On Node Isolation under Churn in Unstructured P2P Networks with Heavy-Tailed Lifetimes

Zhongmei Yao

Joint work with Xiaoming Wang, Derek Leonard, and Dmitri Loguinov

Internet Research Lab
Department of Computer Science
Texas A&M University, College Station, TX 77843

May 10, 2007
Agenda

• Motivation and background
 — Terminology, assumptions, and related work
• Generic node isolation model
• Max-age selection
• Age-proportional random-walk selection
• Wrap-up
Terminology

- **Resilience of unstructured P2P networks**
 - Ability of a network to remain connected under node failure, which is fundamental to system performance

- **User churn**
 - Each user stays in the system for L random time units

- **Out-degree**
 - Joining users select k neighbors

- **Neighbor replacement**
 - Detection of failed neighbors and replacement with existing peers occur within S time units (can be fixed or random)
Background

Resilience

Global: disconnection of the graph

- Disconnection iff a node is isolated
 - Leonard 2005

Out-degree

- Joint in/out-degree
 - Yao 2006

Local: isolation of individual nodes before they depart

- Exponential lifetimes
- Heavy-tailed lifetimes
- No prior work

Real unstructured P2P networks
Agenda

- Motivation and background
 - Terminology, assumptions, and related work
- Generic node isolation model
- Max-age selection
- Age-proportional random-walk selection
- Wrap-up
Model Basics

- Neighbor residual lifetimes R
 - The time duration from the instance a peer is selected by user v as a neighbor until the peer departs

- This metric depends on neighbor selection strategies
 - Some strategies may find users with large residual lifetimes with high probability while others may not
Model Basics 2

- Neighbor failure/replacement is an ON/OFF process

- Node out-degree evolution

\[R: \text{residual lifetime} \]
\[S: \text{search delay} \]
\[W(t) \]
\[T: \text{isolation time} \]
\[k \]
\[L: \text{user lifetime} \]

\[P(T < L) \] isolation probability:
Out-Degree Process

- Determining the first-hitting time of $W(t)$ to zero (i.e., isolation time T) is difficult unless $W(t)$ is Markovian
 - Idea: replace the distribution of ON/OFF durations with a hyper-exponential approximation (see paper for details)
 - It is well-known (Feldmann 1998) that any completely monotone density function (e.g., Pareto, Weibull) can be approximated by a hyper-exponential PDF with arbitrary accuracy

- **Theorem 1**: For hyper-exponential neighbor residual lifetimes R and hyper-exponential search delays S, the out-degree process $\{W(t)\}$ is a continuous-time Markov process
Node Isolation Probability

- Theorem 2: Given that \(\{W(t)\} \) is a Markov process, the PDF \(f_T(t) \) of the isolation time \(T \) can be obtained using the transition rate matrix of process \(\{W(t)\} \) shown in the paper.

- Then, it is straightforward to obtain:

\[
\phi = P(T < L) = \int_0^{\infty} P(L > t) f_T(t) dt
\]

node isolation probability

the CCDF of user lifetimes
Accuracy of Node Isolation Model

- Simulation results on isolation probability ϕ for $E[L] = 0.5$ hours and $k = 7$ under uniform selection

<table>
<thead>
<tr>
<th>$E[S]$ hours</th>
<th>Pareto S with $\alpha = 3$</th>
<th>Weibull S with $c = 0.7$</th>
<th>Exponential S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simulations</td>
<td>Model (15)</td>
<td>Simulations</td>
</tr>
<tr>
<td>.001</td>
<td>1.11 x 10^{-16}</td>
<td>1.12 x 10^{-16}</td>
<td>1.12 x 10^{-16}</td>
</tr>
<tr>
<td>.01</td>
<td>8.49 x 10^{-11}</td>
<td>8.45 x 10^{-11}</td>
<td>9.05 x 10^{-11}</td>
</tr>
<tr>
<td>.05</td>
<td>4.56 x 10^{-7}</td>
<td>4.93 x 10^{-7}</td>
<td>6.27 x 10^{-7}</td>
</tr>
<tr>
<td>.1</td>
<td>1.13 x 10^{-5}</td>
<td>1.21 x 10^{-5}</td>
<td>1.75 x 10^{-5}</td>
</tr>
<tr>
<td>.4</td>
<td>1.64 x 10^{-3}</td>
<td>1.60 x 10^{-3}</td>
<td>2.57 x 10^{-3}</td>
</tr>
<tr>
<td>.8</td>
<td>7.78 x 10^{-3}</td>
<td>7.14 x 10^{-3}</td>
<td>1.12 x 10^{-2}</td>
</tr>
</tbody>
</table>

