On Node Isolation under Churn in Unstructured P2P Networks with Heavy-Tailed Lifetimes

Zhongmei Yao

Joint work with Xiaoming Wang, Derek Leonard, and Dmitri Loguinov

Internet Research Lab Department of Computer Science Texas A&M University, College Station, TX 77843

May 10, 2007

- Motivation and background
 - Terminology, assumptions, and related work
- Generic node isolation model
- Max-age selection
- Age-proportional random-walk selection
- Wrap-up

Terminology

- Resilience of unstructured P2P networks
 - Ability of a network to remain connected under node failure, which is fundamental to system performance
- User churn
 - Each user stays in the system for L random time units
- Out-degree
 - Joining users select k neighbors
- Neighbor replacement
 - Detection of failed neighbors and replacement with existing peers occur within S time units (can be fixed or random)

- Motivation and background

 Terminology, assumptions, and related work
- Generic node isolation model
- Max-age selection
- Age-proportional random-walk selection
- Wrap-up

Model Basics

- Neighbor residual lifetimes R
 - The time duration from the instance a peer is selected by user v as a neighbor until the peer departs

- This metric depends on neighbor selection strategies
 - Some strategies may find users with large residual lifetimes with high probability while others may not

Model Basics 2

Neighbor failure/replacement is an ON/OFF process

Node out-degree evolution

Out-Degree Process

- Determining the first-hitting time of W(t) to zero (i.e., isolation time T) is difficult unless W(t) is Markovian
 - Idea: replace the distribution of ON/OFF durations with a hyper-exponential approximation (see paper for details)
 - It is well-known (Feldmann 1998) that any completely monotone density function (e.g., Pareto, Weibull) can be approximated by a hyper-exponential PDF with arbitrary accuracy
- <u>Theorem 1</u>: For hyper-exponential neighbor residual lifetimes R and hyper-exponential search delays S, the out-degree process {W(t)} is a continuous-time Markov process

Node Isolation Probability

- <u>Theorem 2</u>: Given that $\{W(t)\}$ is a Markov process, the PDF $f_T(t)$ of the isolation time T can be obtained using the transition rate matrix of process $\{W(t)\}$ shown in the paper
 - Then, it is straightforward to obtain:

$$\phi = P(T < L) = \int_0^\infty P(L > t) f_T(t) dt$$

node isolation probability

the CCDF of user lifetimes

Accuracy of Node Isolation Model

• Simulation results on isolation probability ϕ for E[L] = 0.5 hours and k = 7 under uniform selection

E[S]	Pareto L with $\alpha = 3$ - shape parameter					
hours	Pareto S with $\alpha = 3$		Weibull S with $c = 0.7$		Exponential S	
	Simulations	Model (15)	Simulations	Model (15)	Simulations	Model (15)
.001		1.11×10^{-16}		1.12×10^{-16}		1.12×10^{-16}
.01		8.49×10^{-11}		8.45×10^{-11}		9.05×10^{-11}
.05	4.56×10^{-7}	4.49×10^{-7}	4.93×10^{-7}	4.96×10^{-7}	6.27×10^{-7}	6.28×10^{-7}
.1	1.13×10^{-5}	1.14×10^{-5}	1.21×10^{-5}	1.25×10^{-5}	1.75×10^{-5}	1.74×10^{-5}
.4	1.64×10^{-3}	1.64×10^{-3}	1.60×10^{-3}	1.58×10^{-3}	2.57×10^{-3}	2.59×10^{-3}
.8	(7.78×10^{-3})	(7.78×10^{-3})	7.14×10^{-3}	7.16×10^{-3}	1.12×10^{-2}	1.12×10^{-2}

consistent

- Our model can be used to compute ϕ in networks with various types of lifetimes and different neighbor selection strategies
 - As long as the distribution of neighbor residual lifetimes can be approximated by a hyper-exponential distribution

Rules for Selecting Neighbors

- Higher resilience (i.e., smaller isolation probability) is achieved by selecting neighbors with larger residual lifetimes
 - When it is impossible to obtain future knowledge of user remaining lifetimes R, user age A may be used as a robust predictor of R
 - In systems with heavy-tailed lifetimes (e.g., Pareto, Weibull, and Cauchy), users with larger age demonstrate stochastically larger residual lifetimes.
- For light-tailed lifetimes (e.g., uniform distributions), it is the opposite

- Motivation and background
 - Terminology, assumptions, and related work
- Generic node isolation model
- Max-age selection
- Age-proportional random-walk selection
- Wrap-up

Basics of Max-Age Selection

- Suppose that each user v publishes its joining time t_v to its neighbors, so that they knows v's current age: $t - t_v$, where t is the current time
- Each user uniformly selects *m* alive users at random from the system and chooses the one with the maximal current age as its neighbor
 - Uniform selection can be implemented using special random walks on the graph (Zhong 2005)
 - When m = 1, the max-age approach reduces to the simple uniform approach
- Denote by U_m the residual lifetime of the user whose age is maximal among m uniformly selected peers

