Delayed Stability and Performance of Distributed Congestion Control

Yueping Zhang, Seong-Ryong Kang, and Dmitri Loguinov

Department of Computer Science Texas A&M University College Station, TX 77843

Outline

- Introduction
 - Stability and Delays
 - Classic Kelly Control

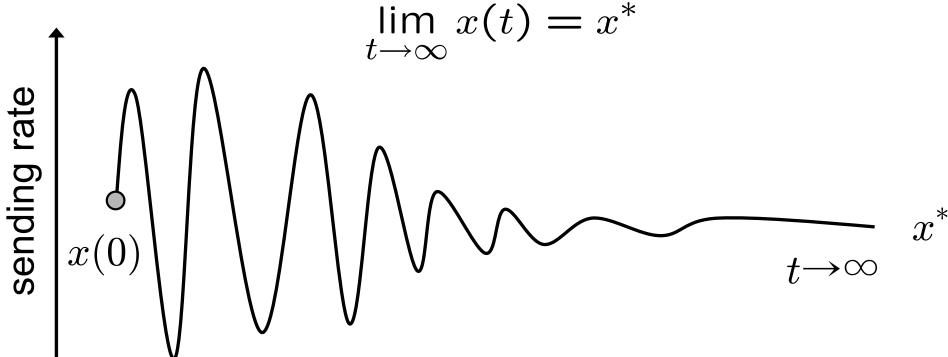
background

- Max-min Kelly Control (MKC)
- Performance
- Implementation
- Conclusion

our work

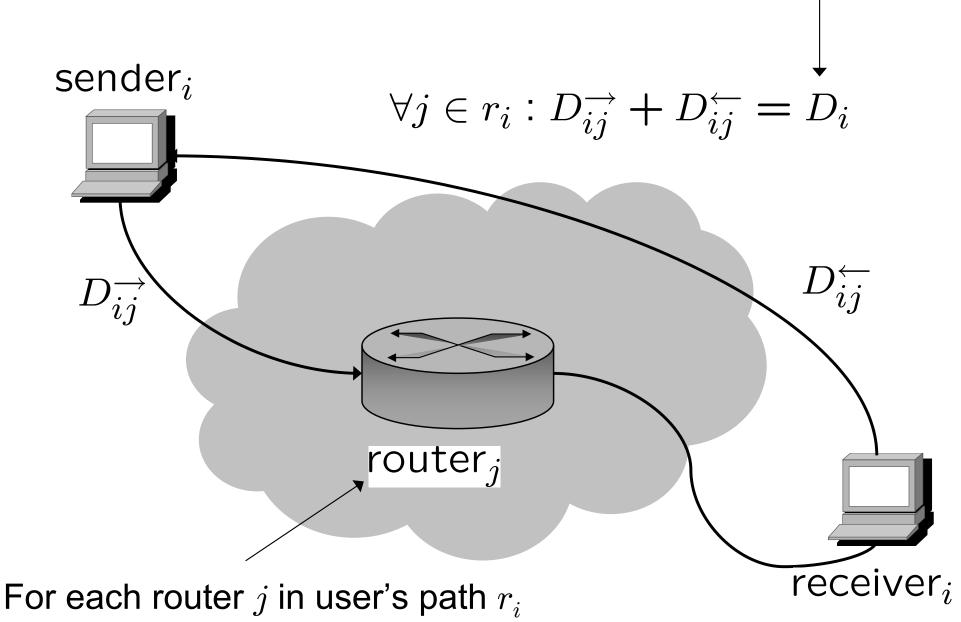
- Future high-speed networks are likely to require new types of congestion control
 - Current efforts include XCP, BIC-TCP, FAST TCP, HSTCP, Scalable TCP, etc.
- Besides improving classical E2E approaches, another direction is to involve Active Queue Management (AQM)
 - In AQM, routers compute explicit feedback
 - No per flow management is usually allowed
 - Feedback is computed based on <u>aggregate</u> arrival rates of all flows

- In AQM congestion control, asymptotic stability is one of the most basic requirements
 - Assume x(t) is the sending rate of a flow at time t
 - Desired behavior:



- Stability is often compromised by feedback delay
- Delayed stability proofs are generally complicated, especially under heterogeneous delay:
 - Each flow has a different RTT equal to D_i time units
 - Metric D_i can be fixed for each flow or changing over time (i.e., random)
- Not only are real Internet delays heterogeneous, they are also directional
 - Delays to/from each router are non-negligible

