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Stability and Delays

* Future high-speed networks are likely to require
new types of congestion control

— Current efforts include XCP, BIC-TCP, FAST TCP,
HSTCP, Scalable TCP, etc.

* Besides improving classical E2E approaches,
another direction is to involve Active Queue
Management (AQM)

— In AQM, routers compute explicit feedback
— No per flow management is usually allowed

— Feedback is computed based on aggregate arrival
rates of all flows



Stability and Delays 2

* In AQM congestion control, asymptotic stability is
one of the most basic requirements

— Assume x(t) is the sending rate of a flow at time ¢

— Desired behavior:

lim z(t) = =™
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Stability and Delays 3

« Stability is often compromised by feedback delay

» Delayed stability proofs are generally
complicated, especially under heterogeneous
delay:

— Each flow has a different RTT equal to D, time units

— Metric D, can be fixed for each flow or changing over
time (i.e., random)

* Not only are real Internet delays heterogeneous,
they are also directional

— Delays to/from each router are non-negligible
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For each router j in user’s path r,
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* Does stability under homogeneous delay imply
that under heterogeneous delay?

— The answer is NO

« Until 2004, no prior work obtained a controller
that was provably stable under heterogeneous
delay and whose stability condition did not
depend on delay

— This paper and Srikant’s paper in ACC 2004 are the
first two approaches to do so




Classic Kelly Control

* Our analysis examines optimization-based
framework introduced by Kelly et al. in 1998

— Kelly control offers an economic interpretation of the
user-resource model

— Performance of the system is optimized when the
utilities of end-users are locally maximized

« Continuous control has been proven to be
globally asymptotically stable in the absence of
delay (Kelly 1998)

— Further analysis under delay has become an active
research field (Massoulie 2002, Kunniyur 2000,
2001, 2003, Vinnicombe 2000, 2002, etc.)
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« Stability of Kelly control in the discrete case is
studied by Johari in 2001

— Since all real networks are discrete, we also take
this approach

« Under heterogeneous feedback delays, Johari et
al. discretize Kelly control as follows:

xz(n) — xz(n _ 1) < preceding sending rate

T + ri(w; —xi(n— Dy) Y pi(n— Dg)),
next sending T t |

rate T rate RTT time T packet loss
positive  ynits earlier of router ;j
constants over all routers 9

In the path



Classic Kelly Control 3

* Under constant delay D.=D, the discrete Kelly
control is asymptotically stable if (Johari 2001):

ki ) (05 + 15 D wu)ly) <

1ET; UES;

where " is the steady-state rate of user u

* Under heterogeneous delays, the continuous
Kelly control is stable if (Vinnicombe 2000):

/ cannot support
K Z ((pj Pj Z Iu)‘x,ﬁ) < arbitrarily large
JET; UCS; delay!
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Our Contributions

* Prove that there exists a wide class of non-linear
max-min control systems, whose heterogeneous
stability does not depend on delays

* Propose a new controller called Max-min Kelly
Control (MKc), which is stable under
heterogeneous delays, exponentially convergent
to efficiency, and quickly convergent to fairness

* Provide novel implementation of AQM
congestion control that properly estimates
aggregate user rates and achieves theoretically

predicted performance
11
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Max-min Kelly Control (MKC)

* End-user equation:
zi(n) = (1 — Bn;(n))z;(n — D;) + «

| P T

constant packet loss rate RTT time constant
units earlier

» Utilize max-min fairness, where the feedback is
the packet loss of the most-congested resource

along the path: () y — 1y pj(n — D;; ),

J
set of routers in the path ——

aggregate

where: . rate
u 7 13



Delay-Independent Stability

 Theorem. Assume an N-dimensional undelayed
nonlinear system N

ri(n) = fi(x1(n —1),220(n - 1), -, zx(n — 1)),

where f,(.) are some non-linear functions.

