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Abstract—Most existing criteria [3], [5], [9] for sizing router
buffers rely on explicit formulation of the relationship between
buffer size and characteristics of Internet traffic. However, this
is a non-trivial, if not impossible, task given that the number
of flows, their individual RTTs, and congestion control methods,
as well as flow responsiveness, are unknown. In this paper, we
undertake a completely different approach that uses control-
theoretic buffer-size tuning in response to traffic dynamics.
Motivated by the monotonic relationship between buffer size and
loss rate and utilization, we design a mechanism called Adaptive
Buffer Sizing (ABS), which is composed of two Integral con-
trollers for dynamic buffer adjustment and two gradient-based
components for intelligent parameter training. We demonstrate
via ns2 simulations that ABS successfully stabilizes the buffer
size at its minimum value under given constraints, scales to a
wide spectrum of flow populations and link capacities, exhibits
fast convergence rate and stable dynamics in various network
settings, and is robust to load changes and generic Internet
traffic (including FTP, HTTP, and non-TCP flows). All of these
demonstrate that ABS is a promising mechanism for tomorrow’s
router infrastructure and may be of significant interest for the
ongoing collaborative research and development efforts (e.g.,
GENI and FIND) in reinventing the Internet.

I. INTRODUCTION

One of the key components of Internet routers is the I/O
buffer, which is closely linked to various critical performance
metrics, including packet loss rate, end-to-end delay, and
utilization level. On one hand, router buffers should be large
enough to accommodate transient bursts in packet arrivals
and hold enough packets to maintain high link utilization.
On the other hand, large buffers in turn leads to increased
queuing delays and may potentially cause instability of TCP
in certain scenarios [27]. Clearly, optimally determining the
required buffer size is of immense importance for router
manufactures when configuring their routers for the future
high-speed Internet and significantly affects the ability of
large Internet service providers (ISP) to deliver and guarantee
competitive Service Level Agreements (SLA) [33].

As today’s Internet rapidly grows in scale and capacity,
it becomes widely recognized that the classic bandwidth-
delay-product (BDP) [34] rule for sizing router buffers is
no longer suitable for the future Internet. In addition, the
Internet is foreseeing a disruptive evolution driven by focused
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collaborative efforts such as the NSF Global Environment
of Network Innovations (GENI) and Future Internet Network
Design (FIND) initiatives. This imposes significant challenges
as well as great opportunities for all most every corner of
Internet technologies, including the next-generation infrastruc-
ture for router buffer management. As a consequence, there
has emerged in the research community a surge of renewed
interest [3], [5], [6], [9], [10], [16], [18], [19], [23], [28],
[29], [34], [36], [37] in the buffer-sizing problem during the
last five years. However, these results present vastly different,
even contradictory, views on how to optimally dimension the
buffer of a router interface. In addition, all these results rely on
certain assumptions of the incoming Internet traffic and may
have limited applications to and exhibit undesirable behavior
in other traffic models. In contrast, Kellett et al. [23] take
a completely different approach and models the buffer-sizing
problem as the Lur’e problem. Under this model, they pro-
posed a dynamic buffer sizing algorithm called Adaptive Drop
Tail (ADT). However, the control parameter K depends on
the underlying Lur’e formulation and can hardly be obtained
without off-line calculation. Thus, it still remains open to
develop a model-independent buffer-sizing mechanism that is
able to ideally allocate buffers under different traffic patterns.

In this paper, we achieve the goal of buffer sizing by
proposing a new buffer management infrastructure, where the
router adapts its buffer size to the dynamically changing in-
coming traffic based on one or more performance constraints.
We first formulate buffer sizing as the following problem.
Let B be the total size of router’s memory and bl(t) be
the amount of buffer allocated to link l at time t. Then,
the problem becomes determining the optimal buffer size
for each link l under the constraint that

∑
l bl(t) ≤ B. We

then propose that this problem can be alternatively solved by
leveraging the monotonic relationship between buffer size bl

and various performance metrics (e.g., utilization u, loss rate
p, and queuing delay q). Rigorously proving this relationship
is very difficult and out of scope of the paper. Instead, we
provide an intuitive explanation of this result using a simple
yet generic congestion control model.

Utilizing this result, we design a buffer management mecha-
nism, called Adaptive Buffer Sizing (ABS), which dynamically
determines the minimum buffer size satisfying the target per-
formance constraints based on real-time traffic measurements.
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ABS consists of two sub-controllers ABSu and ABSp, each of
which employs an Integral controller that adapts to dynamics
of input traffic by regulating the buffer size based on the error
between the measured and target values of utilization and loss
rate, respectively. However, we observe that the naive Integral
controller ABSu drives buffers of non-bottleneck routers to
infinity. We successfully address this problem by introduce
a damping component, such that the resulting ABSu quickly
converges buffers to their equilibrium values in both bottleneck
and non-bottleneck routers.

Another challenge is how to tune integral gains for optimal
performance. Improper parameter settings may lead to undesir-
able system behavior, such as slow convergence and persistent
oscillations. We solve this problem by associating with each
sub-controller a gradient-based parameter training component,
which is capable of automatically adapting parameters to
achieve their optimal values under the current ingress traffic.
We evaluate the resulting controller in ns2 simulations and
demonstrate that ABS is able to deal with generic Internet
traffic consisting of HTTP sessions, different TCP variants,
and non-TCP flows, is robust to changing system dynamics,
and is scalable to link capacities and flow populations, all of
which make the concept of ABS an appealing and practical
buffer sizing framework for future Internet routers.

The rest of the paper is organized as follows. In Section II,
we explore the monotonic relationship between b, p, and u. In
Section III, we present ABS. In Section IV, we examine ABS
in a variety of scenarios via ns2 simulations. In Section V,
we review related work on buffer sizing. In Section VI, we
conclude our work and point out directions for future work.