Neighbor Residual Lifetimes

• <u>Theorem 3</u>: For any heavy-tailed lifetime distribution, larger m implies a stochastically larger neighbor residual lifetime U_m :

$$P(U_m > x) \ge P(U_{m-1} > x), \quad m \ge 2$$

Neighbor Residual Lifetimes 2

- <u>Theorem 4</u>: For Pareto lifetimes *L* with CDF $F(x) = 1 - (1 + x/\beta)^{-\alpha}$, the mean residual lifetime $E[U_m]$ is proportional to $m^{1/(\alpha - 1)}$ for $\alpha > 2$ and nontrivial *m*
 - If $\alpha = 3$, $E[U_m] \sim \sqrt{m}$
 - For $\alpha \to 2$, the increase in $E[U_m]$ is more aggressive: $E[U_m] \sim m$
 - If $\alpha \leq 2$, the mean is infinite
- Max-age selection is much more effective in systems with more heavy-tailed lifetimes (e.g., smaller α)

Node Isolation under Max-Age Selection

• By approximating the distribution of U_m with a hyperexponential distribution, we readily obtain isolation probability using our general node isolation model

Discussion

- The max-age selection strategy requires sampling m users per link
 - The overhead may not scale well for large m
- Much higher resilience can be achieved by more aggressively preferring users with large age
- We thus next propose a more efficient and effective neighbor selection strategy for heavy-tailed lifetimes

- Motivation and background
 - Terminology, assumptions, and related work
- Generic node isolation model
- Max-age selection
- Age-proportional random-walk selection
- Wrap-up

Basics of Age-Proportional Selection

 We introduce a new age-biased neighbor selection method to ensure that the probability that user v is selected by another peer is proportional to its current age A_v:

$$P(v \text{ is selected}) = \frac{A_v}{\sum_{u \in V} A_u}$$

the set including all existing users

- This approach is based on random walks on directed and weighted graphs
 - It provides a distributed solution that requires only one sample per link

Random Walks

- Assume that each user makes its current age and indegree known to its in-degree neighbors
 - The weight of each link is determined by the current age and in-degree of the node that the link points to

- Random walks are performed by alternating between walking along incoming and outgoing links
 - The probability that a link is chosen is proportional to its weight
 - The stationary distribution of the random-walk algorithm is:

$$P(v \text{ is selected}) = \frac{A_v}{\sum e^{V_v}}$$

Computer Science, Texas

A&M University

achieves the

desired result

Neighbor Residual Lifetimes

• <u>Theorem 5</u>: For random-walks where the above stationary distribution holds, the tail distribution of residual lifetimes *R* of selected neighbors is:

$$P(R > x) = \frac{1}{E[L]E[A]} \int_0^\infty y(1 - F(x + y)) dy$$

the mean age the user lifetime distribution

• For Pareto lifetimes $F(x)=1-(1+x/\beta)^{-\alpha}$, $\alpha > 2$, the above yields:

$$P(R > x) = \left(1 + \frac{x}{\beta}\right)^{-(\alpha - 2)}$$
 reduced by 2

The mean *E*[*R*] is β/(α − 3) if α > 3, and is infinite otherwise

Node Isolation Probability for $\alpha > 2$

• Simulation results on node isolation probability under age-proportional selection for Pareto L and k = 7

- Isolation probability is 10^4 times smaller than that under uniform selection for $\alpha = 2.5$
- Isolation probability converges to 0 as $\alpha \rightarrow 2$
- In contrast, this metric under max-age selection does not tend to 0 unless $m \to \infty$ or $\alpha \to 1$ (both impossible to achieve in practice)

Node Isolation Probability for $\alpha \leq 2$

<u>Theorem 4</u>: For age-proportional random walks, Pareto lifetimes with 1 < α ≤ 2, any number of neighbors k ≥ 1, and any type of search delay (including S = ∞), as system age T and size n converge to infinity, node isolation probability approaches:

 $\lim_{n\to\infty}\lim_{T\to\infty}\phi=0$

- Gnutella has been shown to have α between 1.06 (Bustamante 2003) and 1.09 (Wang 2007)
 - These networks under age-proportional random walks approach an ideal system with zero node isolation probability as users join/depart the system

Node Isolation Probability for $\alpha \leq 2$

• Simulation results of node isolation probability without replacing neighbors (i.e., $S = \infty$) for Pareto lifetimes

Wrap-up

- We developed a general node isolation model for any completely monotone density function of neighbor residual lifetimes
 - We applied this model to study node isolation behavior under uniform, max-age, or age-proportional random-walk selection to demonstrate its versatility
 - We proposed a new neighbor selection strategy, ageproportional random walks
 - Under proposed neighbor selection, P2P networks with heavy-tailed lifetimes with $\alpha \leq 2$ become progressively more resilient over time and approach a system with zero node isolation probability, as more users join the system