Unsupervised Clustering Under Temporal Feature Volatility in Network Stack Fingerprinting

Zain Shamsi and Dmitri Loguinov

Internet Research Lab Department of Computer Science and Engineering Texas A&M University

June 16, 2016

- Introduction
- The Plata Algorithm
- OS Fingerprinting Database
- Internet Scan
- Nmap Comparison

- Classification of large networking datasets is an important topic
 - This requires a database of known signatures for a classifier to match against
 - Made of different specimens found in the wild
 - Generally, these databases are created manually and must be kept up-to-date
 - Slow process that usually lags behind the discovery of a new specimen
 - Is prone to error, heuristic decisions and poor repeatability

- The performance of a classifier depends heavily on the makeup of the underlying database
- E.g., imagine two databases of animal images
 - Database A contains two pictures, 1 rabbit and 1 cat
 - Database B contains 5 rabbits, 5 hares and 5 cats
- Then a classifier trying to identify animals could have:
 - 99% accuracy and a quick runtime using A
 - 40% accuracy and slower performance using B since rabbits/hares are similar, and more comparisons are needed
- Databases should only keep classes which can be differentiated, and drop duplicate specimens

- However, data gathered in the wild has more complex elements in reality
 - Each image captured could additionally be disturbed by noise such as lens distortion or motion blur
 - Lets say this is given by some noise model $\ensuremath{\mathcal{X}}$
- We now plot the features of animals in database B
 - Under a small noise radius, we cannot tell hares and rabbits apart
 - With larger noise, we may not be able to distinguish cats either
- We want a database that can classify specimens correctly under given noise X noise radius

rabbit

▲ hare

o cat

- We introduce a framework to describe a classifier and its database its dimension $d(1-\epsilon, X)$
 - This means that the classifier can differentiate between d signatures with probability $1-\epsilon$ under noise model $\mathcal X$
 - The database for this classifier must then contain exactly d signatures
 - We can use this metric to build databases as well as compare the power of classifiers
 - In our example, if we had almost no noise, our dimension d = 15
 - Under small noise radius our dimension d=2
 - Under large noise radius it would be reduced to d = 1

o cat

- We define features to be *volatile* if X can distort them, or *deterministic* otherwise
- Our interest is in the problem of specimen separation
 - Deciding whether two observations are too similar for database inclusion
- Separation for deterministic features can be simple
 - E.g. pick every unique combination as a different signature
- For volatile features, we require a more sophisticated solution
 - Our goal is to solve this problem
 - We apply our method to OS fingerprinting

- Introduction
- The Plata Algorithm
- OS Fingerprinting Database
- Internet Scan
- Nmap Comparison

- Consider a measurement of production systems $S_1, \, \dots, \, S_N$ in the wild
 - This produces a set of feature vectors
- Initially, all vectors are added into one large database
 - May contain several duplicates
- We want to determine the separability of the specimens in this database according to noise ${\cal X}$
- We introduce an algorithm called Plata, which refines this database and determines its dimension
 - La Plata, Argentina was the first city to use fingerprint databases in 1892

- Assume Δ is a vector of features and Δ ' is feature vector in the database
- Any given classifier will have a function $p(\Delta | \Delta', \mathcal{X})$
 - Produces classification probability for Δ' becoming Δ under ${\mathcal X}$
- Plata uses the classifier to compare all database signatures to each other under simulated noise
- This constructs a confusion matrix M, where each cell is calculated as: $M_{ij} = E[p(\Delta_i + \theta | \Delta_j, \mathcal{X})]$
 - θ is random observation noise driven by model \mathcal{X}
 - Generally, Monte-Carlo simulations can be used to determine ${\cal M}_{ij}$

- Note that the diagonal of *M* signifies the probability of self classification
 - We want signatures that can be matched back to themselves with probability $1-\epsilon$, i.e.

$$E[p(\Delta_i + \theta | \Delta_i, \mathcal{X})] \ge 1 - \epsilon$$

- Plata iteratively eliminates signatures from *M* starting with the lowest diagonal value
 - Keeps going until all diagonal values are $\geq 1 \epsilon$

