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IntroductionIntroductionIntroduction

• Classification of large networking datasets is an 
important topic

• This requires a database of known signatures for a 
classifier to match against
━

 

Made of different specimens found in the wild

• Generally, these databases are created manually 
and must be kept up-to-date
━

 

Slow process that usually lags behind the discovery of a 
new specimen

━

 

Is prone to error, heuristic decisions and poor repeatability
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IntroductionIntroductionIntroduction

• The performance of a classifier depends heavily on 
the makeup of the underlying database

• E.g., imagine two databases of animal images
━

 

Database A contains two pictures, 1 rabbit and 1 cat
━

 

Database B contains 5 rabbits, 5 hares and 5 cats

• Then a classifier trying to identify animals could have:
━

 

99% accuracy and a quick runtime using A 
━

 

40% accuracy and slower performance using B since 
rabbits/hares are similar, and more comparisons are needed

• Databases should only keep classes which can be 
differentiated, and drop duplicate specimens
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IntroductionIntroductionIntroduction

• However, data gathered in the wild has more complex 
elements in reality
━

 

Each image captured could additionally be disturbed by 
noise such as lens distortion or motion blur

━

 

Lets say this is given by some noise model X

• We now plot the features of animals in database B
━

 

Under a small noise radius, we cannot 
tell hares and rabbits apart

━

 

With larger noise, we may not be able to 
distinguish cats either

• We want a database that can classify 
specimens correctly under given noise X

rabbit
hare
cat

noise radius
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• We introduce a framework to describe a classifier and 
its database – its dimension d(1—², X)

━

 

This means that the classifier can differentiate between d
 signatures with probability 1—²

 
under noise model X

━

 

The database for this classifier must then contain exactly d
 signatures

• We can use this metric to build databases as well as 
compare the power of classifiers
━

 

In our example, if we had almost no 
noise, our dimension d

 
= 15

━

 

Under small noise radius our dimension d
 

= 2

━

 

Under large noise radius it would be 
reduced to d

 
= 1

IntroductionIntroductionIntroduction

rabbit
hare
cat

noise radius
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IntroductionIntroductionIntroduction
• We define features to be volatile if X

 
can distort them, 

or deterministic otherwise

• Our interest is in the problem of specimen separation
━

 

Deciding whether two observations are too similar for 
database inclusion

• Separation for deterministic features can be simple
━

 

E.g. pick every unique combination as a different signature

• For volatile features, we require a more sophisticated 
solution
━

 

Our goal is to solve this problem
━

 

We apply our method to OS fingerprinting
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• Consider a measurement of production systems 
S1

 

, …, SN

 

in the wild 
━

 

This produces a set of feature vectors 

• Initially, all vectors are added into one large database
━

 

May contain several duplicates

• We want to determine the separability of the 
specimens in this database according to noise X

• We introduce an algorithm called Plata, which refines 
this database and determines its dimension
━

 

La Plata, Argentina was the first city to use fingerprint 
databases in 1892

The Plata AlgorithmThe Plata AlgorithmThe Plata Algorithm



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

10 / 29

• Assume 
 

is a vector of features and ’ is feature 
vector in the database

• Any given classifier will have a function p(|’, X)

━

 

Produces classification probability for ’ becoming 
 

under X

• Plata uses the classifier to compare all database 
signatures to each other under simulated noise

• This constructs a confusion matrix M, where each cell 
is  calculated as:
━

 

θ

 
is random observation noise driven by model X

━

 

Generally, Monte-Carlo simulations can be used to 
determine Mij

The Plata AlgorithmThe Plata AlgorithmThe Plata Algorithm
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• Note that the diagonal of M signifies the probability of 
self classification
━

 

We want signatures that can be matched back to 
themselves with probability 1—², i.e.

• Plata iteratively eliminates signatures from M starting 
with the lowest diagonal value
━

 

Keeps going until all diagonal values are ≥
 

1—²

The Plata AlgorithmThe Plata AlgorithmThe Plata Algorithm
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• Instead of re-running expensive Monte-Carlo 
simulations after each removal, infer the next matrix
━

 

Removing system k
 

distributes its classifications 
proportionally amongst the remaining candidates

• 1—²

 
can be a tuning parameter

━

 

Higher means smaller database, more uniqueness
━

 

Lower means larger database, higher risk of duplicates

• For labeling, we only need to know labels for a subset
━

 

Attach labels to the final clusters based on membership
━

 

The paper gives more details

The Plata AlgorithmThe Plata AlgorithmThe Plata Algorithm
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OS Fingerprinting DatabaseOS Fingerprinting DatabaseOS Fingerprinting Database

• OS Fingerprinting is a technique to determine the OS 
of a remote host

• We split previous work by types of features used

• Packet timing techniques 
━

 

Use volatile and deterministic features
━

 

Low overhead and not intrusive, suitable for large scans

FeaturesFeatures

Deterministic 
Only 

Deterministic 
Only

NmapNmap p0fp0f XprobeXprobe

Use VolatileUse Volatile Packet timingPacket timing
HershelHershel

SnacktimeSnacktime

Clock skewClock skew
[Chen 14][Chen 14] [Kohno 05][Kohno 05]

RINGRING
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• Deterministic features are values from packet headers
━

 

TCP Window, IP TTL, TCP Options etc.