RTT



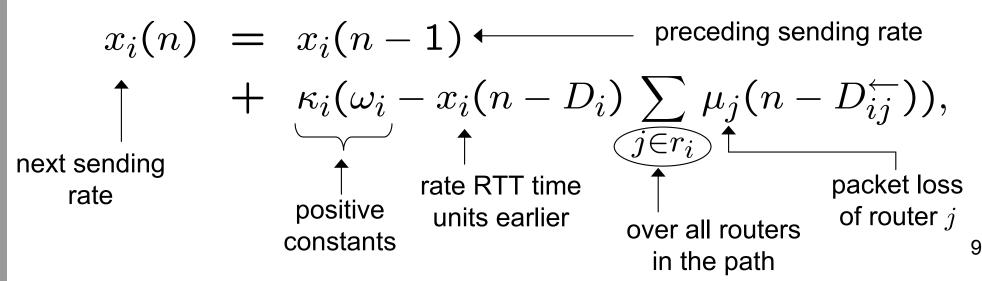
- Does stability under homogeneous delay imply that under heterogeneous delay?
 - The answer is NO
- Until 2004, no prior work obtained a controller that was provably stable under <u>heterogeneous</u> delay and whose stability condition did <u>not</u> depend on delay
 - This paper and Srikant's paper in ACC 2004 are the first two approaches to do so

Classic Kelly Control

- Our analysis examines optimization-based framework introduced by Kelly et al. in 1998
 - Kelly control offers an economic interpretation of the user-resource model
 - Performance of the system is optimized when the utilities of end-users are locally maximized
- Continuous control has been proven to be globally asymptotically stable in the absence of delay (Kelly 1998)
 - Further analysis under delay has become an active research field (Massoulie 2002, Kunniyur 2000, 2001, 2003, Vinnicombe 2000, 2002, etc.)

Classic Kelly Control 2

- Stability of Kelly control in the discrete case is studied by Johari in 2001
 - Since all real networks are discrete, we also take this approach
- Under heterogeneous feedback delays, Johari et al. discretize Kelly control as follows:



Classic Kelly Control 3

• Under constant delay $D_i=D$, the discrete Kelly control is asymptotically stable if (Johari 2001):

$$\kappa_i \sum_{j \in r_i} ((p_j + p_j' \sum_{u \in s_j} x_u)|_{x_u^*}) < 2 \sin\left(\frac{\pi}{2(2D-1)}\right),$$

where $\boldsymbol{x_u}^*$ is the steady-state rate of user \boldsymbol{u}

 Under heterogeneous delays, the continuous Kelly control is stable if (Vinnicombe 2000):

$$\kappa_i \sum_{j \in r_i} ((p_j + p_j' \sum_{u \in s_j} x_u)|_{x_u^*}) < \underbrace{\frac{\pi}{2D_i}}_{\text{arbitrarily large delay!}} \text{cannot support arbitrarily large}$$

Our Contributions

- Prove that there exists a wide class of non-linear max-min control systems, whose heterogeneous stability does not depend on delays
- Propose a new controller called Max-min Kelly Control (MKC), which is stable under heterogeneous delays, exponentially convergent to efficiency, and quickly convergent to fairness
- Provide novel implementation of AQM congestion control that properly estimates aggregate user rates and achieves theoretically predicted performance

Outline

- Introduction
 - Stability and Delays
 - Classic Kelly Control

background

- Max-min Kelly Control (MKC)
- Performance
- Implementation
- Conclusion

our work

Max-min Kelly Control (MKC)

End-user equation:

$$x_i(n) = (1 - \beta \eta_i(n)) x_i(n - D_i) + \alpha$$
 constant packet loss rate RTT time constant units earlier

• Utilize max-min fairness, where the feedback is the packet loss of the most-congested resource along the path: $n_1(n) = \max_{n \in \mathbb{N}} n_1(n-n)$

 $\eta_i(n) = \max_{j \in r_i} p_j(n - D_{ij}^{\leftarrow}),$

set of routers in the path

where:

$$p_j(n) = p_j(\sum_{u \in s_j} x_u(n - D_{uj}))$$
 rate

aggregate

Delay-Independent Stability

• Theorem. Assume an N-dimensional undelayed nonlinear system \mathcal{N} :

$$x_i(n) = f_i(x_1(n-1), x_2(n-1), \cdots, x_N(n-1)),$$
 where $f_i(.)$ are some non-linear functions.