II. MOTIVATION

While a comprehensive modeling of Internet traffic and its
relationship with buffer size b remains open, we show in this
subsection that there are strong indications that there exists a
monotonic relationship between b and two key performance
metrics, loss rate p and utilization u. Due to the extreme
difficulty of the problem, we do not seek to present a rig-
orous proof of this monotonic relationship, but provide an
intuitive explanation experimentally via ns2 simulations and
analytically using a simple congestion control model. This
monotonic relationship serves as motivation and foundation of
our adaptive buffer sizing scheme proposed in the following
section.

A. Simulation Illustration

We first empirically examine the impact of the buffer size
on the performance of different congestion control protocols
using ns2 simulations. To accomplish this goal, we utilize
the framework developed in [35], which incorporates into
ns2 the Linux-2.6.16.3 implementations of several proposed
TCP variants, including newReno [12], BIC [38], CUBIC
[30], HSTCP [11], HTCP [26], STCP [24], Westwood [17],
and TCP-LP [25]. The simulation setup is composed of one
bottleneck link of capacity 100 mb/s and ten sources with
packet size 1500 bytes and RTTs uniformly distributed in
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Fig. 1. Effect of buffer size b on loss rate p and utilization u of several TCP
variants.

[30, 50] ms. We set buffers of access links to be 2500 packets
and verify that no packet is lost at these links in all simulations.
The plots of loss rate p and utilization u under different
bottleneck buffer sizes are given in Figure 1, from which we
can see that p and u respectively monotonically decreases and
increases as b grows. Note that the loss curves of CUBIC and
STCP in Figure 1(a) appear to be flat when b is between 64
and 1024 packets; however, we verified numerically that they
are actually monotonically decreasing.

B. Intuition

This monotonic relationship is not surprising. It is intuitive
clear that a larger buffer can absorb more bursts in packet
arrivals, thereby reducing the frequency of packet drops. In
addition, assuming the buffer is always depleted between
events of packet drops, it takes longer time for sources to
saturate a larger buffer so that to experience the next packet
loss. Thus, the average loss rate is a decreasing function
of the buffer size. At the same time, a larger buffer can
hold more packets and thus maintain the bottleneck link at
full utilization for a longer time when senders back off in
response to congestion. Therefore, the average utilization level
proportionally scales with the buffer size. However, the above
reasonings assume a depleted queue after each packet loss
and may not be obvious otherwise. Thus, it is desirable if
we can obtain a more generic explanation with less restrictive
assumptions. We next seek to achieve this goal with a simple
congestion-control model.

C. Simple Model

We note that the goal of this section is not to present
a comprehensive congestion control model that is able to
formulate generic Internet traffic, but to intuitively explain
results observed in the previous section using a simple, but
illustrative, model. We start with the definition of p and u in
mathematical terms. Consider a scenario where traffic passes
through a single-channel FIFO queue of capacity b and service
rate C. Let L(t) and A(t) respectively denote the number of
lost and admitted packets by time t. Then, p is defined as the
long-term average loss rate p = limt→∞ L(t)/(L(t) + A(t)),
u = limt→∞A(t)/Ct as the average utilization, and λ =
limt→∞A(t)/t as the average input rate.

Using these definitions, we next examine the effect of buffer
size on traffic that reacts to congestion using a simple model.
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Denoting by Wi(n) the congestion window size of flow i
during the n-th RTT, we can model a generic congestion
control algorithm as following1:

Wi(n) =

{
Wi(n− 1) + αi

(
Wi(n− 1)

)
no loss

Wi(n− 1)− βi

(
Wi(n− 1)

)
loss

, (1)

where αi(·) and βi(·) are non-negative functions and each
discrete time step corresponds to one RTT. This simple model
subsumes a wide spectrum of loss-based congestion control
protocols, including AIMD (e.g., Reno [1] and Westwood
[17]), MIMD (e.g., Scalable TCP [24]), and many other
existing TCP variants (e.g., BIC [38], TCP-LP [25], and
HSTCP [11]). Note that delay-based schemes (e.g., FAST [22]
and Vegas [7]) generally are not sensitive to buffer size b as
long as it is kept larger than the stationary queue length q∗ of
the system. However, when b < q∗ these methods experience
packet losses and their responses can also be modeled by (1).
Moreover, since (1) allows different response functions αi(·)
and βi(·) for different flows i, this model applies to scenarios
where the traffic is generated by a mixture of protocols.

Assuming N sources with homogeneous RTTs access a
single link of capacity C and letting q(n) be the queue length
at time n, we can model the queuing dynamics as:

q(n) = min
(
(q(n− 1) + X(n)− C)+ , b

)
, (2)

where b is the buffer size and X(n) =
∑N

i=1 Wi(n) is the
total number of arrivals during the n-th RTT. Assuming that
Wi(n) of each source i is bounded above by Wmax, the system
dynamics can be represented by a discrete Markov chain with
state Sn = [W1(n), W2(n), . . . , WN (n)] and state space
O : [1, 2, . . . , Wmax]N .

Let Z(n) be the number of dropped packets during the
n-th RTT: Z(n) =

(
q(n − 1) + X(n) − C − b

)+. Define
v(n) = Z(n)/X(n) as the average loss rate during this RTT.
Assuming packet loss rate of each flow is independent of each
other, we have Pr{Wi(n + 1) = Wi(n) + αi(Wi(n))} =
(1−v(n))Wi(n) and Pr{Wi(n+1) = Wi(n)−βi(Wi(n))} =
1−(1−v(n))Wi(n). Based on this, we can derive the transition
probability between any pair of states. Furthermore, it is clear
that the transition probability depends only on the previous
state, which implies that series {Sn} is a Markov chain. Then,
the following result is easy to obtain.

Theorem 1: The Markov chain defined by (1)-(2) always
converges to a stationarity distribution.

According to Theorem 1, for any fixed N and starting from
any initial state, the Markov chain defined by (1)-(2) always
converges to its steady state. Thus, we omit the transient phase
in the rest of the section and only examine the queuing process
under traffic generated by a stationary Markov chain. In such
a scenario, the following result shows that packet loss rate p
scales inversely proportionally to the buffer size b.