• Volatile features are SYN-ACK Retransmission 
Timeouts (RTOs)

━

 

Volatile due to network queuing delays

OS Fingerprinting DatabaseOS Fingerprinting DatabaseOS Fingerprinting Database

client

server

SYN SYN-ACK SYN-ACK SYN-ACK SYN-ACK/RST/RST-ACK

RTO1 RTO2 RTO3



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

16 / 29

OS Fingerprinting DatabaseOS Fingerprinting DatabaseOS Fingerprinting Database

• We scan our campus network on port 80 and gather 
feature vectors from ~10K systems

• We build databases using three previous packet timing 
classifiers: RING, Snacktime, and Hershel

• Our data is initially separated using the deterministic 
features of each classifier
━

 

Forms several clusters that need to be further separated

• Plata then separates each cluster’s volatile features
━

 

The noise model X  is simulated as a packet queue that adds 
exponential random one way delay to each packet

━

 

We also set 1-²

 
= 0.8

 
to ensure sufficient duplicate elimination
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OS Fingerprinting DatabaseOS Fingerprinting DatabaseOS Fingerprinting Database
• RTOs are not only volatile, but 

also random due to OS timers
━

 

Example shows two Xerox printers

• Most OS signatures have 3-5 RTOs, some with 20
━

 

Doing this separation manually is practically impossible

• Example: Plata separates 2 Windows 2003 signatures

RTO RTO

RTO
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OS Fingerprinting DatabaseOS Fingerprinting DatabaseOS Fingerprinting Database

• We obtain these dimensions for the previous methods:

• This allows us to directly compare the power of each 
classifier in separating the same dataset
━

 

Hershel is clearly the most powerful method

• For labeling, we use banner grabbing 
━

 

Use simhash to form cluster all hosts of similar OS
━

 

Match the label clusters to database, see paper for details
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OS Fingerprinting DatabaseOS Fingerprinting DatabaseOS Fingerprinting Database

• Running Monte-Carlo simulations to determine 
E[p(i

 

+

 
θ

 
| j

 

, X)]

 
for each cell can be time consuming

━

 

Our dataset with 10K hosts takes over 24 hours
━

 

We want easy repeatability and scalability to larger networks

• We can optimize Plata when the noise model allows 
the expectation to be calculated directly

• Since Hershel calculates probabilities, we can derive 
the expected similarity between i

 

and j
 

under θ
━

 

This gives us a closed form for each cell of the Plata matrix
━

 

The paper develops the model, omitted here
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OS Fingerprinting DatabaseOS Fingerprinting DatabaseOS Fingerprinting Database

• We also improve on Hershel’s classifier, calling the 
new method Hershel+ 
━

 

We switch from using jitter to one-way delay, see paper for a 
detailed explanation

━

 

Simulations show it performs up to 10% better than Hershel in 
RTO classification

• Hershel+ now produces 420 signatures (as opposed to 
Hershel’s 398) for our OS database
━

 

Improved dimension also confirms its superiority

• Plata’s closed form matches Monte-Carlo results, 
reduces runtime from 24+ hours to 12 minutes
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Internet ScanInternet ScanInternet Scan
• We performed a port-80 SYN scan of the Internet in 

July 2015
━

 

2.7B IPs in 6 hours, 125K packets / sec
━

 

66.4 million hosts responded, almost double the last study

• On the Internet, observed signatures may undergo 
several changes
━

 

Deterministic features might be changed by users, firewalls
━

 

Packet loss and network delays may change RTOs

• We classify all hosts using Hershel+ as the classifier 
and our database of 420 signatures built using Plata
━

 

This is the largest study performed with so many signatures 
and the first with an automated database
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Internet ScanInternet ScanInternet Scan
• Linux most popular, 

for webservers, 
also a lot of 
embedded devices

• Comparing with 
previous results 
━

 

Linux/embedded 
have doubled

━

 

Windows has stayed 
almost the same

━

 

Misc has lost 69% of its membership

• Paper shows additional results and distributions

(13.88 M)

(13.59 M)

(7.56 M)

(2.39 M)
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Nmap ComparisonNmap ComparisonNmap Comparison

• We Nmap 1% of responsive hosts from a separate 
machine at the same time as our scan

• Nmap sends 10 types of probes to the target host
━

 

Its features are based on existence of responses and values 
from header fields of each response

• Hershel+ and Nmap find agreement in the OS family in 
the majority of cases
━

 

Comparison on the exact OS/device is made difficult due to a 
large variety of OS names, especially for embedded devices

• However, some cases have glaring disagreements
━

 

We focus on four such cases between the two classifiers
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Nmap ComparisonNmap ComparisonNmap Comparison

• Sampled hosts (S1-S4) and their Hershel+ matches:

• Hershel+ overcomes packet loss and changes in the 
TTL/MSS value

• Classifications make sense and are not in doubt
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Nmap ComparisonNmap ComparisonNmap Comparison
• Nmap signatures of the same four systems:

• Nmap allows null features that match everything, 
weighs heavily on whether response was received
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Nmap ComparisonNmap ComparisonNmap Comparison

• Nmap has no provisions for feature volatility, especially 
in its response vector
━

 

Becomes an issue when middleboxes block its packets

• The Tomato signature was matched to 21% of hosts in 
the entire Nmap data
━

 

Very doubtful for so many hosts to run this firmware

• Nmap’s results are questionable on public networks 
where IDS, packet filters and firewalls are abundant

• Future work will determine the dimension of Nmap
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ConclusionConclusionConclusion

• Introduced Plata – an algorithm for separating 
observed samples under feature volatility

• Applied Plata to OS classification and automatically 
built a database of 420 OS signatures 

• Developed an improved state-of-the-art classifier, 
Hershel+, and used it to classify every webserver on 
the Internet

• Compared our results with Nmap, showing that 
disagreements tend to favor the Hershel+ result

Thank you!
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