if there
exists a flow s accessing l such that

x�r < x�s : ð12Þ
Let flow s be constrained by link k where k 6¼ l.
Then, we have x�s ¼ ðckCk � u�kÞ=N �k , which trans-
lates (12) into

clCl � u�l
N �l

<
ckCk � u�k

N �k
: ð13Þ

According to (11), however, the last inequality must
force the bottleneck of flow s to shift from link k to
l, thus contradicting the assumption that the system
has reached stationarity. h
5.4. Capacity-independent convergence rate

For the analysis of convergence rate, we focus on
single-link behavior of JetMax as it generally serves
as a good indicator of multi-link performance of
this method. To formalize the metric ‘‘convergence
rate,” consider the following definition.

Definition 2. A protocol converges to ð1� eÞ-effi-
ciency in ne steps if the system starts with yð0Þ ¼ 0
and ne is the smallest integer satisfying

8n P ne :
yðnÞ
cC

P 1� e: ð14Þ

Similarly, ð1� eÞ-fairness is reached in nf steps if
the system starts in the maximally unfair state
(i.e., 9r; xrð0Þ ¼ cC and 8i 6¼ r; xið0Þ ¼ 0) and nf is
the smallest integer satisfying

8n P nf :
jxrðnÞ � x�r j

x�r
6 e 8r: ð15Þ

The following result derives capacity-indepen-
dent convergence time of JetMax.

Theorem 4. On a single link, JetMax reaches both

ð1� eÞ-efficiency and ð1� eÞ-fairness in dlogj1�sjee
RTTs.
Proof. Without loss of generality, assume homoge-
neous feedback delay for each flow, consider any
consistent bottleneck assignment, and focus on link
l. Next, combine the sending rate (9) of all flows
bottlenecked by l into the aggregate rate
ylðnÞ ¼

P
r2lxrðnÞ. Solving the resulting recurrence

on ylðnÞ, we obtain that the combined rate at time
n can be written as

yðnÞ ¼ ð1� sÞn=Dðyð0Þ � cCÞ þ cC; ð16Þ
where D is the RTT of end-flows and yð0Þ ¼ 0 is the
initial total rate of all flows. Combining the last

1208 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
equation with (14) and writing ne in terms of RTT
steps, we get j1� sjne

6 e, which yields

ne ¼ dlogj1�sjee: ð17Þ

Next, assume that the system starts in the maximally
unfair state (i.e., one flow takes all bandwidth) and
that unresponsive flows are stabilized. Therefore,
controller (9) becomes

xrðnÞ ¼ ð1� sÞxrðn� DrÞ � sxrðn� DrÞ: ð18Þ

Solving this recurrence, we get

xrðnÞ ¼ ð1� sÞn=Drðxð0Þ � x�r Þ þ x�r ; ð19Þ

which shrinks to ð1� eÞ-fairness in nf ¼ dlogj1�sjee
RTT steps following the technique we used to ob-
tain (17). h

This theorem indicates that JetMax reaches full
utilization and converges to fairness over links of
any capacity in the same number of steps (verifica-
tion of this result using simulations and experiments
follows later in the paper). Also observe from (16)
and (19) that 0 < s < 1 is required to guarantee
monotonicity of the controller. Thus, all JetMax
experiments in this paper use s ¼ 0:6 unless other-
wise specified.

Next, we provide implementation details of Jet-
Max and evaluate its performance via both ns2

simulations and Linux experiments.

6. Implementation

6.1. Estimating number of flows

The first issue encountered by a JetMax router l

is how to estimate the current number of responsive
User r

l

Router l δ
k m+

Fig. 10. (a) The relationship between control interval Dl and inter-pa
bottleneck-switching scheme in T1.
flows NlðnÞ. Dynamic tracking of active flow popu-
lation N lðnÞ has been actively studied in ATM net-
works [1,11,28]. Specifically, as suggested in [1,11],
N lðnÞ can be simply approximated by the ratio
between wlðnÞ and glðnÞ. However, similar to RCP
discussed in Section 3.8, this method may result in
significant transient overshoot of the bottleneck link
when new flows join the system. Another scheme
introduced in [28] is in spirit similar to our method
presented below. However, it assumes a constant
cell (packet) size for all connections and is not suit-
able for the current Internet where packet sizes may
be different between flows and over time.

Our solution to this problem is based on the fol-
lowing observations. For a given flow r, assume that
dk is the inter-packet departure delay between pack-
ets k and k þ 1 at the source and d0k is the corre-
sponding inter-packet arrival delay at link l.
Fig. 10a illustrates this notation and shows that
the router’s control interval Dl generally starts and
ends in-between two arriving packets. We therefore
have the following relationship between the router’s
control interval and the combined delay of all pack-
ets from flow r observed during the intervalXkþm�1

i¼kþ1

d0i 6 Dl 6

Xkþm

i¼k

d0i; ð20Þ

where k þ m is the packet that arrives immediately
after the end of this interval. This further yields

lim
Dl!1

Pkþm
i¼k d0i
Dl

¼ lim
Dl!1

Pkþm�1
i¼kþ1 d0i
Dl

¼ 1: ð21Þ

Generalizing this relation to all N l flows bottlenec-
ked by l and taking the summation of inter-packet
delays over all such flows, we have
0 50 100
0