1We assume Wi(n) are rounded to integers during calculations and omit
the corresponding ceiling function for brevity.

Theorem 2: Loss probability p in a finite queue fed by
traffic governed by a stationary Markov chain defined by (1)-
(2) monotonically decreases in queue size b.

Proof: Under the stationary Markov chain defined by
(1)-(2), denote by Sn the state at time n, by M the num-
ber of states, and by π = [π1, π2, . . . , πM ] the stationary
probability vector of each state (i.e., πi = Pr{Sn = i}).
Further let Ai,j(k) be the probability that the chain goes
from state i to j and the next arrival has k packets, i.e.,
Ai,j(k) = Pr{X(n + 1) = k, Sn+1 = j|Sn = i}. Then,
define Ak as the probability matrix whose (i, j)-th element
is Ai,j(k). Using these variables, we can represent the traffic
density ρ as ρ = π

∑∞
k=1 kAke, where e is a column vector

with all elements equal to one.
We next express loss probability of a finite buffer of size b

in terms of the queue length distribution of an infinite buffer,
whose queuing process q′(n) is given by:

q′(n) = (q′(n− 1) + X(n− 1)− c)+ . (3)

Consider the steady-state probability matrix ∆ of the infinite
buffer, where the (k, i)-th element ∆k,i is:

∆k,i = lim
n→∞

Pr{X(n) = k, Sn = i}. (4)

Then, according to [21, Theorem 4], under arrivals governed
by the same stationary Markov chain, loss probability p of a
finite buffer of size b is represented by:

p =
(1− ρ)

∑∞
k=b+1 ∆kA0e

ρ
∑b

k=0 ∆kA0e
, (5)

where ∆k is the k-th row vector of ∆. Since the Markov chain
is stationary, all variables in the last equation are constant.
Thus, it follows that loss rate p monotonically decreases as
buffer size b increases.

Moreover, it is clear that utilization u scales inversely to loss
rate p according to a general TCP model of the form r = c/pd,
where r is the throughput and c and d are constants [38]. This
holds for various TCP flavors including Reno, BIC, HSTCP,
and STCP. Further notice that according to Theorem 2, loss
rate p scales inversely to b. This implies that utilization u
monotonically increases in b. In addition, it is rather obvious
that queuing delay q scales proportionally to buffer size b.
Thus, in the rest of the paper we assume the monotonic
relationship between u and b and q and b.

Finally, we should emphasize that although system (1) is
generic enough to represent the increase/decrease behavior of
a wide class of congestion control algorithms, it is by no means
comprehensive. To make the model complete, one should
additionally consider factors such as heterogeneous delay, slow
start, timeouts, and retransmissions. The pure purpose of this
model is to provide an intuitive explanation of the monotonic
relationship between b and u, p. This result motivates us to
design a dynamic buffer-sizing mechanism presented below.

III. ADAPTIVE BUFFER SIZING (ABS)
In this section, we describe a dynamic buffer sizing frame-

work that is adaptive to dynamics and uncertainties of input
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traffic while maintaining the system under target performance
constraints such as loss rate p∗ and utilization u∗. As an
example of this framework, we start with a simple mechanism,
progressively identify and overcome its underlying drawbacks,
and eventually arrive at the final controller that we call ABS.

A. General Consideration

To design a buffer sizing mechanism, first it is necessary
to understand how buffers are managed in current commercial
routers. The memory system in a Cisco 3600 series router
[8], for instance, is composed of the main processor memory,
shared (packet) memory, flash memory, nonvolatile random
access memory (NVRAM), and erasable programmable read
only memory (EPROM). Among them, we are particularly
interested in shared (packet) memory, which is used for packet
buffering by the router’s network interfaces. Specifically, each
interface is associated with an input hold buffer (IHB), which
resides in the system buffer of shared memory and is used to
store packets for transfer between fast switching and process
switching code. For each packet arriving into an interface, the
interface driver writes it into an IHB. An incoming packet
is immediately dropped if the IHB reaches its maximum size,
which is static and does not grow or shrink based on demands.
Our goal in this paper is redesign IHB such that its size adapts
to dynamics of the incoming traffic.

We note that it is important to distinguish the framework of
dynamic buffer sizing from the large class of AQM algorithms
(e.g., RED [13], REM [4], and PI [20]). These methods operate
within a given buffer size bl and aim to stabilize the queue
occupancy (or queuing delay) at a certain target level, which is
a portion of the selected buffer size bl. Thus, AQM is unable
to solve issues associated with incorrectly sized router buffers.

To better see this, we test several TCP variants under REM
using ns2 simulations. Recall that an REM-enabled router
dynamically updates its packet dropping/marking probability
by monitoring the discrepancy between the aggregate input
rate y(t) and link capacity C and the difference between the
current queue length q(t) and its target value q∗. In the steady
state, the system achieves y(t) = C and q(t) = q∗. In our
simulations, we use a simple “dumbbell” topology with a
single REM (q∗ = 50 pkts) link of capacity C = 10 ms/b
shared by 20 TCP sessions. We use marking at the REM
router and enable ECN at end-users. As seen from Table
I, if we set buffer size of the bottleneck link to b = 100
pkts, which is greater than REM’s target queue size q∗ = 50
pkts, REM successfully maintain the queue size close to q∗

while achieving 100% utilization and 0% packet loss for all
TCP variants. However, if we set buffer size b below q∗,
the bottleneck link suffers significant under-utilization and
prohibitively high loss rate.

In contrast, dynamic buffer-sizing mechanisms focus on
determining the optimal size of the physical buffer. This way,
the router can efficiently allocate its available buffers among
different memory-sharing interfaces, hereby achieving pre-
agreed QoS requirements, shrinking the required space of the
main memory, and reducing the system cost and board space.

