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Abstract— Previous analytical studies [12], [18] of unstructured
P2P resilience have assumed exponential user lifetimes and only
considered age-independent neighbor replacement. In this paper,
we overcome these limitations by introducing a general node-
isolation model for heavy-tailed user lifetimes and arbitrary
neighbor-selection algorithms. Using this model, we analyze
two age-biased neighbor-selection strategies and show that they
significantly improve the residual lifetimes of chosen users, which
dramatically reduces the probability of user isolation and graph
partitioning compared to uniform selection of neighbors. In fact,
the second strategy based on random walks on age-weighted
graphs demonstrates that for lifetimes with infinite variance,
the system monotonically increases its resilience as its age and
size grow. Specifically, we show that the probability of isolation
converges to zero as these two metrics tend to infinity. We finish
the paper with simulations in finite-size graphs that demonstrate
the effect of this result in practice.

I. INTRODUCTION

Resilience of P2P networks under random user arrival and
departure (i.e., churn) has recently become an active research
area [9], [10], [11], [12], [13], [14], [15], [22]. One of the
primary metrics of resilience is graph disconnection during
which a P2P network partitions into several non-trivial sub-
graphs and starts to offer limited service to its users. However,
as shown in [13], most partitioning events in well-connected
P2P networks are single-node isolations, which occur when
the immediate neighbors of a node v fail before v is able to
detect their departure and then replace them with other alive
users. For such networks, node isolation analysis has become
the primary method for quantifying network resilience in the
presence of user churn.

Traditional analysis of node isolation [12], [13] focuses on
the effect of average neighbor-replacement delay E[S], aver-
age user lifetime F[L], and fixed out-degree k on the resilience
of the system. These results show that probability ¢ with
which each arriving user is isolated from the system during its
lifetime is proportional to kp(1+p)~*, where p = E[L]/E[S].
While this result is asymptotically exact under exponential
user lifetimes and wuniform neighbor selection, it remains to
be investigated whether stronger results can be obtained for
heavy-tailed lifetimes and/or non-uniform neighbor selection.
We study these questions below.

A. Paper Structure and Contributions
The main focus of this paper is to understand node isolation
in the context of unstructured networks (such as Gnutella)
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where neighbor selection is not constrained by fixed rules. As
in [12], we assume that each arriving user is assigned a random
lifetime L drawn from some distribution F'(x) and is given k
initial neighbors randomly selected from the system. The user
then constantly monitors and replaces its neighbors to avoid
isolation from the rest of the system. Random replacement
delay S is needed to detect the failure of an old neighbor and
find a new one from among the remaining alive users. Unlike
[12], we allow L to come from any distribution (e.g., Pareto,
Weibull), as long as E[L] < oo, and neighbor selection to
be arbitrary, as long as the stationary distribution H (z) of
residual lifetimes R of selected neighbors is known.

We first build a generic isolation model that allows com-
putation of ¢ with arbitrary accuracy for any completely
monotone density function of residual lifetimes R. This re-
sult is achieved by replacing H (z) with a hyper-exponential
distribution, which can be performed with any accuracy, and
then solving the resulting Markov chain for the probability of
absorption into the isolation state before the user decides to
leave the system. While this model only admits a numerical
solution through matrix manipulation, it allows very accurate
computation of ¢ for very heavy-tailed cases when the expo-
nential upper bound ¢ < kp(1+p)~* [12] is rather loose. The
model is also necessary for studying isolation behavior of the
various neighbor-selection strategies examined in later parts of
the paper where simulations are impractical or impossible due
to the small values of ¢.

The second part of the paper verifies the model of ¢ under
uniform neighbor replacement and analyzes its performance
for very heavy-tailed lifetimes (i.e., Var[L] = c0). We show
that as the age 7 of the system becomes infinite and the Pareto
shape parameter « approaches 1, the isolation probability
decays to zero proportionally to (o — 1)*, which holds for
any number of neighbors & > 1 and any search delay S,
implying that such systems may achieve arbitrary resilience
without replacing any neighbors. In practice, however, « is
a fixed number bounded away from 1 (common studies [1]
suggest « = 1.06) and 7 is finite, which cannot guarantee
high levels of robustness without neighbor replacement.