- Instead of re-running expensive Monte-Carlo simulations after each removal, infer the next matrix
 - Removing system k distributes its classifications proportionally amongst the remaining candidates

$$M_{ij} = M_{ij} + \frac{M_{ij}}{1 - M_{ik}} M_{ik}$$

- $1-\epsilon$ can be a tuning parameter
 - Higher means smaller database, more uniqueness
 - Lower means larger database, higher risk of duplicates
- For labeling, we only need to know labels for a subset
 - Attach labels to the final clusters based on membership
 - The paper gives more details

- Introduction
- The Plata Algorithm
- OS Fingerprinting Database
- Internet Scan
- Nmap Comparison

- OS Fingerprinting is a technique to determine the OS of a remote host
- We split previous work by types of features used

- Packet timing techniques
 - Use volatile and deterministic features
 - Low overhead and not intrusive, suitable for large scans

- Deterministic features are values from packet headers
 TCP Window, IP TTL, TCP Options etc.
- Volatile features are SYN-ACK Retransmission Timeouts (RTOs)

- Volatile due to network queuing delays

Label	Win	TTL	DF Flag	TCP Options	MSS	SYN-ACK RTOs
Windows 7	8192	128	1	MNWST	1460	3 6 12
Ubuntu	5792	64	1	MSTNW	1460	4.3 6 12 24 48

- We scan our campus network on port 80 and gather feature vectors from ~10K systems
- We build databases using three previous packet timing classifiers: RING, Snacktime, and Hershel
- Our data is initially separated using the deterministic features of each classifier
 - Forms several clusters that need to be further separated
- Plata then separates each cluster's volatile features
 - The noise model ${\mathcal X}$ is simulated as a packet queue that adds exponential random one way delay to each packet
 - We also set $1 \epsilon = 0.8$ to ensure sufficient duplicate elimination

16/29

- RTOs are not only volatile, but also random due to OS timers
 - Example shows two Xerox printers

- Most OS signatures have 3-5 RTOs, some with 20
 - Doing this separation manually is practically impossible

• We obtain these dimensions for the previous methods:

Grouping	RING	Snacktime	Hershel
Deterministic Features Only	28	209	344
Volatile Features Only	23	52	117
Both	39	260	398

- This allows us to directly compare the power of each classifier in separating the same dataset
 - Hershel is clearly the most powerful method
- For labeling, we use banner grabbing
 - Use simhash to form cluster all hosts of similar OS
 - Match the label clusters to database, see paper for details $\frac{1}{18}$

- Running Monte-Carlo simulations to determine $E[p(\Delta_i + \theta \mid \Delta_j, \mathcal{X})]$ for each cell can be time consuming
 - Our dataset with 10K hosts takes over 24 hours
 - We want easy repeatability and scalability to larger networks
- We can optimize Plata when the noise model allows the expectation to be calculated directly
- Since Hershel calculates probabilities, we can derive the expected similarity between Δ_i and Δ_j under θ
 - This gives us a closed form for each cell of the Plata matrix
 - The paper develops the model, omitted here

- We also improve on Hershel's classifier, calling the new method Hershel+
 - We switch from using jitter to one-way delay, see paper for a detailed explanation
 - Simulations show it performs up to 10% better than Hershel in RTO classification
- Hershel+ now produces 420 signatures (as opposed to Hershel's 398) for our OS database
 - Improved dimension also confirms its superiority
- Plata's closed form matches Monte-Carlo results, reduces runtime from 24+ hours to 12 minutes

- Introduction
- The Plata Algorithm
- OS Fingerprinting Database
- Internet Scan
- Nmap Comparison

Internet Scan

- We performed a port-80 SYN scan of the Internet in July 2015
 - 2.7B IPs in 6 hours, 125K packets / sec
 - 66.4 million hosts responded, almost double the last study
- On the Internet, observed signatures may undergo several changes
 - Deterministic features might be changed by users, firewalls
 - Packet loss and network delays may change RTOs
- We classify all hosts using Hershel+ as the classifier and our database of 420 signatures built using Plata
 - This is the largest study performed with so many signatures and the first with an automated database