10

20

30

40

50

60

70

time (sec)

ra
te

 (
m

b/
s)

combined rate
individual rate

cket interval dk ; (b) JetMax (s ¼ 0:6 and c ¼ 1) with the naive

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1209
lim
Dl!1

PNl
r¼1

Pkþm
i¼k d0i

Dl
¼ N l: ð22Þ

Even though in general dk does not equal to d0k, sums
of these two metrics over a large number of packets

are asymptotically equal, i.e., limm!1
Pkþm

i¼k di ¼
limm!1

Pkþm
i¼k d0i. This, combined with (22), leads to

lim
Dl!1

PNl
r¼1

Pkþm
i¼k di

Dl
¼ N l: ð23Þ

Using the last equation, we next develop a mecha-
nism for estimating Nl. Each user r includes in every
packet k its inter-packet departure delay
dk ¼ sk=xrðnÞ, where sk is the size of the packet
and xrðnÞ is the current sending rate. The router then
sums up this field over all packets of all responsive

flows and averages this value over interval Dl. From
(23), we have that the value eN l ¼

PNl
r¼1

Pm
i¼0dkþi=Dl

converges to the true number of flows N l as Dl

grows to infinity. Note that this method does not

maintain state information about individual flows
and requires only one addition per arriving packet
and one division per interval Dl.

We finally remark that choosing a large interval
Dl improves accuracy of estimating N l, but may
reduce the router’s responsiveness to dynamics of
the incoming traffic. In practice, the above scheme
works very well with small Dl (say, 100 ms). Thus,
throughout the paper we set Dl ¼ 100 ms unless
otherwise specified. As demonstrated later via ns2

simulations and Linux experiments, this mechanism
is very effective and delivers accurate estimations of
Nl in diverse scenarios (including those with ‘‘mice”

traffic and random packet loss).
6.2. Maintaining membership of flows

JetMax relies on the existence of an effective
mechanism for the routers to identify its responsive
flows. To implement this functionality, we allocate
three one-byte router-ID fields in the packet
header: RT ;RC, and RS . All IDs are in terms of
hop count from the source. The first field RT

records the router ID of the true (i.e., currently
known to the source) bottleneck link br for a given
flow r; the second field carries the hop number of
the packet (which we call the current router-ID)
and is incremented by each router; and the last
field contains the suggested resource ID that is
modified by the routers that perceive their conges-
tion to be higher than that experienced by the flow
at the preceding routers.

Upon each packet arrival, link l increments RC by
one and then examines its local packet loss plðnÞ and
the one carried in the packet. If both packet-loss
values are zero, the router checks if its local average
rate glðnÞ is less than the one carried in the header.
If either case is true, the router overwrites the packet
loss and average rate in the packet header and addi-
tionally sets the packet’s field RS to the value of RC

obtained from the header. At the sending side, if the
suggested router RS carried in the acknowledgment
is different from the true router RT , the source
notices that a bottleneck switch is suggested and ini-
tiates a switch to RS .

Calculations of responsive rate wlðnÞ and unre-
sponsive rate ulðnÞ at router l can also be easily
implemented. At the beginning of each control inter-
val Dl, router l resets wlðnÞ and ulðnÞ to zero. For
each incoming packets, the router, after increment-
ing RC by one, checks whether RC and RT are equal.
If they are, the packet is counted as responsive and
its size s is added to wlðnÞ; otherwise, the packet is
considered unresponsive and its size is added to
ulðnÞ. Then, at the end of interval Dl, the router
obtains the responsive and unresponsive rates by
normalizing wlðnÞ and ulðnÞ by Dl. Clearly, the com-
bined incoming rate ylðnÞ is simply wlðnÞ þ ulðnÞ.

6.3. Managing bottleneck switching

The above scheme in itself is insufficient to elim-
inate all undesirable transient effects associated with
bottleneck switching. To demonstrate this, we simu-
late the algorithms developed so far in ns2 using
the single-link topology T1, where we change the
join order of users to highlight some of the issues
arising in the naive implementation of JetMax. Spe-
cifically, flows x2 and x1 join at time 0 and 30 s, and
experience round-trip delay 2020 and 220 ms,
respectively. The simulation result is plotted in
Fig. 10b, in which x2 initially overflows the link’s
capacity by 500% and then maintains non-zero
packet loss for over 15 s. As we discuss below, this
phenomenon arises as the result of improper man-
agement of bottleneck switching.

For the illustration in Fig. 11a that explains this
situation, assume that user r changes its bottleneck
to link l at time n and the first packet carrying this
new membership arrives into link l at time
t ¼ nþ D!r;l, which is in the middle of the router’s
control interval Dl. Notice that flow r is counted

Router

User

ignore respond

0 20 40 60 80 100
0

5

10

15

time (sec)

ra
te

 (
m

b/
s)

combined rate
individual rate

switch

Fig. 11. (a) The scenario where the bottleneck switching occurs in the middle of the router’s control interval; (b) JetMax (s ¼ 0:6 and
c ¼ 1) with the proper bottleneck-switching scheme in T1.

1210 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
as unresponsive prior to time t and responsive after
that. This inconsistent inference of membership
results in an incorrect estimation of both Nl and
ulðnÞ. Consequently, the resulting feedback does
not reflect the actual situation inside the router
and leads to oscillations in the transient phase.