As an improvement over the uniform case, we next study the
so-called max-age neighbor selection [1], [11], [25], in which a
user samples m uniformly random peers per link it creates and
selects the one with the largest current age to be its neighbor.
We show that larger values of m lead to stochastically larger
R and improve the expected remaining lifetimes of found
neighbors by a factor proportional to m!/(*=1) for non-trivial
m. For example, « = 3 increases E[R]| as /m, a ~ 2



increases E[R] linearly in m, and a < 2 results in E[R] = oo
regardless of m as long as 7 = oo. We do not obtain a closed-
form factor of reduction for ¢ compared to the purely uniform
case, but note that it is a certain monotonic function of m. This
does not change, however, the qualitative behavior of ¢ under
the no-replacement policy and still requires o« — 1 to achieve
¢ — 0 for any fixed m.

While the max-age approach is viable and very effective in
general, it relies on the system’s ability to sample m peers
uniformly randomly per created link. This can be accom-
plished using Metropolis-style random walks [31]; however,
the overhead may not scale well for large m. To build a
distributed solution that requires only one sample per link,
the last part of the paper proposes a novel technique based
on random walks over directed graphs, in which the weight
of in-degree edges at each node is kept proportional to the
age of the corresponding user. Under these conditions, we
derive a model for the residual distribution H(x) and show
that isolation probability ¢ converges to 0 for any 1 < o < 2
as system size n — oo and age 7 — oo, which holds for
any number of neighbors £ > 1 and any search delay S.
Compared to the uniform and max-age cases, this is a much
stronger result that shows that with just & = 1 neighbor and
no replacement of failing neighbors, large P2P systems with
a < 2 can guarantee arbitrarily low values of ¢. We finish the
paper by studying in simulations the approach rate of ¢ to 0
and its effect in practice.

The rest of the paper is organized as follows. Section II
introduces a generic isolation model for non-exponential life-
times and verifies it in simulations. In section III, we formalize
max-age neighbor replacement and derive the corresponding
residual lifetime distributions. Section IV discusses random
walks on age-weighted graphs and studies the asymptotic
effect of 1 < a < 2 on isolation probability. Section V
discusses related work and section VI concludes the paper.

II. GENERAL NODE ISOLATION MODEL

In this section, we build a model for the probability ¢ that
a node v becomes isolated due to all of its neighbors simul-
taneously reaching the failed state during its lifetime. While
closed-form derivation of ¢ for systems with non-exponential
user lifetimes is difficult, certain cases identified below can be
solved with arbitrary accuracy by replacing residual lifetimes
and search delays with their hyper-exponential equivalents.

For the churn model, we adopt the conventions of [12], but
relax the assumptions of uniform neighbor selection and ex-
ponential lifetimes. Denote by W (¢) the out-degree of a node
v at time t. The rest of this section deals with constructing a
continuous-time Markov chain for the degree process {W (t)},
which allows us to obtain an accurate model of ¢.

A. Hyper-Exponential Approximation

Recall that the hyper-exponential distribution H,, is a
mixture of m exponential random variables with probability
density function (PDF) in the form of [28]:

fr(x) =" pjuje ", (1
j=1

where p;,p; > 0 for all j and 377", p; = 1. The above
distribution can be interpreted as generating each exponential
random variable exp(y;) with probability p;. It is well-known
[5] that any completely monotone density function f(x) can be
represented with any desired accuracy using (1), i.e., fr(z) —
f(z) as m — oo. In the analysis below, we leverage this
property of hyper-exponentials and the fact that Pareto and
Weibull residual PDFs are completely monotone. While some
of the prior literature [5] has used as many as 14 exponentials
to approximate Pareto f(z), our analysis suggests that as few
as 3 are usually sufficient for achieving very accurate results
on ¢ (see below).

Before we proceed with the derivations, it is useful to
visualize the meaning of hyper-exponential distributions in
our lifetime model. Assume that there are r different types of
neighbors, where residual lifetimes of peers of type 1 < i <r
are exponentially distributed with rate p;. When v requires
a new neighbor, it selects a node of type ¢+ with probability
pi- Similarly, assume that there are s types of searches that
can be currently in progress. A search of type 1 < j < s
is instantiated by v with probability ¢; and has duration
exponentially distributed with rate A;. As long as neighbor
residual lifetimes R and search delays S can be reduced to the
hyper-exponential distribution, the resulting process {W (¢)}
can be viewed as a homogenous continuous-time Markov
chain as we show next.