* |If the Jacobian matrix J is real-valued and
symmetric, then system N, with arbitrary delays:

zi(n) = f;(z1(n— D1’ = Dj"),x2(n—D3"— D7),
,xny(n— Dy — D;_))

is stable if and only if Ais stable “



Stability of MKC

* The Jacobian of (K¢ real and symmetric

 Theorem. Heterogeneously delayed pKC Is
locally asymptotically stable if and only if:

0 < Ap"< 2,
o<@;+5 <2,
stationary

packet loss

%
stationary derivative of the
sending rate packet loss function

Stability conditions do not depend on any delays or

the routing matrix of end-flows! e




Exponential MKC (EMKC)

 Assume a set S of V users congested by a
common link of capacity C

-

S <

N

]

1

=

« EpMKC has a particular packet loss function p(n):

23;1 ru(n — Dy") —C
25;1 Ty(n — D@T)

p(n) =
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Exponential MKC (EMKC) 2

 Theorem. Heterogeneously delayed EpKC Is
locally asymptotically stable ifand only if 0 < 5 < 2

The only parameter affecting heterogeneous
stability of EMKC is 3

* |In fact, many other systems with a symmetric
Jacobian exhibit similar delay-independent stability

 The equilibrium individual rate is z*= C/N + o/f

EMKC is fair regardless of end-flow RTTs!

17



Exponential MKC (EMKC) 3

* Dynamics of EpKc under constant and random
delays

2 random D € [1,100]

For the same
parameters,
Kelly control is
unstable for
D>3

sending rate (gb/s)
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Convergence to Efficiency

* Under constant delay D, we have:
sggesse (X (n)= (1 - B)"/P(Xo — X*) + X*,
where X, is the combined initial rate

« Lemma. For 0 < 8 < 2 and constant delay D, the
combined rate X(n) of EMKc is globally
asymptotically stable and converges to X" at an
exponential rate

 For0 < 8 <1, EMKc monotonically converges to
its equilibrium; for 1 < 8 < 2, EMKC experiences

decaying oscillations (see paper for examples)



sending rate (mb/s)

EMKC vs. Scalable TCP
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EpKC's convergence is 140 times
faster than that of Scalable TCP 2
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Router

one addition per arriving packet!

s:(k)

i

S=S5+s,(k)

< interval A 2 interval A ——

. m
« - =
X=5/0;5=0 Values p, seq, and A are
p=(X-0C)/X inserted into each
seq = seq - 1 passing packet header

K / 23




User

« Each ACK carries feedback information

— To prevent the user from responding to duplicate or
reordered packet loss, the sender reacts to each
feedback only once (using field seq)

» Recall that (K¢ requires both the delayed
feedback n(n) and the delayed reference rate
z;(n - D;)

— We have the following two options to implement this
mechanism

24



Naive Implementation

z;(n) = x;(n — D;) + o — Bn;(n)x;(n — D;)
sender i t 1

n

| z,(n—-D,)

n—2D.

|

recelver i
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Nailve Implementation 2

 Consider an ns2 simulation where a=100 kb/s,
£5=0.9 and C=10 mb/s
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Naive Implementation 3

Explanation: Inconsistent feedback
and reference rate!
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Proper Implementation

* The goal is to make the feedback and the reference
rate consistent without extra requirements on the
router

* To accomplish this, the sender places a packet
sequence number in each out-going packet

* The sender records in the local memory the
sequence numbers and sizes of all packets that
have been sent since the last rate change

28



Proper Implementation 2
ri(n) = z;(n) + a — Bn;(n)x;(n)

router

zi(n—1)

source




Proper Implementation 3

 Consider an ns2 simulation where a=100 kb/s,
5=0.9, and C=10 mb/s

12
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Simulation

* Next, we examine EpKc under heterogeneous
delays in ns2 (=100 kb/s and 5=0.9)
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Conclusion

* Heterogeneously stable and discrete AQM
congestion control is possible with a very simple
implementation and properties desirable in future
high-speed networks:

— Exponential convergence to link utilization
— Fast convergence to RTT-independent fairness

— Low overhead

33