TABLE I
PERFORMANCE OF DIFFERENT TCP VARIANTS WITH REM (q∗ = 50 PKTS)

UNDER DIFFERENT BUFFER SIZES.

b = 100 pkts b = 10 pkts
q (pkts) p (%) u (%) q (pkts) p (%) u (%)

Reno 56.14 0.00 100.00 5.41 9.88 84.78
BIC 52.88 0.00 100.00 5.27 9.04 86.52

CUBIC 52.48 0.00 100.00 4.92 7.84 87.22
HSTCP 56.73 0.00 100.00 4.96 9.60 86.59
STCP 54.38 0.00 100.00 5.40 12.48 83.74
HTCP 57.77 0.00 100.00 4.60 8.20 87.46

Westwood 54.61 0.00 100.00 4.99 10.08 84.50

Dynamic buffer sizing schemes can overcome the problem
of improper buffer sizing that AQM is unable to solve or
may be combined with AQM methods to achieve desired
performance. In existing Internet routers where memory is
already fixed, the proposed approach is also valuable since
it guarantees the minimum queuing delay in each interface
under predetermined performance constraints. Additionally,
ABS lends ISPs and router manufactures great freedom in
choosing preferred constraints when configuring their routers.

B. Controller Design

Although the underlying differential/difference equations
describing the effect of router buffer size on Internet traffic
remain unknown, it follows from the last section an important
property of this relationship – monotonicity. This implies
that for any given feasible loss rate p∗ (or utilization u∗)
under stationary input traffic, there exists a unique buffer size
b∗ such that the resulting system achieves p∗ (or u∗). In
addition, this monotonic relationship gives us a hint of the
correct direction in which we should adjust the buffer size.
Specifically, assuming target loss rate p∗ and its actual value
p(n) measured at time n, the router buffer size b(n) should
increase if p(n) > p∗ and decrease otherwise. Analogously,
given u∗ and u(n), b(n) should decrease if u(n) > u∗ and
increase otherwise. This result allows us to develop simple yet
robust controllers to adaptively size router buffers to satisfy
given system constraints.

One natural candidate for achieving this goal is the Integral
controller. First, consider the controller under the loss rate
constraint, in which case bp(n) denotes the buffer size at time
n and ep(n) = p(n) − p∗. Then, the time-domain Integral
controller can be represented by the following difference
equation:

bp(n) = bp(n− 1) + IpT
(
p(n)− p∗

)
, (6)

where T is the sampling interval and Ip is the integral gain.
Similarly, we obtain the control equation of bu(n) under the
utilization constraint:2

bu(n) = bu(n− 1)− IuT
(
u(n)− u∗

)
, (7)

where Iu is the integral gain. It is noteworthy to point out
that since p(n) monotonically decreases with b(n) while u(n)

2Additional constraints, such as queuing delay, can be easily adopted in
our method. For ease of presentation, we only concentrate on loss rate and
link utilization in the paper.
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Fig. 2. ABS (Iu = Ip = 3000 and T = 200 ms) without parameter training
in a network with a single link of capacity 10 mb/s and 20 TCP flows.

increases with b(n), controllers (6) and (8) have opposite signs
before their respective integral gain.

However, the last controller invites a serious problem if
deployed in non-bottleneck routers. This is because a non-
bottleneck router is always under-utilized regardless of its
buffer size. Thus, if u∗ is set to be above the maximally
achievable utilization level of the link, the router always have
u(n) < u∗ and drives its buffer size to infinity. We overcome
this problem by modifying (7) as follows:

bu(n) = bu(n−1)− IuT
(
u(n)−u(n−1)

)(
u(n)−u∗

)
. (8)

Compared to (7), the extra term u(n)− u(n− 1) in (8) is to
damp the effect of (u(n)−u∗). Specifically, in the steady state
of a non-bottleneck router, we must have u(n)−u(n−1) = 0,
which forces the second term of (8) to converge to zero and
prevents bu(n) from diverging to infinity.

Now, we have two buffer sizes bu(n) and bp(n) based on
the utilization and loss rate constraints, respectively. Similar
to BSCL [9] , the minimum buffer size b(n) satisfying both
requirements should be the larger of bp(n) and bu(n), i.e.,

b(n) = max
(
bu(n), bp(n)

)
. (9)

We call the hybrid controller (6)-(9) Adaptive Buffer Sizing
(ABS) scheme and sub-controllers (6) and (8) ABSp and
ABSu, respectively. In practice, an ISP can choose to use
these two controllers together or separately depending upon
the SLA or actual needs. Note that ABS does not rely on com-
prehensive prior knowledge of the system being controlled, but
adapts the controller according to errors of the output signals
u(n) and p(n). As a consequence, ABS is expected to work in
practical network settings and be robust to real Internet traffic
(more on this below).

This controller works very well in many cases. However, its
main limitation lies in the difficulty in choosing the optimal
gain parameters Iu and Ip. Specifically, if they are chosen too
small, the system may suffer from a sluggish convergence rate
to the equilibrium; however, if they are set too large, the sys-
tem may exhibit exceedingly aggressive adaptation behavior
and persistently oscillate around, instead of converging to, the
stationary point. This phenomenon is illustrated in Figure 2,
where 20 TCP flows share an ABS-equipped bottleneck link
of capacity 10 mb/s. We set integral gains Ip = Iu = 3000
and control interval T = 200 ms. As seen in the figures, ABS

is stable and converges the buffer size to 1200 packets when
u∗ = 95% and p∗ = 0.5%. However, when u∗ = 70% and
p∗ = 5% the system becomes unstable and the buffer size
periodically oscillates between 1 and 2700 packets.

Due to the lack of the knowledge of the differential equa-
tions describing the system, it is unlikely that any off-line
pre-training of the controller’s parameters Iu and Ip can
be effective. Even if such a method could exist, parameters
trained for a particular system setting may immediately be-
come inappropriate as the traffic dynamics evolve. We next
seek to overcome this issue by designing a parameters tuning
mechanism that is able to adaptively converge the control
parameters to their optimal values for the current system
configuration.

