Faulds:

<u>A Non-Parametric Iterative Classifier</u> <u>for Internet-Wide OS Fingerprinting</u>

Zain Shamsi, Daren B.H. Cline, and Dmitri Loguinov

Internet Research Lab Department of Computer Science and Engineering Texas A&M University

Nov 1, 2017

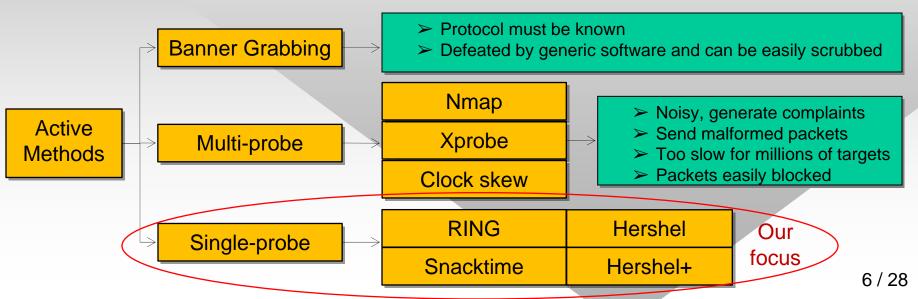
Agenda

- Introduction
- OS Fingerprinting Techniques
- Iterative Classification with Faulds
- Internet Scan
- Conclusion

Introduction

- The Internet is exploding with different types of devices (e.g., phones, printers, cyberphysical, medical devices)
 - Builds unique attack vectors for hackers
 - Provides for interesting measurements for researchers
- One technique used for discovering these devices is OS fingerprinting
 - Determines the OS of a remote host
 - Can fingerprint specific firmware, which can reveal devices such as printers and webcams

Introduction

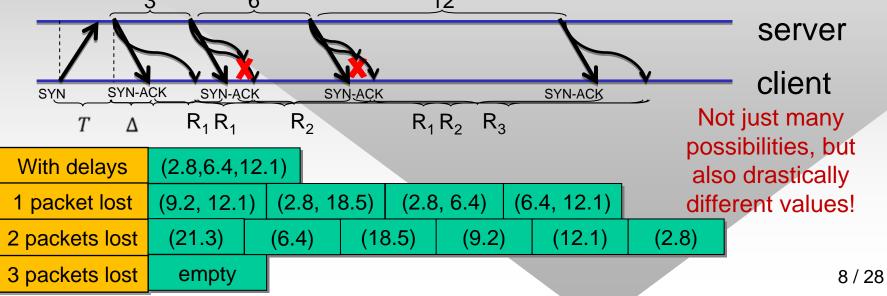

- OS fingerprinting is used widely in network security
 - Used by attackers as part of their reconnaissance/discovery
 - Used by administrators to survey their networks
 - Used by IDS/IPS to build better protections
 - Used by researchers/market analysts to measure networks
- Our focus in this work is improving the results of largescale OS fingerprinting
 - We want to extract all the information we can
 - We do not want to increase our measurement footprint

Agenda

- Introduction
- Background: OS Fingerprinting
- Iterative Classification
- Internet Scan
- Conclusion

Background: Fingerprinting Methods

- For our purposes, we focus on active fingerprinting
 - Passive methods (e.g., p0f) require access to existing traffic
 - Active methods send crafted probes to elicit responses


Background: Single-Probe Fingerprinting

- Single-probe techniques use TCP probes and rely on two types of features for classification
 - Network features: Can be modified by network effects
 - User features: Can be modified by the end-user

os	TCP WindowSize	IP TTL	IP DF	TCP Options	TCP MSS	SYN/ACK RTOs (in seconds)	
Windows 7 / 2008	8192	128	1	MNWST	1460	3 6 12	
HP Laserjet Series	8688	64	0	MNWNNSNNT	1456	2.9 6 12 23.9 29.9	
Cisco IOS	536	255	0	М	536	1.9 4 8	
	User Features Network Feature						
M = MSS, S = SACK, T = Timestamp, W = Window Scale, N = NOP							

Background: Network Features

- Network features are SYN/ACK retransmission timeouts (RTOs)
 - Can be affected drastically by network delays and packet loss

Background: User Features

- User features can typically be modified in OS settings
 - Modification results in arbitrary value fluctuations
 - E.g., Receiver Window more likely to go from 8192 to 65535 than to 8193
- Treating all features as volatile, an observed sample can have multiple OS matches:

Fingerprint	TCP WindowSize	IP TTL	IP DF	TCP Options	TCP MSS	SYN/ACK RTOs (in seconds)
Observed	65535	128	1	MNW	1440	3.1 6.4
Windows 7	8192	128	1	MNWST	1460	3 6 12
HP Laserjet Series	65535	64	1	MNWNNTS	1456	2.9 6 12 23.9 29.9

Background: Hershel+ Review

- The most recent effort in single-probe fingerprinting is Hershel+ [Shamsi16]
- Let D be a database of known OSes, where each OS ω_i has a known feature vector, or fingerprint
- Suppose y is a random observation from some target
 - Hershel+ then determines the most probable ω_i that could have produced it: $\max_i p(\omega_i | y, \alpha_i, \theta) = \theta$ describes the noise

probability of ω_i given observation y

 $\alpha_i = p(\omega_i)$ is the prior probability of ω_i θ describes the noise model for delays (T, Δ) , packet loss, and user tweaking 10 / 28

Background: Hershel+ Review

- Hershel+ classification uses a complex model relies on prior knowledge of (α, θ)
- Due to this, it has several assumptions:
 - α is treated as Uniform ($\alpha_i = \frac{1}{M}$ for all *M* OSes)
 - Forward delay T is treated as a fixed Erlang distribution f_T
 - One-way delay Δ is treated as a fixed Exponential dist. f_{Δ}
 - Packet loss probability q is fixed at 3.8%
 - Each user feature m has a fixed probability π_m to be tweaked

Background: Hershel+ Review

- These static assumptions do not allow flexibility in the network being studied
 - α = Uniform is most certainly not true in practice
 - Network conditions can change drastically
 - User feature modifications generally vary per device
 For example: A Windows host and Xerox printer will probably not be modified with equal probability
- The goal of our work is to solve these deficiencies and recover the true (α, θ)

Agenda

- Introduction
- Background: OS Fingerprinting
- Iterative Classification
- Internet Scan
- Conclusion

Iterative Classification

- Performance of Hershel+ depends on how well (α, θ) can be estimated a priori
 - An evolving Internet makes this extremely difficult
- We argue that (α, θ) should be the **output** of the classifier instead of the input
- We develop an iterative classifier called Faulds that produces this output as part of its classification
 - Named after Dr. Henry Faulds, credited with the first scientific study of human fingerprints in 1880

- We derive several update equations for each parameter in (α, θ) to iteratively build the output
 - We prove that our updates fall under the Expectation-Maximization (EM) framework and follow its convergence properties
- For example, here is our result for estimating the prior probability for OS *i*, or α_i : At iteration t + 1, α_i is the average probability with which observations match to signature ω_i

$$\alpha_i^{t+1} = \frac{1}{n} \sum_{j=1}^{n} p(\omega_i | y_j, \theta^t, \alpha^t) \text{Cond}_{\text{previous}}$$

Conditioned on the previous estimates₁₅ / 28

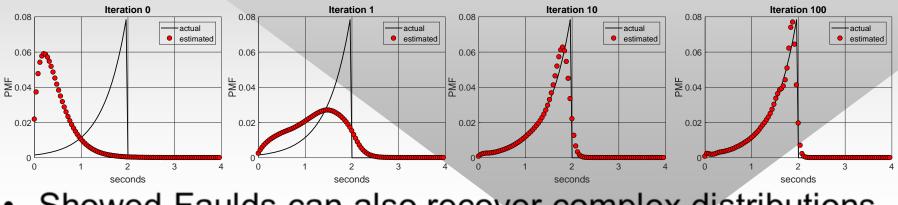
- Similar methodology follows for building distributions in the θ noise model (f_T, f_Δ, q, π)
 - Please see paper for update formulas and all derivations
- This treatment allows Faulds to customize its classification for the network being studied
 - Some networks may contain larger delays/loss (e.g., wireless)
- Faulds also builds per-device user feature models
 - Allows us to study user behavior on different classes of devices

- We test Faulds using several simulation scenarios
 - Our plan is to expose our algorithm to various cases before using it in the wild
- Using a small database of 3 signatures, we simulated 2¹⁸ samples with different (α, θ)
 - Test database captures a mix of features

OS	TCP WindowSize	IP TTL	IP DF	TCP Options	TCP MSS	SYN/ACK RTOs	
Linux 3.2	5792	64	1	MSTNW	1460	36	
Windows 2003	16384	128	0	MNWNNTNNS	1380	3 6.5	
Novell Netware	6144	128	1	MNWSNN	1460	1.4 3	28