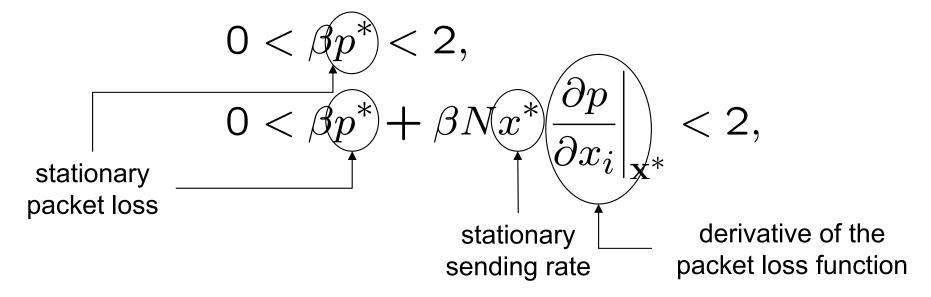
• If the Jacobian matrix J is real-valued and symmetric, then system $\mathcal{N}_{\mathcal{D}}$ with arbitrary delays:

$$x_i(n) = f_i(x_1(n-D_1^{\rightarrow} - D_i^{\leftarrow}), x_2(n-D_2^{\rightarrow} - D_i^{\leftarrow}), \dots, x_N(n-D_N^{\rightarrow} - D_i^{\leftarrow}))$$

$$\cdots, x_N(n-D_N^{\rightarrow} - D_i^{\leftarrow}))$$

Stability of MKC

- The Jacobian of MKC real and symmetric
- Theorem. Heterogeneously delayed MKC is locally asymptotically stable if and only if:

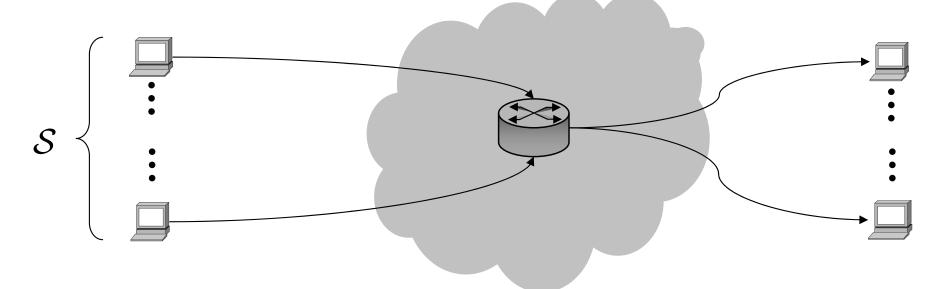


Stability conditions do not depend on any delays or the routing matrix of end-flows!

15

Exponential MKC (EMKC)

 Assume a set S of N users congested by a common link of capacity C



• EMKC has a particular packet loss function p(n):

$$p(n) = \frac{\sum_{u=1}^{N} x_u (n - D_u^{\rightarrow}) - C}{\sum_{u=1}^{N} x_u (n - D_u^{\rightarrow})}$$

Exponential MKC (EMKC) 2

• Theorem. Heterogeneously delayed EMKC is locally asymptotically stable if and only if $0 < \beta < 2$

The only parameter affecting heterogeneous stability of EMKC is β

- In fact, many other systems with a symmetric
 Jacobian exhibit similar delay-independent stability
- The equilibrium individual rate is $x^* = C/N + \alpha/\beta$

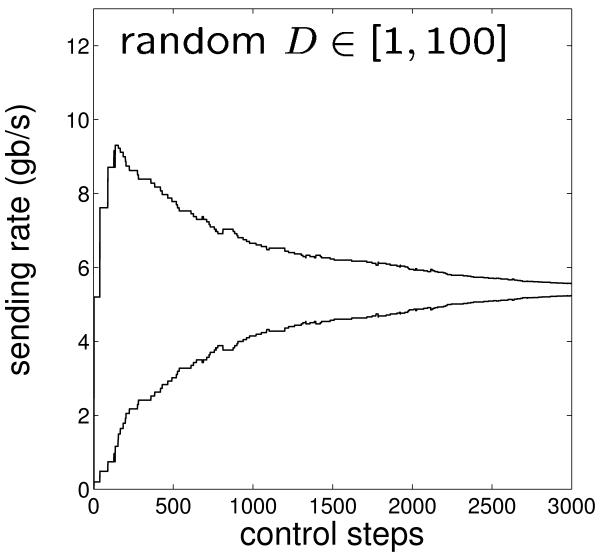
EMKC is fair regardless of end-flow RTTs!