C. Adaptive Parameters Training

It is clearly a non-trivial task to find the optimal param-
eters for controlling such a complex system as the Internet,
which is especially the case provided that the system has
an unknown underlying model and dynamically changes over
time. However, we manage to achieve this goal using a simple
scheme, which combines the output error [2] method and
the gradient descent [32] technique. In what follows, we
explain our method in the context of ABSu and note that the
mechanism for ABSp can be obtained similarly.

Denote by Iu(n) the instantaneous value of integral gain Iu

at time n. Then, rewrite ABSu’s control equation (8) as:

bu(n) = fu

(
u∗, bu(n− 1), u(n), Iu(n)

)
, (10)

where function fu(.) is given by the right-hand side of (8).
Suppose that the router, at the end of the n-th control interval,
sets its buffer size to bu(n) based on (10) and observes that
link utilization becomes u(n + 1) during the next interval.
Then, we know that if we set u∗ = u(n + 1) as the target
utilization, bu(n) must be the optimal output of controller (10)
under the same traffic pattern and given buffer size bu(n− 1)
and utilization u(n). This is equivalent to saying that under the
optimal control gain I∗u, we must have the following equation:

bu(n) = fu

(
u(n + 1), bu(n− 1), u(n), I∗u

)
. (11)

Thus, at every control step, we get the exact value of the
inverse function of the controlled plant [2]. Hence, it remains
to adaptively adjust Iu(n) to achieve its optimal value I∗u,
which translates into the following optimization problem.

First, define

b′u(n) = fu

(
u(n + 1), bu(n− 1), u(n), Iu(n)

)
(12)

as the actual controller’s output under the current integral gain
Iu(n). This value is not used to decide the buffer size, but is
applied to the following calculation: Fu(n) = b′u(n)− bu(n),
which is the difference between the actual and optimal outputs.
Then, the optimal control gain I∗u under the current traffic is
the one that minimizes Fu(n). To find this optimal parameter,
we use the gradient-descent algorithm.

According to the gradient-decent method, since function
Fu(n) is differentiable at Iu(n), it decreases fastest along the
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Fig. 3. ABS with parameter training in a network with a single link of
capacity 10 mb/s and 20 TCP flows.

direction of its gradient 5Fu(Iu(n)), which is the derivative
of Fu(n) with respect to Iu(n). Thus, at every control step, if
the router updates parameter Iu(n) as follows:

Iu(n + 1) = Iu(n)− γ 5 Fu

(
Iu(n)

)
, (13)

with step size γ (which is set to 1 in the paper), then we
have that sequence Fu(Iu(1)) ≥ Fu(Iu(2)) ≥ . . . , which
eventually converges to zero. In this case, Iu(n) reaches I∗u.

Invoking (8), we simply have:

5Fu(Iu(n)) =
dFu(n)
dIu(n)

(14)

= T
(
u(n + 1)− u(n)

)(
u(n + 1)− u∗

)
.

Combining the last two equations, we arrive at the following
parameter tuning rule for Iu(n):

Iu(n+1) = Iu(n)−γT
(
u(n+1)−u(n)

)(
u(n+1)−u∗

)
. (15)

Following the above techniques, we can derive the following
parameter training rule for Ip(n) in ABSp:

Ip(n + 1) = Ip(n)− γT
(
p∗ − p(n + 1)

)
. (16)

So far, we have finished the design process of ABS, which
now consists of two basic Integral controllers (6) and (8) and
two parameter training components (15)-(16). Note that the
resulting system is independent of the exact model of the
controlled plant and highly adaptive to the plant’s changing
system dynamics. In addition, the proposed parameter training
mechanism is not limited to our particular case, but applicable
to other systems with multiple parameters to be optimized.

To examine performance of the resulting controller, we
rerun simulations in Figure 2. The simulation results are illus-
trated in Figure 3, from which we can see that in both cases
ABS successfully converges the buffer size to its stationary
value and exhibits much faster convergence speed compared
to its original version shown in Figure 2. We note that since
traffic loads at Internet routers change slowly over time, buffer
sizing schemes are able to utilize long sampling intervals to
filter out noise in measurements and achieve more accurate
approximation of the systems average behavior. Thus, the
convergence rate of ABS should not be confused with that
of a congestion control or AQM protocols, whose control
actions are usually performed at the time-scale of milliseconds.
However, as we demonstrate later in the paper, ABS is in

fact very responsive and works well under highly bursty
Internet traffic. Finally, we observe in both simulations that
gain parameters Iu and Ip indeed converge to their respective
optimal value.

IV. PERFORMANCE

We next demonstrate via ns2 simulations performance
of ABS under a wide range of flow populations and link
capacities, dynamically changing traffic loads, synthetic web
traffic, and mixture of TCP and non-TCP flows.

A. Implementation

ABS admits a very simple implementation and incurs mini-
mal computational overhead. Specifically, the router maintains
two counters S1 and S2 to respectively record the amount of
data enqueued and dropped by the router during the current
sampling interval. For each incoming packet k with size sk,
either S1 or S2 is incremented by sk depending on whether
the packet is admitted. Thus, there is only one addition per
packet. At the end of the n-th interval, the router computes
loss rate using p(n) = S1/(S1 + S2) and utilization using
u(n) = (S1 +S2)/(CT ) where C is the link’s capacity. Then,
the router calculates the gain parameters based on (15)-(16)
and decides its buffer size according to (6)-(9). Since these
operations are performed once every control interval (which
is set to 20 seconds in the paper), the incurred overhead is
negligible.

In practice, dynamic buffer sizing may encounter some
implementation issues. For instance, one such problem is
memory fragmentation, which occurs when the router fre-
quently allocates and releases differently sized memory blocks
and as a result the memory space contains a lot of small
unused pieces. This problem can be mitigated by increasing
granularity of memory allocation, i.e., allocating in fixed-size
chunks of memory. Sizes of chunks can be 2048 bytes, 4096
bytes, or other values depending on the system. However, for
purpose of demonstration, we do not include this mechanism
in simulations shown below.