- Our model can be used to compute ϕ in networks with various types of lifetimes and different neighbor selection strategies
 - As long as the distribution of neighbor residual lifetimes can be approximated by a hyper-exponential distribution
Rules for Selecting Neighbors

- Higher resilience (i.e., smaller isolation probability) is achieved by selecting neighbors with larger residual lifetimes.
 - When it is impossible to obtain future knowledge of user remaining lifetimes R, user age A may be used as a robust predictor of R.

- In systems with heavy-tailed lifetimes (e.g., Pareto, Weibull, and Cauchy), users with larger age demonstrate stochastically larger residual lifetimes.

- For light-tailed lifetimes (e.g., uniform distributions), it is the opposite.
Agenda

• Motivation and background
 — Terminology, assumptions, and related work
• Generic node isolation model
• Max-age selection
• Age-proportional random-walk selection
• Wrap-up
Basics of Max-Age Selection

• Suppose that each user v publishes its joining time t_v to its neighbors, so that they know v’s current age: $t - t_v$, where t is the current time.

• Each user uniformly selects m alive users at random from the system and chooses the one with the maximal current age as its neighbor.
 — Uniform selection can be implemented using special random walks on the graph (Zhong 2005)
 — When $m = 1$, the max-age approach reduces to the simple uniform approach.

• Denote by U_m the residual lifetime of the user whose age is maximal among m uniformly selected peers.
Neighbor Residual Lifetimes

- **Theorem 3**: For any heavy-tailed lifetime distribution, larger m implies a stochastically larger neighbor residual lifetime U_m:

 $$P(U_m > x) \geq P(U_{m-1} > x), \quad m \geq 2$$

Simulation results on the tail distribution of U_m for $\alpha = 3$

See the paper for the formula of the distribution of U_m

Open question: how does m affect the obtained benefits?
Neighbor Residual Lifetimes 2

- **Theorem 4**: For Pareto lifetimes L with CDF $F(x) = 1 - (1 + x/\beta)^{-\alpha}$, the mean residual lifetime $E[U_m]$ is proportional to $m^{1/(\alpha - 1)}$ for $\alpha > 2$ and non-trivial m
 - If $\alpha = 3$, $E[U_m] \sim \sqrt{m}$
 - For $\alpha \to 2$, the increase in $E[U_m]$ is more aggressive: $E[U_m] \sim m$
 - If $\alpha \leq 2$, the mean is infinite

- Max-age selection is much more effective in systems with more heavy-tailed lifetimes (e.g., smaller α)
Node Isolation under Max-Age Selection

- By approximating the distribution of U_m with a hyper-exponential distribution, we readily obtain isolation probability using our general node isolation model.

$$E[S] = 6 \text{ mins}$$

Isolation probability approaches 0 as $m \to \infty$.

$$y = 3E-05m^{-5.6941}$$

$R^2 = 0.9939$

$m = 6, \alpha = 3, \text{ and } k = 7$

$\alpha = 2, \text{ and } k = 7, E[S] = 6 \text{ mins}$
Discussion

• The max-age selection strategy requires sampling m users per link
 — The overhead may not scale well for large m

• Much higher resilience can be achieved by more aggressively preferring users with large age

• We thus next propose a more efficient and effective neighbor selection strategy for heavy-tailed lifetimes
Agenda

• Motivation and background
 — Terminology, assumptions, and related work
• Generic node isolation model
• Max-age selection
• Age-proportional random-walk selection
• Wrap-up
Basics of Age-Proportional Selection