Exponential MKC (EMKC) 3

Dynamics of E_MK_C under constant and random

delays

For the same parameters, Kelly control is unstable for $D{>}3$



Outline

- Introduction
 - Stability and Delays
 - Classic Kelly Control
- Max-min Kelly Control (MKC)
- Performance
- Implementation
- Conclusion

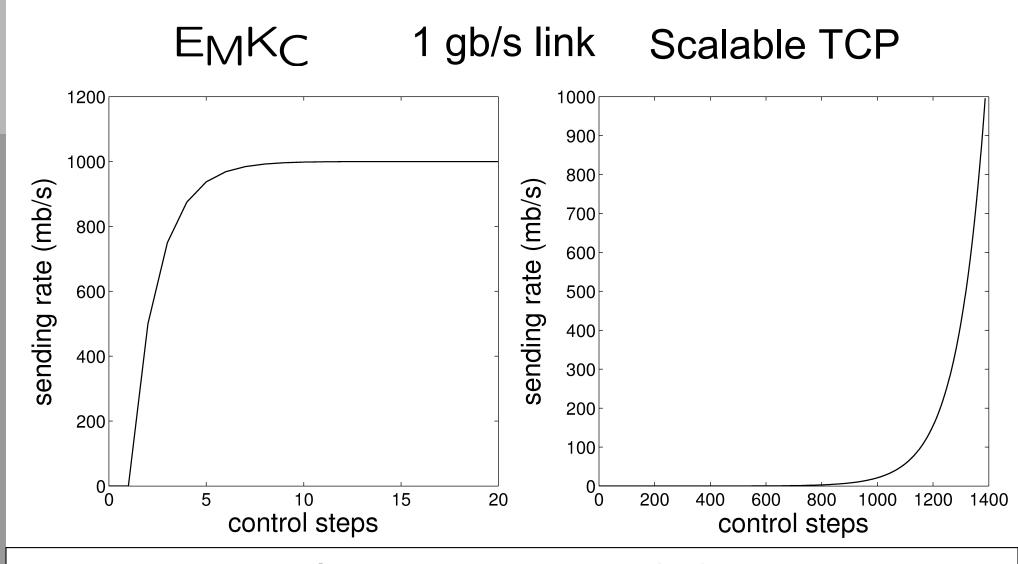
Convergence to Efficiency

• Under constant delay D, we have:

aggregate
$$X(n) = (1 - \beta)^{n/D}(X_0 - X^*) + X^*$$
, where X_0 is the combined initial rate

- Lemma. For $0 < \beta < 2$ and constant delay D, the combined rate X(n) of EMKC is globally asymptotically stable and converges to X^* at an exponential rate
- For $0 < \beta \le 1$, EMKC monotonically converges to its equilibrium; for $1 < \beta < 2$, EMKC experiences decaying oscillations (see paper for examples)

EMKC vs. Scalable TCP



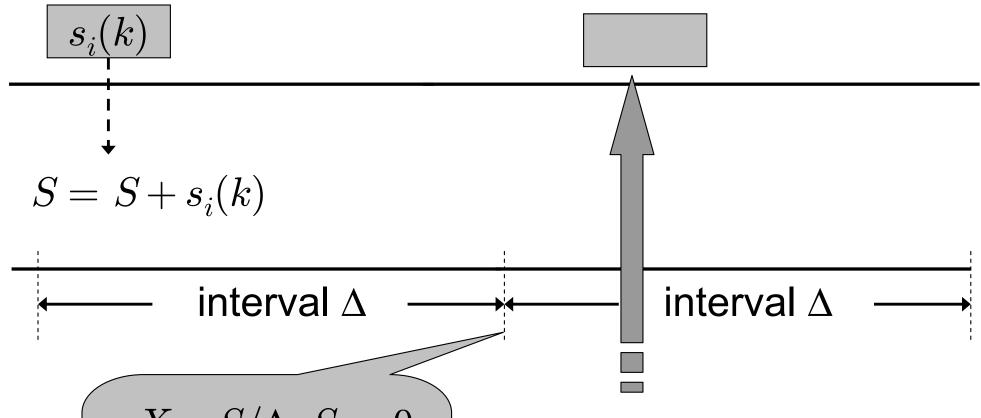
EMKC's convergence is 140 times faster than that of Scalable TCP