• We first focus on simulating different network conditions

Simulation Scenario 1: (Network only)	Hershel+			Faulds		
Real <i>α</i> = (0.9, 0.05, 0.05)	Acc.	Recovered α	Acc.	Recovered α		
<u>Network parameters follow assumptions</u> f_T = Erlang(2), f_{Δ} = Exponential	67%	(0.59, 0.35, 0.06)	95%	(0.89, 0.06, 0.05)		
Packet loss rate = 3.8%		Recovery of α drives Faulds improvement				
Simulation Scenario 2: (Network only)	Hershel+		Faulds			
Real <i>α</i> = (0.9, 0.05, 0.05)	Acc.	Recovered α	Acc.	Recovered α		
f_T = Pareto, f_{Δ} = Pareto Non-uniform packet loss	45%	(0.34, 0.47, 0.19)	97%	(0.90, 0.05, 0.05)		
	Faulds correctly recovers α, f_T, f_Δ, q					

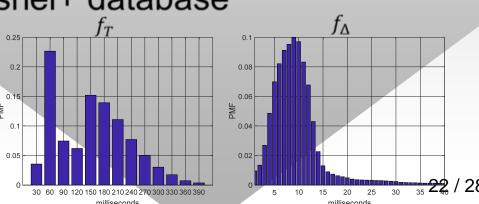

• We now switch to modifications to user features

Simulation Scenario 3: (User only)		Hershel+		Faulds
Real α = (0.7, 0.2, 0.1)	Acc.	Recovered α	Acc.	Recovered α
OS patches cause a change in each user feature with probability 80%	31%	(0.09, 0.59, 0.32)	100%	(0.7, 0.2, 0.1)
$(\pi_m = 0.8 \text{ for all } m)$	Faulds learns new post-patch values to get to 100%			

Simulation Scenario 4: (User only)		Hershel+		Faulds
Real <i>α</i> = (0.7, 0.2, 0.1)	Acc.	Recovered α	Acc.	Recovered α
Users deploy scrubbers that change user features non-uniformly	29%	(0.06, 0.43, 0.51)	91%	(0.7, 0.2, 0.1)
$\pi = (1.0, 1.0, 0.9, 0.8, 1.0)$	Hershel+ is tricked, Faulds learns the true π vectors			

- Please see paper for more scenarios

- We also test Faulds on the full Hershel+ database which contains 420 OS signatures
 - Simulate counter-intuitive examples such as set f_{Δ} to be a reverse-exponential distribution (larger delays more likely)

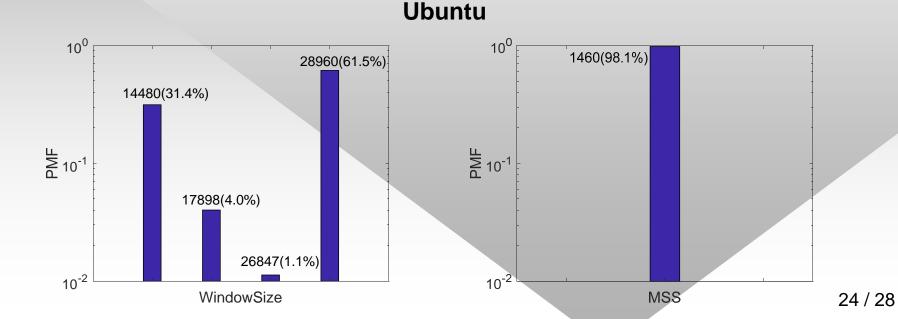


Showed Faulds can also recover complex distributions

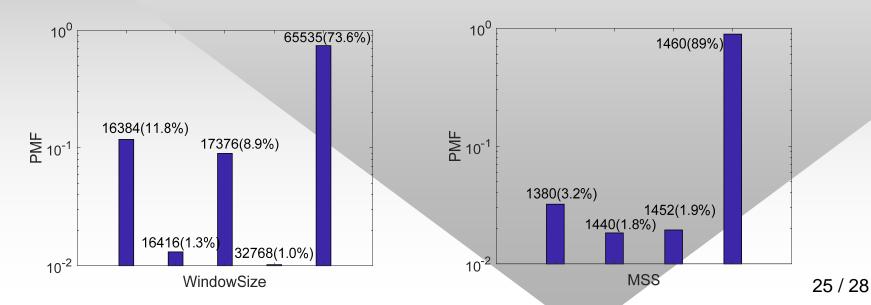
Agenda

- Introduction
- Background
- Iterative Classification
- Internet Scan
- Conclusion