Denote each state v of {W (¢)} for any given user v by:

u = (xlv"'vxraylv"'vys)v (2)

where x; is the number of v’s neighbors of type i, y; is
the number of searches in progress of type j, 0 < z; < k,
0<y; <k and > o+ Z;Zl y; = k. Also notice that
out-degree W (t) can be represented as » ._, x;. The next
theorem specifies that {W(¢)} is a Markov chain and derives
its transition rate matrix.

Theorem 1: Given that the density function of residual
lifetimes fr(t) = >7_; pjuje " and the density function
of search times fg(t) = Z§:1 girje Nt {W(t)} is a
homogeneous continuous-time Markov chain with a transition
rate matrix QQ = (gyu’), Where

gjzipi (i, y;) — (v — Ly; +1)
Py (zi,y5) — (i + 1y, — 1
Quu’ = 7 (, j) ( ! ) 5 (3)
—A, u =u
0 otherwise

u and v’ represent any suitable states in the form of (2) that
satisfy transition requirements on the right side of (3), and
Ao =300 it + 3251 YA

The next step is to obtain the initial state distribution of
{W(t)} and derive the PDF of the first-hitting time on state
W(t) = 0 based on the transition rate matrix ) in (3). For
small values of k, the matrix can be easily represented in
memory and manipulated in software packages such as Matlab.
For example, when r = s = 3 commonly used in this work,
the size of @ is 252 x 252 for k = 5 and 792 x 792 for k = 7.

The initial state distribution 7(0) is in form of:

W(O) = (W(fﬂ17~~-,$r7y1 »--7ys)(0)) ) (4)



where each entry in the vector represents the probability that
the chain starts in state (x1, ..., %y, y1,...,Yys) for all possible
permutations of variables z; and y;. Note, however, that the
only valid starting states are those in which the number of alive
neighbors >"_, x; is exactly k and the number of searches in
progress > °_, y; is zero.

After rather straightforward manipulations, 7(0) can be
obtained as follows.

Lemma 1: Valid starting states have initial probabilities:

L=\ .,
mzl,...,m,o,...,m(o)H( 21 ]>pi", (5)

. Z;
=1

and all other states have initial probability 0.

Model (5) is verified in simulations that are not shown here
for brevity. Armed with this result, we next focus our attention
on deriving ¢.

B. Isolation Probability
Denote by T the first-hitting time of {WW(¢)} onto state O:

T =inf(t > 0: W(t) = 0[W(0) = k). (6)

The goal of this subsection is to derive the distribution of 7T,
based on which we obtain ¢ = P(T < L).

In general, it is convenient to treat {W (¢)} as an absorbing
Markov chain in order to derive the PDF of T'. To this end,
let Q2 denote the set of all valid states (i.e., in the form of (2)
and satisfying all constraints following the equation) and

E= {(O,...,O,yl,...,ys):iyj :k} 7
j=1

be the set of all absorbing states. Then, for each non-absorbing
state u € Q \ E, its transition rate to E is given by:

quE = Z Quu’ (8)

u' el
where g, is the cell of matrix ) corresponding to transitions
from state u to u/. We can then write () in canonical form as:

0 O
= s 9
o (1 2) o

where r = (q,z)T for u € E is a column vector representing
the transition rates to the absorbing set £ and Qg is the
rate matrix obtained by removing the rows and columns
corresponding to states in E from (). The following lemma
shows that the PDF of T is fully determined by 7 (0) and Q.
Lemma 2: For residual lifetimes and search delays with
hyper-exponential distributions, the PDF of T is given by:

fr(t) =m(OVD(t)V " r, (10)

where 7(0) is the initial state distribution in (5), V' is a matrix
of eigenvectors of Qg, D(t) = diag(e®?) is a diagonal matrix,
&; <0 is the j-th eigenvalue of (g, and (o and r are in (9).

With Lemma 2 in hand, integrating fr(¢) using the distri-
bution of user lifetimes immediately leads to the following
theorem.