Outline

- Introduction
 - Stability and Delays
 - Classic Kelly Control
- Max-min Kelly Control (MKC)
- Performance
- Implementation
- Conclusion

Router

one addition per arriving packet!



$$X = S/\Delta; S = 0$$

$$p = (X - C)/X$$

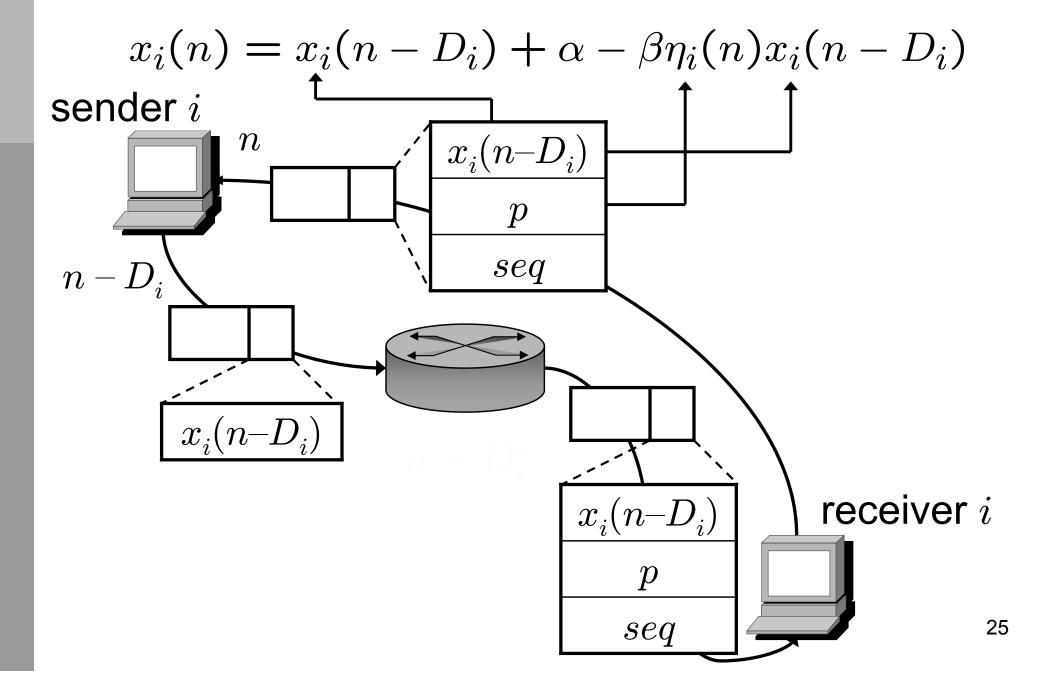
$$seq = seq + 1$$

Values p, seq, and Δ are inserted into each passing packet header

User

- Each ACK carries feedback information
 - To prevent the user from responding to duplicate or reordered packet loss, the sender reacts to each feedback only once (using field seq)
- Recall that MKC requires both the delayed feedback $\eta(n)$ and the delayed reference rate $x_i(n-D_i)$
 - We have the following two options to implement this mechanism