B. Scalability

In this subsection, we compare performance of existing
buffer sizing mechanisms (i.e., BDP, Stanford model, BSCL,
and ABS) under different link capacities C and flow popula-
tions N . Note that due to lack of publicly available implemen-
tation and unspecified control parameter K, we do not include
ADT in this comparison study. We use a “dumbbell” topology
with N long-lived TCP flows, whose RTTs are randomly
distributed in [30, 30+2N ] ms. As suggested in [9], we use the
harmonic average RTT Re for the BDP rule. For the Stanford
model, we use equation b = 2ReC/

√
N . In BSCL, we set the

loss synchronization factor α to 0.6. In both BSCL and ABS,
we set u∗ = 98% and p∗ = 2%.

We first fix link capacity C = 16 mb/s and vary N between
[2, 1024]. The simulation results are illustrated in Table II,
in which data are averaged over the second half of each
simulation to eliminate initial transient effects. As shown in
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TABLE II
PERFORMANCE OF EXISTING BUFFER-SIZING STRATEGIES IN A SINGLE-LINK NETWORK WITH DIFFERENT NUMBERS OF FLOWS N (C = 10 MB/S,

u∗ = 98%, AND p∗ = 2%)

N
BDP Stanford BSCL ABS

b (pkts) p (%) u (%) b (pkts) p (%) u (%) b (pkts) p (%) u (%) b (pkts) p (%) u (%)
2 110 0.08 94.3 155 0.06 95.8 55 0.11 89.6 287 0.03 97.9
4 116 0.18 94.3 116 0.18 94.3 47 0.32 85.5 232 0.09 97.8
8 128 0.42 93.5 91 0.55 88.5 45 0.83 78.6 229 0.23 97.9
16 150 1.05 94.9 75 1.6 87.8 45 1.8 83.4 227 0.74 97.9
32 190 1.76 98.3 68 2.88 92.8 45 3.24 89.8 151 2.04 97.9
64 261 2.76 99.9 66 4.85 95.8 94 4.51 97.6 443 2.00 100.0
128 383 4.06 100.0 68 7.08 97.5 358 4.18 100.0 941 2.05 100.0
256 595 5.11 100.0 75 9.38 98.8 922 4.24 100.0 2006 2.03 100.0
512 965 5.69 100.0 86 11.42 99.8 2106 4.19 100.0 4210 2.00 100.0
1024 1618 6.47 100.0 102 13.45 100.0 4569 3.94 100.0 8613 2.03 100.0

TABLE III
PERFORMANCE OF EXISTING BUFFER-SIZING STRATEGIES IN A SINGLE-LINK NETWORK WITH DIFFERENT LINK CAPACITIES C (N = 16, u∗ = 98%,

AND p∗ = 2%)

C (mb/s) BDP Stanford BSCL ABS
b (pkts) p (%) u (%) b (pkts) p (%) u (%) b (pkts) p (%) u (%) b (pkts) p (%) u (%)

2 19 9.7 99.2 10 12.7 97.5 76 3.7 99.9 148 2.08 99.9
4 38 4.8 98.4 19 6.6 95.1 53 4.0 99.1 131 2.03 99.7
8 75 2.4 96.1 38 3.03 91.9 17 4.3 79.5 120 1.85 97.9
16 150 1.05 94.9 75 1.6 87.8 45 1.8 83.4 227 0.74 97.9
32 300 0.4 97.3 150 0.6 91.2 100 0.8 86.2 333 0.35 97.9
64 600 0.13 98.5 300 0.2 94.3 211 0.3 90.9 496 0.15 97.9
128 1200 0.05 99.2 600 0.08 96.4 432 0.09 93.0 780 0.06 97.8
256 2400 0.021 99.4 1200 0.03 98.1 875 0.04 95.2 1164 0.028 97.9
512 4799 0.003 99.6 2400 0.008 98.6 1760 0.01 97.7 1759 0.012 98.1
1024 9597 0.0003 99.6 4799 0.0007 98.2 3531 0.0009 96.6 3860 0.0008 97.9

the table, when the number of flows is small, both the BDP
and Stanford rules are not very successful in achieving their
design goal (i.e., high link utilization). As N becomes large,
both methods do achieve high utilization, but in the expense
of high loss rates. This is especially evident in the Stanford
model, whose loss rate is 13.45% when there are 1024 flows.
Capability of controlling loss rate is improved in BSCL;
however, it still cannot achieve the target loss rate p∗ = 2%
and suffer from low link utilization when the number of flows
is small. In contrast, ABS achieves its design goal under all
flow populations. Specifically, when N ≤ 32 and utilization
is the primary constraint, ABS successfully maintains link
utilization at close to its target value u∗ = 98%. As N grows
and the loss rate constraint becomes dominant, ABS is still
able to effectively allocate buffer such that the average loss
rate is within a close neighborhood of p∗ = 2%.

It is worth noting that as seen from Table II, when N =
1024, ABS converges the buffer size to 8613 packets. This
buffer size translates into a queuing delay of 10 seconds, which
is prohibitively high for most applications. However, this is not
a problem of ABS, but a consequence of an unrealistic choice
of p∗. In practice, router manufactures and ISPs are free to
adjust u∗ and p∗ according to the type of service they agree to
provide and the actual traffic situation. To avoid exceedingly
large queuing delay, they can increase the link capacity or
enforce a predetermined upper bound of buffer size to prevent
queuing delay from growing beyond a certain threshold value.

We next set N = 16 and examine scalability of these
methods to link capacities. As seen from Table III, the BDP

and Stanford rules result in significant packet loss under small
link capacities (C ≤ 4 mb/s). Although they achieve both low
loss rate and high utilization when C is large (e.g., C ≥ 256
mb/s), the allocated buffer sizes are over provisioned compared
to those of ABS. BSCL experiences less loss rate than the
BDP and Stanford models, but it still does not lead to a buffer
size that satisfies the target loss rate and utilization constraints.
ABS again demonstrates the best performance among all these
methods, maintaining buffer size within the target performance
constraints for all link capacities.