Fortunately, this inconsistency exists only in the
first interval Dl after the switch. Thus, to properly
manage bottleneck switching, the end-user simply
ignores the first non-duplicate ACK after each
switch and reacts to the following ones as shown
in Fig. 11a. We can also see from the figure that,
using this mechanism, the end-user delays its
response to ACKs by one RTT and 1þ k (where
0 6 k 6 1) Dl after each switching. Simulation of
the resulting JetMax is illustrated in Fig. 11b, in
which the initial ‘‘spike” present in Fig. 10b is elim-
inated and x2 monotonically converges to efficiency.
However, notice in the figure that JetMax exhibits
transient packet loss reaching as high as 33% when
flow x1 joins the network. We explain and resolve
this issue in the next subsection.
6.4. Eliminating transient packet loss

The reason of the transient packet loss shown in
Fig. 11b lies in the fact that flow x2 with a large RTT
does not release bandwidth quickly enough and is
not aware of the presence of any competing flows
until after the overshoot has happened.

Proper implementation of JetMax that avoids
this issue relies on the concept of ‘‘proposed rate.”
Suppose a JetMax flow decides to increase its send-
ing rate; however, it does not know if the other
flows in the system have released (or are planning
to release) enough bandwidth for this increase not
to cause packet loss. To resolve this uncertainty,
the flow that plans to increase its rate first ‘‘pro-
poses” the new rate in its packet header and waits
for the router’s approval/rejection decision based
on the aggregate proposed rate at the router. Flows
not interested in rate increase continuously propose
their current sending rates and ignore the decisions
they may be receiving. Furthermore, flows planning
to decrease their rates can do so immediately as such
actions can only reduce the traffic at the bottleneck
and improve the fairness of the system.

This strategy can be easily realized in practice.
Assuming that the kth packet transmitted by the
source has packet size sk bits, the flow can convey
its proposed rate xþr ðnÞ to the router by including
a virtual packet size sþk in each header such that

sþk ¼ sk
xþr ðnÞ
xrðnÞ

: ð24Þ

For each incoming packet during interval Dl, the
router increments wþl ðnÞ and uþl ðnÞ by virtual packet
size sþk based on the membership of the packet. At
the end of each interval, the router normalizes
wþl ðnÞ and uþl ðnÞ by interval duration Dl and gets
the responsive and unresponsive proposed rates.
The combined proposed rate yþl ðnÞ ¼ wþl ðnÞþ
uþl ðnÞ ¼

P
r2lx

þ
r ðnÞ. Then, the router accepts yþl ðnÞ

if it is less than clCl and decline it otherwise. Note
that when computing glðnÞ in (8) and plðnÞ in (10)
at the end of each control interval, the router simply
replaces ulðnÞ and ylðnÞ with their corresponding
proposed values uþl ðnÞ and yþl ðnÞ:

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1211
pþl ðnÞ ¼ 1� clCl

yþl ðnÞ
;

gþl ðnÞ ¼
clCl � uþl ðnÞ

Nl
:

ð25Þ

Clearly, no extra latency is introduced by this mech-
anism and each approved rate adjustment takes ex-
actly one RTT (instead of two RTTs if (8) and (10)
were based on actual rates). The result of this imple-
mentation is shown in Fig. 12a, in which the system
never overflows the link and converges to fairness
monotonically.
6.5. Calculating reference rate

Intuitively, when applying control equation (9),
the end-user can directly use the most recently pro-
posed rate xþr ðn� DrÞ (if approved by the router) as
the next actual rate xrðnÞ and apply xþr ðn� DrÞ to
computation of the next proposed rate xþr ðnÞ. How-
ever, this may incur problems when bottleneck
switching occurs in the middle of the bottleneck
router’s control interval. In this case, the average
incoming rate computed by the router is a function
of previous and current proposed rates. As a conse-
quence, the router may erroneously approve a pro-
posed rate that is actually above the link’s capacity
or reject one even when the link is under-utilized,
both of which may further lead to transient rate,
or even bottleneck, oscillations. Leveraging the fact
that this inconsistency exists only in the first control
interval after the switch, we solve this problem by
letting the end-user ignore the first non-duplicate
ACK after the switch and respond to the remaining
ones. Also note that, analogous to the discussion in
0 50 100
0

5

10

15

time (sec)

ra
te

 (
m

b/
s)

combined rate
individual rate

Fig. 12. (a) JetMax (s ¼ 0:6 and c ¼ 1) with proposed ra
Section 6.3, time for each rate adjustment becomes
RTTþ ð1þ kÞDl where 0 6 k 6 1.
6.6. Packet format

The header format of a JetMax packet is illus-
trated in Fig. 12b. Besides the two-byte fields for
port numbers, we allocate a one-byte field to each
of flags, RT ;RC, and RS . Then, we use four-byte
numbers to record the user sequence numbers to
deal with out-of-order packets, packet loss pþl , fair
rate gþl , user-proposed packet size sþk , and the
inter-packet interval dk ¼ sk=xrðnÞ. Note that only
dk uses the actual sending rate of the flow.

Thus, the total size of a JetMax packet header is
28 bytes, which is 4 bytes smaller than XCP’s 32 (12
XCP-specific bytes and 20 bytes of the TCP header).
In addition, JetMax’s per-packet processing inside
the router takes only three additions for responsive
flows (to calculate RC;wþl , and Nl) and two addi-
tions for unresponsive flows (to compute RC and
uþl), as opposed to XCP’s three multiplications
and six additions [16].
7. Simulations

7.1. Behavior in T2, T3, T4, and T5

We first repeat the ns2 simulations that earlier
presented stability and equilibrium problems to
existing methods and then examine how JetMax
handles additional scenarios. Simulation code used
in this paper is available in [13].