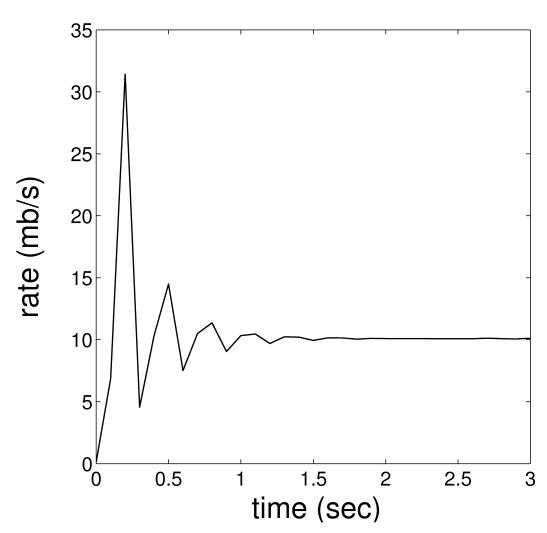
Naïve Implementation



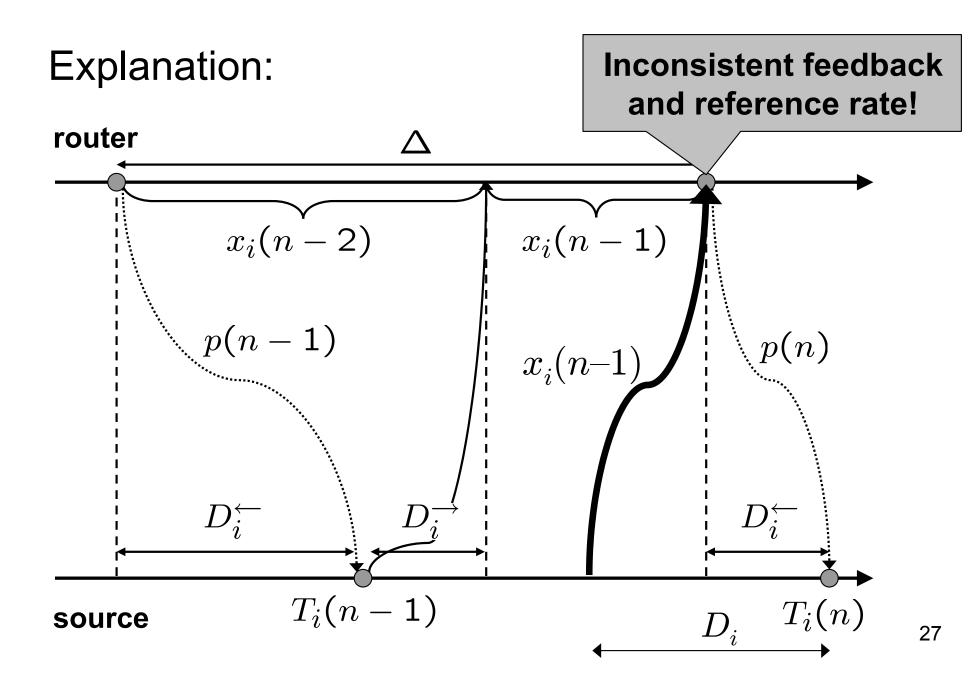
Naïve Implementation 2

• Consider an ns2 simulation where $\alpha = 100$ kb/s, $\beta = 0.9$ and C = 10 mb/s