- Linux most popular, for webservers, also a lot of embedded devices
- Comparing with previous results
 - Linux/embedded have doubled
 - Windows has stayed almost the same

Family	OS	Count
Linux	Ubuntu/Redhat/CentOS	14.55 M
25.67 M	Ubuntu/Redhat/SUSE	2.62 M
(13.88 M)	Ubuntu/Debian/Redhat	2.38 M
Embedded	3Com Routers	2.66 M
24.44 M	Dell Laser/Xerox Printers	1.98 M
(13.59 M)	Cisco Embedded	1.86 M
Windows	Windows 7/2008/2012	2.18 M
7.12 M	Windows XP / 2003	822 K
(7.56 M)	Windows 2000 / 2003	791 K
	FreeBSD	480 K
Misc 752 K	FreeBSD	107 K
(2.39 M)	Novell Netware	37 K

- Misc has lost 69% of its membership
- Paper shows additional results and distributions

- Introduction
- The Plata Algorithm
- OS Fingerprinting Database
- Optimization
- Internet Scan
- Nmap Comparison

- We Nmap 1% of responsive hosts from a separate machine at the same time as our scan
- Nmap sends 10 types of probes to the target host
 - Its features are based on existence of responses and values from header fields of each response
- Hershel+ and Nmap find agreement in the OS family in the majority of cases
 - Comparison on the exact OS/device is made difficult due to a large variety of OS names, especially for embedded devices
- However, some cases have glaring disagreements
 - We focus on four such cases between the two classifiers

• Sampled hosts (S1-S4) and their Hershel+ matches:

System / Signature	Win	TTL	TCP Options	MSS	SYN-ACK arrival timestamp
S1	8192	128	MNWST	1464	0.22 3.22 9.22 21.22
S2	8192	64	MNWST	1460	0.18 3.17 9.17
Windows 7/2008 R2	8192	128	MNWST	1464	0.00 2.99 9.00 21.00
S3	16384	128	MNWNNTNNS	1460	0.21 2.67 9.22
S4	16384	128	MNWNNTNNS	1370	0.21 3.07 9.63
Windows 2000/2003	16384	128	MNWNNTNNS	1380	0.00 2.65 9.21

- Hershel+ overcomes packet loss and changes in the TTL/MSS value
- Classifications make sense and are not in doubt 26/29

• Nmap signatures of the same four systems:

System / Signature	Win	TTL	TCP Options	Response TCP open port	Response TCP closed port	Response UDP / ICMP
S1	8192	128	MNWST	0000	000	00
Tomato 1.28 (Router firmware)	Ø	Ø	Ø	0000	111	01
S2	8192	64	MNWST	1000	100	11
OpenBSD 4.3 (8 years old)	Ø	64	MNNSNWNNT	1000	100	11
S3	16384	128	MNWNNTNNS	0000	000	01
S4	16384	128	MNWNNTNNS	0000	111	01
D-Link DWL624 (2003 54g router)	Ø	64	Ø	0000	111	01

 Nmap allows null features that match everything, weighs heavily on whether response was received 27/29

- Nmap has no provisions for feature volatility, especially in its response vector
 - Becomes an issue when middleboxes block its packets
- The Tomato signature was matched to 21% of hosts in the entire Nmap data
 - Very doubtful for so many hosts to run this firmware
- Nmap's results are questionable on public networks where IDS, packet filters and firewalls are abundant
- Future work will determine the dimension of Nmap

Conclusion

- Introduced Plata an algorithm for separating observed samples under feature volatility
- Applied Plata to OS classification and automatically built a database of 420 OS signatures
- Developed an improved state-of-the-art classifier, Hershel+, and used it to classify every webserver on the Internet
- Compared our results with Nmap, showing that disagreements tend to favor the Hershel+ result