• We introduce a new age-biased neighbor selection method to ensure that the probability that user v is selected by another peer is proportional to its current age A_v:

$$P(v \text{ is selected}) = \frac{A_v}{\sum_{u \in V} A_u}$$

the set including all existing users

• This approach is based on random walks on directed and weighted graphs
 — It provides a distributed solution that requires only one sample per link
Random Walks

• Assume that each user makes its current age and in-degree known to its in-degree neighbors
 — The weight of each link is determined by the current age and in-degree of the node that the link points to
 \[
 \text{weight} = \frac{\text{age of } v}{\text{in-degree of } v}
 \]

• Random walks are performed by alternating between walking along incoming and outgoing links
 — The probability that a link is chosen is proportional to its weight
 — The stationary distribution of the random-walk algorithm is:
 \[
 P(v \text{ is selected}) = \frac{A_v}{\sum_{u \in V} A_u} \quad \text{achieves the desired result}
 \]
Neighbor Residual Lifetimes

- **Theorem 5**: For random-walks where the above stationary distribution holds, the tail distribution of residual lifetimes R of selected neighbors is:

$$P(R > x) = \frac{1}{E[L]E[A]} \int_0^\infty y(1 - F(x + y)) dy$$

 - the mean age
 - the user lifetime distribution

- For Pareto lifetimes $F(x) = 1 - (1 + x/\beta)^{-\alpha}$, $\alpha > 2$, the above yields:

$$P(R > x) = \left(1 + \frac{x}{\beta}\right)^{-(\alpha-2)}$$

 - The shape is reduced by 2

- The mean $E[R]$ is $\beta/(\alpha - 3)$ if $\alpha > 3$, and is infinite otherwise
Node Isolation Probability for $\alpha > 2$

- Simulation results on node isolation probability under age-proportional selection for Pareto L and $k = 7$

 - Isolation probability is 10^4 times smaller than that under uniform selection for $\alpha = 2.5$

 - Isolation probability converges to 0 as $\alpha \to 2$

 - In contrast, this metric under max-age selection does not tend to 0 unless $m \to \infty$ or $\alpha \to 1$ (both impossible to achieve in practice)

(a) $E[S] = 6$ minutes
Node Isolation Probability for $\alpha \leq 2$

- **Theorem 4**: For age-proportional random walks, Pareto lifetimes with $1 < \alpha \leq 2$, any number of neighbors $k \geq 1$, and any type of search delay (including $S = \infty$), as system age \mathcal{T} and size n converge to infinity, node isolation probability approaches:

$$\lim_{n \to \infty} \lim_{\mathcal{T} \to \infty} \phi = 0$$

- Gnutella has been shown to have α between 1.06 (Bustamante 2003) and 1.09 (Wang 2007)
 - These networks under age-proportional random walks approach an ideal system with zero node isolation probability as users join/depart the system.
Node Isolation Probability for $\alpha \leq 2$

- Simulation results of node isolation probability without replacing neighbors (i.e., $S = \infty$) for Pareto lifetimes

\[\text{isolation probability} \]

\[\begin{align*}
\text{system age (hours)} & \quad 1E+2 & \quad 1E+3 & \quad 1E+4 & \quad 1E+5 \\
\text{isolation probability} & \quad 1E-1 & \quad 1E-2 & \quad 1E-3 & \quad 1E-4 & \quad 1E-5 & \quad 1E-6 & \quad 1E-7 & \quad 1E-8 & \quad 1E-9 & \quad 1E-10 \\
\end{align*} \]

- monotonically decreases as system age increases

(a) $\alpha = 1.5$, $S = \infty$

(b) $\alpha = 1.2$, $S = \infty$
Wrap-up

• We developed a general node isolation model for any completely monotone density function of neighbor residual lifetimes
 — We applied this model to study node isolation behavior under uniform, max-age, or age-proportional random-walk selection to demonstrate its versatility

• We proposed a new neighbor selection strategy, age-proportional random walks
 — Under proposed neighbor selection, P2P networks with heavy-tailed lifetimes with $\alpha \leq 2$ become progressively more resilient over time and approach a system with zero node isolation probability, as more users join the system