Theorem 2: For hyper-exponential residual lifetimes and
search delays, the probability of isolation is:

¢ =m(0)VBV 'r, (11)
where B = diag(b;) is a diagonal matrix with:
b =/ (1 — F(t))esdt, (12)
0

F(t) is the CDF of user lifetimes, and all other parameters
are the same as in Lemma 2.

Using rate matrix (g, vector r, and (11)-(12), the solution
to node isolation probability ¢ can be easily computed using
numerical packages such as Matlab. We perform this task next.

C. Verification of Isolation Model

We examine the accuracy of (11)-(12) using the simplest
example of uniform selection. We first explore the exponential
case for comparison purposes and then derive the same metric
for Pareto lifetimes. For exponential lifetimes, the next lemma
immediately follows upon recalling that neighbor residual
lifetimes R are also exponentially distributed with m = 1
in (1) due to the memoryless property of the distribution.

Lemma 3: For exponential L ~ exp(u) and search delays
with a hyper-exponential density fg(z), (12) is simply:

by =1/(n—=&).

Our next theorem derives ¢ for Pareto lifetimes with CDF

1—(1+42/8)"* for a > 1, x > 0. Denote by R the residual

lifetime of a uniformly random user in the system. Assuming

a sufficiently large system age 7, it follows from [12] that the
CDF of R under uniform selection is given by:

13)

x)_(a_l). (14)

P(R<a:):1—(1+5
It is clear from (14) that the PDF of Pareto residuals is
completely monotone and thus can be fitted with its hyper-
exponential equivalent. Invoking Theorem 2, we immediately
obtain the following.
Lemma 4: For Pareto L ~ 1 — (1 4+ 2/3)~“ and hyper-
exponential search delays, (12) becomes:

b; = Be 5P EL (=€),

where E,(x) = floo e~ %y~ *du is the generalized exponen-
tial integral.

Next, we run simulations to verify these results. Simulations
are performed over different distributions of search times on
a graph with n = 1,000 nodes, £k = 7, and mean lifetime
E[L] = 0.5 hours (additional simulations produce similar
results and are omitted for brevity). The first search time
distribution is Pareto with &« = 3 and 3 = E[S](a—1) to keep
the mean equal to E[S]. The second distribution is Weibull
with CDF 1 — ¢~ (/) and mean E[S] = aT'(1 + 1/c). The
third is exponential with rate 1/E[S]. To compute the model,
Pareto residual lifetime R is fitted with a hyper-exponential
mixture model (1) using 7 = 3 and each non-exponential
search distribution is fitted with model (1) using s = 3.

Exponential and Pareto models of ¢ are compared to sim-
ulation results in Table I. Notice in the table that both (13)

(15)



TABLE I
COMPARISON OF MODEL ¢ TO SIMULATIONS UNDER UNIFORM SELECTION WITH E[L] = 0.5 HOURS AND k = 7

E[9] Pareto L with a = 3 Exponential L
hours Pareto S with a = 3 Weibull S with ¢ = 0.7 Exponential S Pareto S with a = 3
Simulations Model (15) Simulations Model (15) Simulations Model (15) Simulations Model (13)
.001 1.11 x 10716 1.12 x 10716 1.12 x 10716 4.40 x 10~16
.01 8.49 x 10~ 11 8.45 x 1011 9.05 x 10~ 11 3.70 x 1010
.05 | 456 x 1077 449 x 1077 | 493 x 1077 496 x 1077 | 627 x 1077  6.28 x 1077 | 2.31 x 1076 2.31 x 1076
1 113 x107%  1.14x 1075 | 1.21x107° 1.25x107% | 1.75 x 1075  1.74x 107% | 6.01 x 1075  6.04 x 10~°
A4 1.64x 1073 1.64x 1073 | 1.60 x 1073 1.58 x 1072 | 257 x 1073 259 x 1073 | 6.80 x 1073  6.78 x 1073
.8 778 x 1073 778 x 1073 | 7.14x 1073 716 x 1073 | 1.12x 1072 1.12x 1072 | 256 x 1072  2.56 x 1072
1E-4 - 1E-15 4 0.4 - ————model k=1 1E+1 - ———model k=1
. simulations k=1 . simulations k=1
————— model k=3 — — — — — model k=7
- 21616 | 203 a simulations k=3 2;1E+0 1 a simulations k=7
Z 1E5 1 2 . Z . 5 S A A )
% _E E ) R U S Y ERTER
a S 1E-17 4 S02 g
s S < s
B1E6 k- (_é; % 1E2 |
2 2 1E-18 %01 ° \
- T 1E-3 a a
¢ model model| A 4 a4 a4 ___a Lo = _ A,
log fit log fit
1E-7 L R 1E-19 R 0.0 : : : . 1E-4 : . . .
13 5 7 911131517 19 21 1357 9111315171921 1E+3  1E+4  1E+5  1E+6  1E+7 1E+3  1E+4 1E+5 1E+6 1E+7
shape parameter alpha shape parameter alpha system age (hours) system age (hours)
(a) E[S] = 6 minutes (b) E[S] = 3.6 seconds (@ a=15,8 =00 b a=1.2,8=c0
Fig. 1. Impact of shape parameter oz on model ¢ under uniform selection,  Fig, 2.  Convergence of simulation results to model ¢ in (16) as system