Performance of JetMax in T2;T3;T4, and T5 is
shown in Fig. 13, in which the protocol demonstrates
z
Source port # Dest port #

Flags

User sequence #

Packet loss:

Fair rate:

Proposed size:

Inter-packet interval:

32 bits

te in T1; (b) format of the JetMax packet header.

0 10 20 30
0

2

4

6

8

10

time(sec)

ra
te

 (
m

b/
s)

0 50 100
0

0.02

0.04

0.06

0.08

0.1

0.12

time (sec)

ra
te

 (
m

b/
s)

0 50 100 150
0

5

10

15

20

time(sec)

ra
te

 (
m

b/
s)

0 20 40 60

10
0

10
1

10
2

time (sec)

ra
te

 (
m

b/
s)

Fig. 13. Performance of JetMax (s ¼ 0:6 and c ¼ 1) in ns2.

1212 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
monotonic convergence, max–min allocation of bot-
tleneck resource in the equilibrium, effective handling
of bottleneck selection, and loss-free operation in
both the transient phase and steady state. Numerical
data from the simulations also show that the system
never overshoots the link’s capacity or loses any
packets. Simulations in a dozen of additional (more
complex) multi-link topologies combined with both
fixed and random feedback delay produce similar
results and are omitted for brevity. It is also worth-
while to note that the flat regions in Fig. 13a when
both flows start consume three RTTs (i.e., 2.6 s)
and are necessary for the flows to deal with initial
router assignment and bottleneck selection.

7.2. Effect of mice traffic

All of our simulations so far have been per-
formed in environments with long-lived flows. How-
ever, the real Internet traffic is composed of a
mixture of connections with a wide range of transfer
sizes, packet sizes, and RTTs [10]. Thus, to obtain a
better understanding of JetMax, we next test it in
more diverse scenarios.

Toward this end, we first consider a simple
‘‘dumb bell” topology, where two long and 500
short JetMax flows share a single link of capacity
100 mb/s. The inter-arrival time of short flows fol-
lows an exponential distribution with mean
k ¼ 0:2 s and the duration of each flow is drawn
from a log-normal distribution [24] with mean
x ¼ 10 s. From basic queuing theory, we can infer
that the expected number of active short flows at
any instant is L ¼ x=k ¼ 50, while the instanta-
neous flow population is bursty as illustrated in
Fig. 14a. Moreover, we set the packet sizes of the
short flows to be uniformly distributed in
[800, 1300] bytes and their RTTs are selected uni-
formly randomly in [40,1040] ms.

As seen in Fig. 14b, one long flow starts first and
quickly reaches link utilization. After the second
long flow joins 5 s later, the first flow is forced to
release some of its bandwidth, allowing both flows
to converge to the fair share of the link’s capacity

0 50 100 150
0

10

20

30

40

50

60

70

time (sec)

nu
m

be
r

of
 a

ct
iv

e
se

ss
io

ns

0 50 100 150
0

20

40

60

80

100

time (sec)

ra
te

 (
m

b/
s)

0 50 100 150
0

2

4

6

8

10

12

time (sec)

ra
te

 (
m

b/
s)

0 10 110
1 2 3 4 5 6 7 8 9

0.1

0.2

0.3

0.4

queue length (packets)

re
la

tiv
e

fre
qu

en
cy

Fig. 14. Single-link performance of JetMax (s ¼ 0:6 and c ¼ 1) in the presence of mice flows.

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1213
(i.e., 50 mb/s). At time 15 s, mice flows start joining
and leaving the network. Since on average there are
50 short and two long flows in the system, the
expected fair rate is 100/52 = 1.92 mb/s per flow.
This prediction is confirmed in Fig. 14b, where the
sending rates of the long flows remain within
[1.7,2.0] mb/s during the period between [30,120]
s. It is worth noting that the small rate oscillations
during this interval are not due to instability, but
the time-varying number of mice flows and changes
to the stationary point of the system.

To understand the throughput obtained by the
short flows, Fig. 14c shows the average rate of mice
traffic. As seen in the figure, the short flows also
manage to obtain their fair share (despite the short
duration) and achieve rates close to the expected
1.92 mb/s. This also confirms the effectiveness of
the JetMax router in estimating the number of
locally congested flows N l. As the number of active
connections decreases after time 120 s, sending rates
of the remaining short flows climb up and take over
the bandwidth of the departed flows.
We also plot the queue length distribution of the
bottleneck link in Fig. 14d, in which we sample the
instantaneous queue size every 10 ms. The bin size
of the histogram is one packet. As can be seen from
the plot, for 64% of the time the queue has less than
two packets and 99% of the time less than 10 pack-
ets. Thus, JetMax is successful in maintaining small
buffers and, as a consequence, does not lose any
packets or increase queuing delays in practice.