C. Response to Load Changes

The volume of traffic perceived by any Internet router is not
constant, but exhibits burstiness at different time-scales due to
various reasons such as users’ demand, route changes, and load
balancing. Thus, stability and responsiveness in the presence of
load changes is crucial for any buffer sizing scheme purported
to operate in practical routers. Hence, we next examine ABS
in such a scenario. We still use a “dumbbell” topology where
a single bottleneck link of capacity 10 mb/s is shared by 60
heterogeneous TCP flows. The target utilization u∗ = 90%
and loss rate p∗ = 2%. As shown in Figure 4, after all flows
start simultaneously at the beginning, both b(n) and p(n) are
quickly brought to a close neighborhood of their respective
stationary value. At time 48 seconds, 20 flows depart from the
system. As a consequence of the reduced traffic load, packet
loss rate p(n) immediately drops to 1.1%, which allows the
router to release memory space to meet p∗ in this new scenario.
After another 48 seconds, 20 more flows left and again ABS
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Fig. 4. ABS under changing traffic loads (u∗ = 90% and p∗ = 2%).

quickly shrinks the buffer. At time 144 and 192 seconds,
these two sets of departed flows respectively rejoin the system
and ABS is forced to increase the buffer size. It can be
observed from the plots that during the entire simulation, b(n)
demonstrates quick responses to load changes, experiences
small oscillations in both the transient and steady states, and
exhibits smooth transitions between neighboring states.

D. Web Traffic

All scenarios considered so far have only long-lived TCP
flows. However, the real Internet traffic is composed of a
mixture of connections with a wide range of transfer lengths,
packet sizes, and RTTs [14]. Thus, to obtain a better under-
standing of ABS, we next test it in more diverse scenarios.

Consider a network with a single link of capacity 10
mb/s shared by 20 persistent FTP flows in the presence of
background web traffic generated by 100000 HTTP sessions.
Each HTTP session downloads np pages with inter-page time
tp seconds, where np is uniformly distributed in [10, 2000] and
tp is exponentially distributed with mean 1 second. Each page
contains no objects where no is uniformly distributed in [1, 5].
The inter-object time to is exponentially distributed with mean
0.01 seconds. Sizes of objects follow the Pareto distribution
with mean µ = 10 KB and shape parameter α = 1.2. We set
the target utilization u∗ = 95% and loss rate p∗ = 1%.

The simulation results are shown in Figure 5. As observed
from Figure 5(a), ABS’s behavior in this scenario differs
from that of previous simulations in that the buffer size does
not converge to a particular value, but fluctuates between
120 and 210 packets due to bursty ingress traffic. Note that
this phenomenon does not indicate that ABS is incapable of
effectively controlling short-lived web-like traffic, but actually
demonstrates that this mechanism is adaptive and responsive
in highly dynamic scenarios. This can be clearly seen from
Figure 5(b), where utilization p(n) is maintained within a close
neighborhood of its target value p∗ = 95%.

E. Mixture of TCP and Non-TCP Traffic

Recall that analysis of real Internet traffic traces has demon-
strated that although TCP is the predominant transport pro-
tocol, a non-eligible portion of Internet traffic is contributed
by non-TCP protocols [15]. Thus, in this subsection we
examine ABS in a more diverse environment with 20% UDP
background traffic. Consider a scenario where 20 FTP, 20
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Fig. 5. ABS in a single link of capacity 10 mb/s shared by 20 FTP and
100000 HTTP flows (u∗ = 95% and p∗ = 1%).
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Fig. 6. ABS in a single link of capacity 10 mb/s shared by 20 FTP, 20
HTTP, and 20 UDP flows (u∗ = 90% and p∗ = 2%).

HTTP, and 20 UDP flows compete for resources of a single
link of capacity 10 mb/s. Traffic parameters of HTTP flows are
the same as the last subsection and each UDP flow transmits
packets at a constant rate 0.1 mb/s. We set reference values
of the bottleneck router to be u∗ = 90% and p∗ = 2%.
The simulation result is shown in Figure 6, where ABS is
dominated by the loss constraint and p(n) quickly reaches
and subsequently remains in a close neighborhood of p∗.

According to Section II, the monotonic effects of buffer
size b(n) on loss rate p(n) and utilization u(n) should also
hold for traffic generated by a set of different congestion
control protocols. Thus, we next test ABS under a mixture
of TCP variants. Specifically, we preserve values of p∗ and
u∗, increase the link capacity to 100 mb/s, and synthesize the
ingress traffic with 10 Reno, 10 HSTCP, 10 STCP, 10 HTCP,
and 10 Westwood flows with RTTs uniformly distributed
within [40, 60] ms. As illustrated in Figure 7, ABS successfully
maintains u(n) around its target value u∗.

Thus, examples provided in this and the preceding sub-
sections clearly demonstrate ABS’s excellent capability of
regulating the buffer size under different traffic patterns and
transport protocols, making the concept of an ABS-like dy-
namic scheme a highly versatile and appealing buffer sizing
mechanism for real Internet routers.

F. Multi-Link Topology

We next extend out study to multi-link networks and see
whether interactions between multiple ABS routers can pro-
duce undesirable effects. Towards this end, consider a two-link
“parking lot” topology with three sets of flows. Each set is
composed of 20 FTP, 10 HTTP, and 10 UDP (with constant
rate 0.1 mb/s) flows. These three sets of flows respectively pass
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Fig. 7. ABS in a single link of capacity 100 mb/s shared by 10 Reno,
10 HSTCP, 10 STCP, 10 HTCP, and 10 Westwood flows (u∗ = 90% and
p∗ = 2%).

through the first link, second link, and both links. Capacities
of these two links are respectively 50 and 20 mb/s. Constraint
values are u∗1 = 95% and p∗1 = 1% for the first link and
u∗2 = 75% and p∗2 = 5% for the second link. As seen from
Figure 8, two ABS routers do not intervene each other and
successfully maintain utilization at their respective target level.