Transient overshoot by 200%



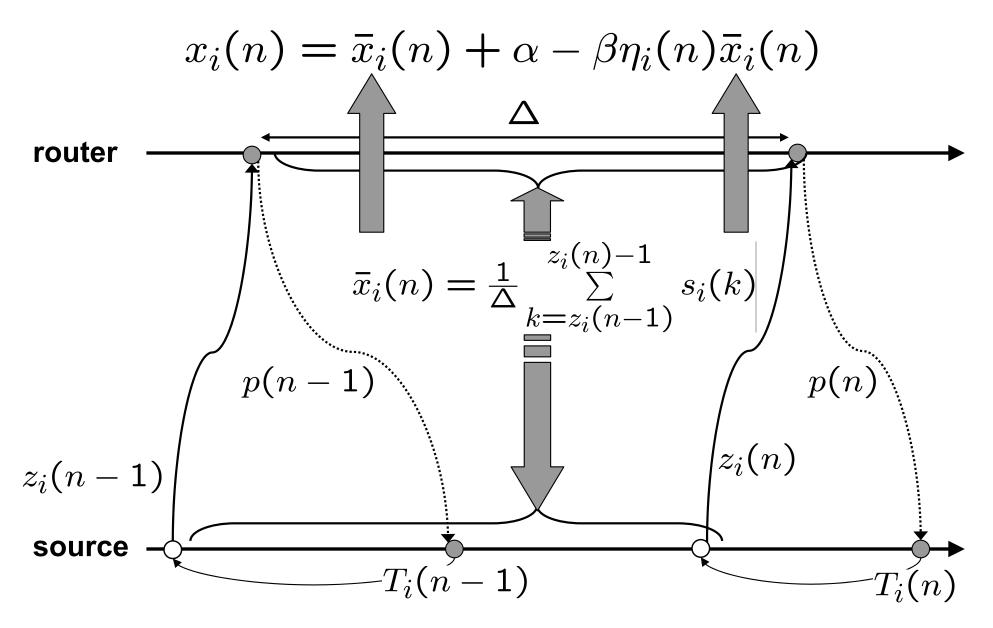
Naïve Implementation 3



Proper Implementation

- The goal is to make the feedback and the reference rate consistent without extra requirements on the router
- To accomplish this, the sender places a packet sequence number in each out-going packet
- The sender records in the local memory the sequence numbers and sizes of all packets that have been sent since the last rate change

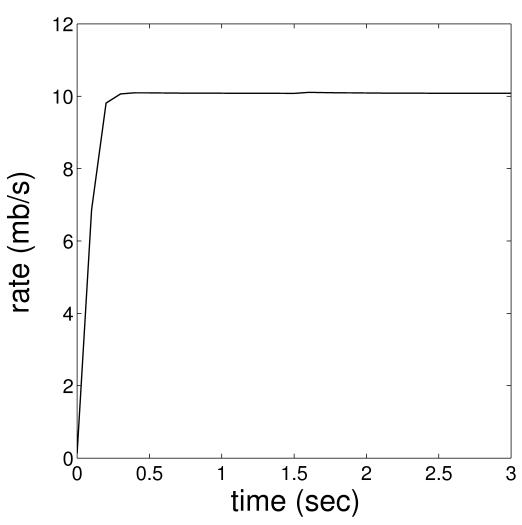
Proper Implementation 2



Proper Implementation 3

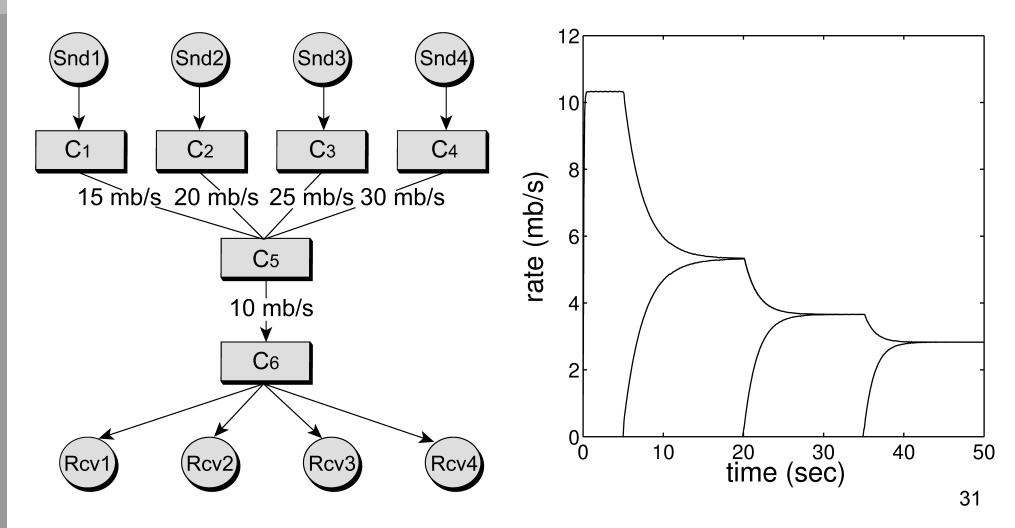
• Consider an ns2 simulation where α =100 kb/s, β =0.9, and C=10 mb/s

Instantaneous rates (no smoothing)!



Simulation

• Next, we examine EMKC under heterogeneous delays in ns2 (α =100 kb/s and β =0.9)



Outline

- Introduction
 - Stability and Delays
 - Classic Kelly Control
- Max-min Kelly Control (MKC)
- Performance
- Implementation
- Conclusion

Conclusion

- Heterogeneously stable and discrete AQM congestion control is possible with a very simple implementation and properties desirable in future high-speed networks:
 - Exponential convergence to link utilization
 - Fast convergence to RTT-independent fairness
 - Low overhead