We next test JetMax’s multi-link performance in
the presence of mice flows. Consider a ‘‘parking lot”
topology where a long flow traverses two links R1

and R2 of capacities 400 and 100 mb/s, each of
which is accessed by 500 short flows. In addition,
we set Dl to be uniformly random in [100,300] ms
to test JetMax’s performance when routers have
heterogeneous control intervals. As shown in
Fig. 15b, the long flow starts first and converges
to the capacity of R2. Short flows accessing R1 start
joining the system after 15 s. Since R1 becomes more
congested than R2, the long flow switches the bottle-
neck to R1 and maintains its sending rate within the

0 50 100 150 200
0

20

40

60

80

100

time (sec)

ra
te

 (
m

b/
s)

0 1 2 3 4 5 6 7 8 9 10 110

0.1

0.2

0.3

0.4

0.5

0.6

0.7

queue length (packets)

re
la

tiv
e

fre
qu

en
cy

Fig. 15. Multi-link performance of a long JetMax flow (s ¼ 0:6 and c ¼ 1) in the presence of mice traffic.

1214 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
neighborhood of the average fair rate 400/
52 = 7.7 mb/s. At time 80 s, 500 short flows start
arriving at R2. This compels the long flow to change
its bottleneck to R2 and converge to the new fair
rate. Finally, after all mice flows terminate, the long
flow re-stabilizes its sending rate at the capacity of
R2. It can also be seen from Fig. 15b that the queue
length of link R1 is kept very small.

7.3. Effect of random packet drops

In this subsection, we examine the performance
of JetMax in lossy environments (e.g., wireless net-
works) with random non-congestion-related packet
drops. We first note that JetMax is not sensitive to
packet loss in the return path since out of the ACKs
generated in the same Dl interval, only one is uti-
lized by the end-user to adjust its sending rate and
all others are ignored since they carry duplicate
0 50 100
0

5

10

15

time (sec)

ra
te

 (m
b/

s)

combined rate
individual rate

Fig. 16. JetMax (s ¼ 0:6 and c ¼ 1) under random packet loss: (a) T1

flows and random loss.
information. We verified this in ns2 simulations,
where the performance of JetMax in T1 with 90%
packet loss in its return path was almost identical
to that in the loss-free environment previously
shown in Fig. 12a. We omit the plot of this simula-
tion for brevity and focus on more interesting cases
of forward-path loss.

To better see the effect of random loss in the
forward path, consider the ns2 simulation illus-
trated in Fig. 16a, where we use T1 and create
10% and 20% packet loss in the forward paths
of flows x1 and x2, respectively. As shown in the
figure, both fairness and stability are not affected
by the forward-path random loss; however, the
stationary rates are. To explain this phenomenon,
assume 1� ar;l is the total (long-term average)
packet loss suffered by flow r along its path to
router l. Using Lemma 3, it is not difficult to
obtain that
0 50 100 150 200
0

20

40

60

80

100

120

140

time (sec)

ra
te

 (m
b/

s)

with 10% forward-path loss; (b) ‘‘parking lot” topology with mice

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1215
x�r ¼
clCl � u�l

alNl
; ð26Þ

where al is given by

al ¼
P

r2Sl
ar;l

Nl
; ð27Þ

and Sl is the set of responsive flows with respect
to link l. Accordingly, we have that the stationary
rate x�1 before the second flow joins the network is
10/0.8 = 12.5 mb/s, while afterwards both x�1 and
x�2 are 5/0.85 = 5.82 mb/s, all of which matches
simulation results perfectly. Since only fraction
ar;l of flow r’s packets survive before arriving into
link l, the actual input rate x�r;l of flow r at l is
x�r;l ¼ ar;lx�r . This, combined with (26) and (27),
leads to y�l ¼ clCl � u�l . Simply put, although the
combined sending rate perceived by the end-users
may exceed the link’s capacity, the bottleneck link
is ideally utilized and free from congestion-related
packet loss.

In the next simulation, we test JetMax in the
‘‘parking lot” topology used in Fig. 15b with 500
mice flows per link, 10% random loss on each link
in the forward path, and 50% loss in the backward
path. Fig. 16b shows the dynamics of the long flow
and confirms that JetMax is stable and convergent
to the equilibrium as expected.

7.4. Utilization

We next study the effect of link capacity C and
round-trip delay on bottleneck utilization of Jet-
Max. We use a single-link topology with 50 flows
in the forward direction and 50 flows in the reverse
direction. Round-trip propagation delays of these
100 flows are uniformly distributed between
16 64 256 1024 4096 16384
0

0.5

1

bandwidth (mb/s)

ut
iliz

at
io

n

Fig. 17. Utilization of the bottleneck in JetMax (s ¼ 0:6 and c ¼ 1
[20,220] ms. We set the target utilization level c to
1. We also neglect the first 20 s of the simulations
to avoid transient phase effects and bottleneck
switching, and compute efficiency statistics by aver-
aging the instantaneous link utilization sampled
every 100 ms in the router.

First, we fix the bottleneck link delay to be 20 ms
and vary its capacity from 16 mb/s to 16 gb/s. As
Fig. 17a shows, JetMax achieves ideal utilization
and never overshoots C. Next, we fix the bottleneck
capacity to be 1024 mb/s and vary round-trip delays
between 10 ms and 2560 ms. From Fig. 17b, one can
observe that JetMax is able to sustain high utiliza-
tion that does not depend on the RTT. We also note
that variance of the instantaneous bottleneck utili-
zation is less than 10�3 in all simulations presented
in this subsection.