Based on simulations conducted in this subsection, we have
demonstrated that ABS achieves its design goal – regulat-
ing buffer size b(n) to satisfy the pre-specified performance
constraints. Furthermore, ABS is shown to be stable in the
presence of dynamically changing loads and robust to a diverse
mixture of long and short TCP flows and even non-TCP traffic.
All of these properties make ABS a highly appealing buffer
sizing scheme for real Internet routers.

V. RELATED WORK

It is commonly suggested that the buffer size b of a
bottleneck router should be at least the product of the output
link’s capacity C and the average round-trip time R of all
incoming TCP sessions, i.e., b ≥ CR. This rule-of-thumb
is commonly attributed to Villamizar and Song [34] and
is deployed in most current large commercial routers [3].
However, the huge amount of memory space required by this
rule becomes progressively unrealistic as link speed of the
Internet evolves to the magnitude of multiple giga-bps and
even tera-bps.

As pointed out by Appenseller et al. [3], this classic princi-
ple is applicable in scenarios where only synchronized long-
lived TCP flows are present. However, Internet core routers are
usually utilized by hundreds of thousands of heterogeneous
flows, in which case synchronization rarely happens and
the aggregate window size process converges to a Gaussian
process [3]. Based on this result, they prove that when router
buffers are sized according to b = CR/

√
N , link utilization is

lower bounded by 98.99%. This result deviates from the rule-
of-thumb in that their suggested buffer sizes scale inversely
to the number of flows, indicating that all current backbone
routers are over-buffered and their memory space and costs
can be substantially reduced.

The small-buffer criteria are extended by Enachescu et
al. [10], who suggest that buffers be as small as 10 − 20
packets in core routers provided the packet arrival process
follows a Poisson distribution. This assumption is enforced
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Fig. 8. ABS in a “parking lot” topology (p∗1 = 95% and p∗2 = 75%).

by introducing Paced TCP [10], where senders evenly spread
out-going packets over an RTT. This result is further extended
to the model of combined input-output queue [6] and later
supported in [29], [37].

Although the assumption of totally asynchronous flows and
Poisson arrivals are sound for backbone routers, as pointed
out in [9], generic Internet routers are usually accessed by
partially synchronized flows. In this case, the minimum buffer
requirement is shown to be [9]:

b =
p(N)CRe − 2SN(1− p(N))

2− p(N)
, (17)

where Re is the harmonic mean of the RTTs, S is the MTU,
p(N) = 1 − (1 − 1/N)LN is the fraction of flows that see
at least one packet loss, and LN is the average number of
dropped packets during a congestion event.

Besides saturating a given link, Dhamdhere et al. [9] pro-
pose that minimizing packet loss rate should also be taken
into account when sizing router buffers. To accomplish this
goal, they develop a buffer management rule based on Flow
Proportional Queuing (FPQ), in which the loss rate is kept
within a threshold value p by increasing the RTTs (or the
buffer size) of the flows proportionally to N . Letting Rp

and R∗q respectively be the propagation and required queuing
delays of the link, the proposed buffer sizing equation is

b = CR∗q = K∗
pN − CRp, (18)

where K∗
p = 0.87/

√
p∗ and p∗ is the target loss rate. If

we consider both utilization and loss constraints, buffer size
should be the larger of (17) and (18) and the resulting mech-
anism is called Buffer Sizing for Congested Link (BSCL) [9].
Note that buffer sizing rule (18) suggests that the bottleneck
buffer should linearly increase with N , which is in sharp
contrast to the aforementioned small-buffer criteria.

Compared to the above schemes that seek to derive an
explicit model of buffer size and Internet traffic, another class
of methods tries to solve this problem by utilizing a certain
implicit relationship between them. Specifically, Shorten et al.
[31] propose a method called Adaptive AIMD, which is shown
to adapt to any buffer size in the path. In addition, Kellett et al.
[23] formulate the relationship between buffer size and utiliza-
tion as a sector-bounded nonlinearity and develop an adaptive
buffer sizing scheme called Adaptive Drop Tail (ADT), whose
control equation is given by b(n) = b(n− 1) + K(u∗ − u(n),
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where unspecified parameter K needs to satisfy K ∈ (0, 2/k2)
to achieve stability and k2 is the sector nonlinearity upper
bound. However, it is unclear how k2 is obtained for a given
traffic condition and how it can be calculated in real time as
the system’s dynamics change. Clearly, ADT has to resolve
these issues before being used in real Internet routers.

VI. CONCLUSION

In this paper, we designed and implemented a dynamic
buffer sizing scheme, called ABS, that stabilizes the buffer
size to its minimum value satisfying given utilization and/or
loss constraints. ABS is composed of two Integral controllers
ABSu and ABSp, each of which is equipped with a pa-
rameter training component using a gradient-based technique
to achieve the optimal control gains. Besides stability and
optimality, an appealing feature of ABS is its robustness to
generic Internet traffic composed of long, short, and non-TCP
flows. Thus, ABS can significantly benefit router manufactures
and ISPs by improving their routers’ performance, reducing
system cost, and providing QoS guarantees.

We finally note that the emphasis of the paper is not demon-
strating superiority of a particular controller, but advocating
a new buffer management methodology and presenting the
possibility of optimally sizing router buffers using a simple yet
robust controller without comprehensive knowledge of Internet
dynamics. This controller actually may be replaced by more
advanced candidates (e.g., nonlinear PID and variable structure
control). Our future work involves designing simpler ABS-like
mechanisms, analyzing ABS in its transient phase, studying its
stability in more complicated congestion control models, and
implementing and testing it in hardware routers under real
Internet traffic.
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