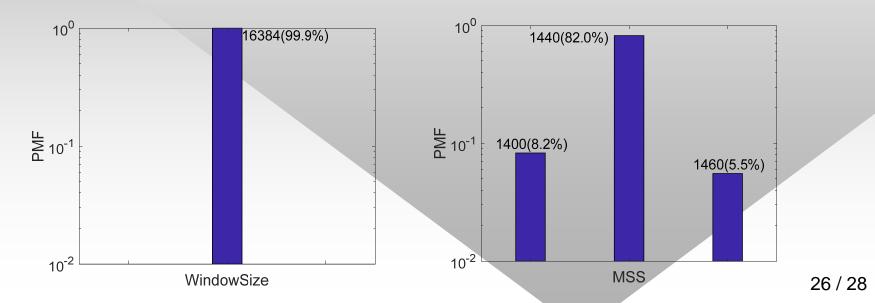
- In December 2016, we conducted a SYN scan of all BGP-reachable IPv4 on port 80
 - About 2.9 billion IPs contacted, received 67.6M responses
- We unleashed Faulds on this dataset for 100 iterations using the Hershel+ database
 - Our final f_T and f_Δ show average T = 148ms and average $\Delta = 15$ ms



- During classification, Faulds consolidates several signatures by learning how much they are tweaked
 - Top 10 classified OSes:


	100 10 0100	onioa	0000	
	os	α _i	Count	
	Ubuntu/Redhat/CentOS	22.4%	14.01 M	
	Debian/SUSE	11.1%	8.89 M	
~	Embedded Linux	8.2%	6.32 M	
lteration	Windows 7 / 10 / 2008	4.7%	2.94 M	
rati	Redhat/SUSE	3.7%	2.40 M	
ltei	Schneider/APC Embedded	2.2%	1.58 M	
	Windows XP / 2003	2.1%	1.31 M	
	Redhat/CentOS	1.8%	1.24 M	
	Embedded Linux	1.5%	1.04 M	
	Windows 2008 R2 / 2012	1.3%	907 K	

OS	α	Count
Ubuntu/Redhat/CentOS	33.4%	21.36 M
, Embedded Linux	10.3%	6.47 M
Windows 7 / 10 / 2008	5.6%	3.66 M
Schneider/APC Embedded Redhat/SUSE	5.5%	3.63 M
Redhat/SUSE	3.1%	2.00 M
Windows XP / 2003	1.8%	1.24 M
Redhat/CentOS	1.6%	1.04 M
Dell Laser / Xerox Printers	1.5%	976 M
Windows 2008 R2 / 2012	1.4 %	837 M
Cisco Embedded	1.3%	824 M


• Faulds outputs interesting details about end-user behavior in modifying each device in the database

 Faulds outputs interesting details about end-user behavior in modifying each device in the database Mac OSX

 Faulds outputs interesting details about end-user behavior in modifying each device in the database Dell Printers

 Faulds found several industrial and enterprise devices reachable from the Internet

OS	Count	Released
Windows 2000 / XP / 2003	1.51 M	2000 - 2003
Windows Server 2003 SP1	195 K	2005
Windows Server 2000 SP4	146 K	2003
FreeBSD 6.4	78 K	2008
Solaris 9 / 10	71 K	2003 / 2005
Mac OSX 10.4	36 K	2005
Novell Netware OES 2	1 K	2005

OS	Count	Туре
Polycom HDX 8000	266 K	Video Conf.
Hickman ITV 450D	67 K	Video Conf.
Cisco IP Phone 7900	27 K	IP Phone
AVTech RoomAlert	21 K	Cyberphysical
Loytec Lighting Control	20 K	Cyberphysical
Tandberg Codian MCU	20 K	Video Conf.
Polycom Realpresence	18 K	Video Conf.
AdTran IP Phones	11 K	IP Phone
D-Link Internet Camera	9 K	Video Conf.

• We also see large numbers of old OSes that are no longer supported still online

Conclusion

- We introduced an iterative EM-based classifier called Faulds to improve single-probe fingerprinting
 - Outperforms previous best classifier Hershel+
 - Builds much more detailed output without increasing measurement cost
- Using an Internet scan, we use Faulds to produce world-wide OS measurements with exhaustive results

THANK YOU!