7.5. Convergence speed

In this subsection, we measure the convergence
time of JetMax to ð1� eÞ-efficiency and ð1� eÞ-fair-
ness in a single-link topology. We set control gain s
to 0.6, round-trip delay D of all flows to 220 ms, and
control interval Dl of the bottleneck router to
100 ms. Notice that as discussed in Section 6.5,
proper calculation of the reference rate takes
RTT þ ð1þ kÞDl time units, where k 2 ½0; 1�.
According to Theorem 4, JetMax converges to
99%-efficiency and 99%-fairness both in
dlogj1�sjee ¼ 6 steps, which corresponds to a time
range of [1.92, 2.52] s. This prediction is confirmed
by simulation results illustrated in Fig. 18, where
end-users spend around 2.4 s before reaching both
efficiency and fairness over a wide range of link
bandwidths.
10 40 160 640 2560
0

0.5

1

roundtrip delay (ms)

ut
iliz

at
io

n

) under different link capacities and round-trip delays in ns2.

16 64 256 1024 4096 16384
0

1

2

3

4

5

bandwidth (mb/s)

co
nv

er
ge

nc
e

tim
e

(s
ec

)
2.52

1.92

predicted time range
simulation results

16 64 256 1024 4096 16384
0

1

2

3

4

5

bandwidth (mb/s)

co
nv

er
ge

nc
e

tim
e

(s
ec

)

2.52

1.92

predicted time range
simulation results

Fig. 18. Convergence time of JetMax (s ¼ 0:6 and c ¼ 1) as a function of bottleneck capacity C in ns2.

1 16 64 256 1024
0

1

2

3

4

5

number of flows

co
nv

er
ge

nc
e

tim
e

(s
ec

)

2.52

1.92

predicted time range
simulation results

1 4 16 64 256 1024
0

1

2

3

4

5

number of flows

co
nv

er
ge

nc
e

tim
e

(s
ec

)

2.52

1.92

predicted time range
simulation results

4

Fig. 19. Convergence time of JetMax (s ¼ 0:6 and c ¼ 1) as a function of the number of users n in ns2.

1216 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
Additionally, Theorem 4 indicates that the con-
vergence rate of JetMax is independent of the num-
ber of flows in the system. We also examine this
result via ns2 simulations and verify that, as illus-
trated in Fig. 19, under different numbers of flows
(from 1 to 1024), it takes JetMax the same six steps
to enter the 1%-neighborhood of both efficiency and
fairness.

8. Linux performance

We finish the paper by examining performance
and implementation overhead of JetMax in Linux
software routers. The main goal of this study is to
advance beyond 10 mb/s cases studied in the litera-
ture [32] and achieve true gigabit speeds where
AQM algorithms would have the most impact in
practice. For the experiments reported in this paper,
we use two Linux routers shown in Fig. 20a, where
R1 is a single Pentium 4 running at 3.4 GHz and R2

is a dual-Xeon box running at 3 GHz. Propagation
delays of links R1 � R2 and R2 � A are both 10 ms.
Transmit and receive queue lengths of R1 and R2

are both set to 2000 packets. All network cards
are 1 gb/s full-duplex 1000BaseT Ethernet utilizing
PCI-X slots in the their respective computers. Net-
work capacity in the figure is in terms of trans-

port-layer rates and is configured independently
for each link at 600 and 940 mb/s using different tar-
get utilization levels cl.

We implemented JetMax in Linux 2.6.9 and built
a separately loadable JetMax module that was
invoked by netfilter hooks upon each packet queu-
ing event. This module was a standalone application
that could be compiled, loaded, and unloaded with-
out rebooting the system. During our investigation,
we found that recent Linux kernels do in fact sup-
port floating-point operations (despite a popular

940 mb/s

R1C

B

D

R2

A

600 mb/s

0 45 90 135
0

200

400

600

800

1000

time (sec)

ra
te

 (m
b/

s)

Fig. 20. Single-router Linux experiments with JetMax ðs ¼ 0:6Þ.

Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219 1217
belief to the contrary [32]) and that kernel timers are
scheduled with remarkable accuracy (i.e., 100 ls),
both of which provide significant benefit to AQM
algorithms as they often require computation of
feedback with high precision and accurate D-inter-
val timing.

For the first test, we run five flows from host B to
A in Fig. 20a to examine the ability of JetMax to
utilize high-bandwidth links and support multiple
senders/receivers per end-host. Each flow starts with
a 15-s delay and lasts for 75 s. The performance of
JetMax for this setup is shown in Fig. 20b. Notice
in the figure that the first flow converges to 99%
of 940 mb/s in 1.3 s and maintains its steady-state
rate without oscillations. As subsequent flows
arrive, they take 1.2 s (which is six control steps of
D ¼ 200 ms units each) to achieve 0.99-fairness,
where transitions between the neighboring states
take place monotonically and the system’s com-
bined rate never exceeds 940 mb/s. Similar perfor-
0 20 40 600

200

400

600

800

1000

time (sec)

ra
te

 (m
b/

s)

Fig. 21. Dual-router Linux experim
mance is observed when flows depart, where the
system takes approximately 1.2 s to re-stabilize each
time.

We next test JetMax’s capability of managing
bottleneck switching in multi-link scenarios. We
start flows x1 and x2 in Fig. 20a with a 20-second
delay. Notice that x1 should first converge to
600 mb/s, then shift its bottleneck to R2, and eventu-
ally settle down at 470 mb/s. This is shown in
Fig. 21a, where the flows perform precisely as
expected. When flow x1 departs at t ¼ 40, x2 quickly
converges to 940 mb/s.

In our final setup, we repeat the same experiment
except that flow x3 joins at time t ¼ 40 s. This allows
the bottleneck of flow x1 to shift twice during its stay
in the system. The corresponding simulation result
is illustrated in Fig. 21b, where x1 and x2 first con-
verge to 470 mb/s each and maintain this rate until
t ¼ 40. When x3 joins, it quickly settles down with x1

at 300 mb/s and x2 takes the remaining bandwidth
0 20 40 60 800

200

400

600

800

1000

time (sec)

ra
te

 (m
b/

s)

ents with JetMax ðs ¼ 0:6Þ.

1218 Y. Zhang et al. / Computer Networks 52 (2008) 1193–1219
(i.e., 640 mb/s). Once x1 departs at t ¼ 60, x2 con-
verges to 940 mb/s and x3 to 600 mb/s. Notice that
in this experiment router R2 delivers over 1.5 gb/s
combined throughput to end-flows without losing
any packets.

9. Conclusion

This paper examined several max–min AQM
congestion controllers and found that all of them
exhibited undesirable properties under certain cri-
teria. A bigger problem, however, discovered in
this work was the susceptibility of XCP and poten-
tially other max–min systems with non-monotonic
feedback to oscillation between bottlenecks and
unstable behavior in multi-router topologies. We
proposed a new method JetMax that was able to
overcome the identified issues with existing meth-
ods and admitted multi-link stability (to the extent
examined in this study), fast convergence to effi-
ciency/fairness, loss-free dynamics, adjustable link
utilization, and simple implementation. We note
that multi-link stability analysis conducted in this
paper is limited in scenarios where bottleneck
assignments are consistent and time-invariant. We
leave a rigorous study of the bottleneck-switching
problem in generic max–min methods for the
future. In addition, performing a more extensive
experimental evaluation of JetMax and designing
its simplifications form other lines of our planned
work.

References

[1] J. Aweya, M. Ouellette, D.Y. Dontuno, A. Simple, Scalable
and provably stable explicit rate computation scheme for
flow control in communication networks, Int. J. Commun.
Syst. 14 (6) (2001) 593–618.

[2] D. Bertsekas, R. Gallager, Data Networks, Prentice-Hall,
1992.

[3] F. Blanchini, R.L. Cigno, R. Tempo, Robust rate control for
integrated services packet networks, IEEE/ACM Trans.
Netw. 10 (5) (2002) 644–652.

[4] M. Christiansen, K. Jeffay, D. Ott, F.D. Smith, Tuning RED
for Web traffic, in: Proceedings of the ACM SIGCOMM,
August 2000, pp. 139–150.

[5] S. Deb, R. Srikant, Rate-based versus queue-based models of
congestion control, in: Proceedings of the ACM SIGMET-
RICS, June 2004, pp. 246–257.

[6] R. DeCarlo, M.S. Branicky, S. Pettersson, B. Lennartson,
Perspectives and results on the stability and stabilizability of
hybrid systems, Proc. IEEE 88 (7) (2000) 1069–1082.

[7] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, N. McKe-
own, Processor sharing flows in the internet, in: Proceedings
of the IEEE IWQoS, June 2005.
[8] A. Falk, D. Katabi, Specification for the Explicit Control
Protocol (XCP), USC/ISI, Technical Report, October 2005.

[9] S. Floyd, High-speed TCP for Large Congestion Windows,
IETF RFC 3649, December 2003.

[10] S. Floyd, E. Kohler, Internet research needs better models,
ACM SIGCOMM Comput. Commun. Rev. 33 (1) (2003)
29–34.

[11] C. Fulton, S.-Q. Li, C.S. Lim, An ABR feedback control
scheme with tracking, in: Proceedings of the IEEE INFO-
COM, April 1997, pp. 805–814.

[12] C.V. Hollot, V. Misra, D. Towsley, W.-B. Gong, On
designing improved controllers for AQM routers supporting
TCP flows, in: Proceedings of the IEEE INFOCOM, April
2001, pp. 1726–1734.

[13] JetMax@TAMU. [Online]. <http://irl.cs.tamu.edu/projects/
mkc/>.

[14] C. Jin, D. Wei, S.H. Low, FAST TCP: motivation, archi-
tecture, algorithms, performance, in: Proceedings of the
IEEE INFOCOM, March 2004, pp. 2490–2501.

[15] R. Johari, D.K.H. Tan, End-to-end congestion control for
the internet: delays and stability, IEEE/ACM Trans. Netw. 9
(6) (2001) 818–832.

[16] D. Katabi, M. Handley, C. Rohrs, Congestion control for
high bandwidth delay product networks, in: Proceedings of
the ACM SIGCOMM, August 2002, pp. 89–102.

[17] F.P. Kelly, A.K. Maulloo, D.K.H. Tan, Rate control for
communication networks: shadow prices, proportional
fairness and stability, J. Oper. Res. Soc. 49 (3) (1998)
237–252.

[18] S. Kunniyur, AntiECN marking: a marking scheme for high
bandwidth delay connections, in: Proceedings of the IEEE
ICC, May 2003, pp. 647–651.

[19] S. Kunniyur, R. Srikant, Stable, scalable, fair congestion
control and AQM schemes that achieve high utilization in
the internet, IEEE Trans. Automat. Contr. 48 (11) (2003)
2024–2029.

[20] S. Kunniyur, R. Srikant, Analysis and design of an adaptive
virtual queue (AVQ) algorithm for active queue manage-
ment, in: Proceedings ACM SIGCOMM, August 2001, pp.
123–134.

[21] S. Liu, T. Basar, R. Srikant, Pitfalls in the fluid modeling of
RTT variations in window-based congestion control, in:
Proceedings of the IEEE INFOCOM, March 2005, pp.
1002–1012.

[22] S.H. Low, L.L.H. Andrew, B.P. Wydrowski, Understanding
XCP: equilibrium and fairness, in: Proceedings of the IEEE
INFOCOM, March 2005, pp. 1025–1036.

[23] L. Massoulié, Stability of distributed congestion control with
heterogeneous feedback delays, IEEE Trans. Automat.
Contr. 47 (6) (2002) 895–902.

[24] V. Paxson, Empirically derived analytic models of wide-area
TCP connections, IEEE/ACM Trans. Netw. 2 (4) (1994)
316–328.

[25] R.S. Prasad, M. Jain, C. Dovrolis, On the effectiveness of
delay-based congestion avoidance, in: Proceedings of the
PFLDnet, February 2004.

[26] K.K. Ramakrishnan, S. Floyd, D. Black, The addition of
explicit congestion notification (ECN) to IP, IETF RFC
3168, September 2001.

[27] J. Wang, D.X. Wei, S.H. Low, Modeling and stability of
FAST TCP, in: Proceedings of the IEEE INFOCOM, March
2005, pp. 938–948.

http://irl.cs.tamu.edu/projects/mkc/
http://irl.cs.tamu.edu/projects/mkc/

Y. Zhang et al. / Computer Netw
[28] M.K. Wong, F. Bonomi, A novel explicit rate congestion
control algorithm, in: Proceedings of the IEEE GLOBE-
COM, November 1998, pp. 8–12.

[29] B.P. Wydrowski, M. Zukerman, MaxNet: a congestion
control architecture for maxmin fairness, IEEE Commun.
Lett. vol. 6 (11) (2002) 588–599.

[30] XCP@ISI. [Online]. <http://www.isi.edu/isi-xcp/>.
[31] C.-C. Yu, Autotuning of PID Controllers: A Relay Feed-

back Approach, Springer-Verlag, 2006.
[32] Y. Zhang, T. Henderson, An implementation and experi-

mental study of the explicit control protocol (XCP), in:
Proceedings of the IEEE INFOCOM, March 2005, pp.
1037–1048.

[33] Y. Zhang, S.-R. Kang, D. Loguinov, Delayed stability and
performance of distributed congestion control, in: Proceed-
ings of the ACM SIGCOMM, August 2004, pp. 307–318.
Yueping Zhang received the B.S. degree
in computer science from Beijing Uni-
versity of Aeronautics and Astronautics,
Beijing, China, in 2001. He is currently
working toward the Ph.D. degree in
computer engineering at Texas A&M
University, College Station, USA. His
research interests include congestion
control, delayed stability analysis, active
queue management (AQM), router buf-
fer sizing, and peer-to-peer networks.
Derek Leonard received the B.A. degree
(with distinction) in computer science

and mathematics from Hendrix College,
Conway, Arkansas, in 2002. Since 2002,
he has been a Ph.D. student in the
Department of Computer Science at
Texas A&M University, College Station,
TX. His research interests include peer-
to-peer networks, optimization-based
graph construction, and large-scale
measurement studies of the Internet.

orks 52 (2008) 1193–1219 1219
Dmitri Loguinov received the B.S. degree

(with honors) in computer science from
Moscow State University, Russia, in
1995 and the Ph.D. degree in computer
science from the City University of New
York, New York, in 2002.

Between 2002 and 2007, he was an
Assistant Professor in the Department of
Computer Science at Texas A&M Uni-
versity, College Station. He is currently a
tenured Associate Professor and Direc-

tor of the Internet Research Lab (IRL) in the same department.
His research interests include peer-to-peer networks, video

streaming, congestion control, Internet measurement and
modeling.

http://www.isi.edu/isi-xcp/

	Jetmax: Scalable max-min congestion control for high-speed heterogeneous networks
	Introduction
	Background
	Understanding existing methods
	Ideal congestion control
	Methodology
	Stability under heterogeneous delay
	Sensitivity to RTT estimation
	Time-varying delay
	Multi-link stability
	Convergence speed
	Overshoot properties

	Max-min bottleneck assignment
	General stability considerations
	Why bottleneck assignment is important

	JetMax
	Design
	Delay-independent stability
	Max-min fairness
	Capacity-independent convergence rate

	Implementation
	Estimating number of flows
	Maintaining membership of flows
	Managing bottleneck switching
	Eliminating transient packet loss
	Calculating reference rate
	Packet format

	Simulations
	Behavior in {{\cal{T}}}_{2}, {{\cal{T}}}_{3}, {{\cal{T}}}_{4}, and {{\cal{T}}}_{5}
	Effect of mice traffic
	Effect of random packet drops
	Utilization
	Convergence speed

	Linux performance
	Conclusion
	References