Pareto lifetimes, E[L] = 0.5 hours, 8 = (o — 1) E[L], exponential search
delays, and k = 7.

and (15) are indeed very accurate for all examined search
and lifetime distributions. The table also confirms that as
E[S] — 0, metric ¢ becomes insensitive to the distribution
of S, which was earlier observed in [12] but never verified.

To understand the influence of tail weight of the lifetime
distribution F'(x) on isolation, we use (15) to compute ¢ for
several values of shape parameter « and keep § = (a—1)E[L]
to ensure that the mean lifetime E'[L] remains fixed. The result
is shown in Fig. 1 for two values of E[S] and k = 7. Notice
in both sub-figures that the relationship between ¢ and « is
similar and that ¢ appears to be approximately a logarithmic
function of o for o < 21, confirming that the more heavy-
tailed the lifetime distribution, the smaller ¢.

D. Necessity of Neighbor Replacement

Fig. 1 suggests that ¢ tends to 0 as « approaches 1 from
above, but it is not clear at what rate this convergence takes
place and whether this is indeed true. Furthermore, since
E[R] = oo for o < 2, a natural question arises about whether
a finite system of n users and finite age 7 can in fact exhibit
infinite expected residuals or ¢ = 0 when o = 1. We answer
these questions next and show that condition @ — 1 indeed
guarantees ¢ — 0 even in cases when no replacement of failed
neighbors is performed; however, it requires that the system
be in equilibrium' by the time it is observed by an arriving
user.

IThe first renewal cycle of each user must be drawn from its residual
distribution or system age 7 be infinite. See [28, page 65] for a definition.

age 7 — oo under uniform selection, no neighbor replacement, and Pareto
lifetimes with 8 = (o — 1) E[L] in a graph with n = 1, 000 nodes.

Theorem 3: For an equilibrium system, Pareto lifetimes
with o > 1, and infinitely large search delays (i.e., S = 0c0),
the isolation probability is:

k!

) % x( k)

(16)

where v = a/(av — 1). For fixed k and o — 1 (i.e., v — 0),
(16) converges to zero as O(y~%).

This result is very interesting since most prior work [12]
does not consider o« < 2 as such cases result in infinite
expected residual lifetimes, which cannot be observed in any
finite system. However, if the age of the system tends to
infinity, i.e., 7 — o0, or the first lifetime of each user is drawn
from the residual distribution (14), the asymptotic bound in
(16) is actually achievable. In such cases, as « tends to 1,
the isolation probability will decay to zero proportionally to
(a — 1)* as given by Theorem 3 and the system will attain
any desired level of resilience without replacing neighbors. On
the other hand, for « sufficiently larger than 2 studied in prior
work [12], age 7 must simply exceed the convergence time
to equilibrium of the underlying user-lifetime renewal process,
which usually happens very quickly.

Fig. 2 shows simulation results of ¢ with S = oo and two
values of very heavy-tailed «.. Notice in Fig 2(a) that for o =
1.5, simulation results converge to model ¢ before system age
reaches 10 hours (i.e., 1.14 years). However, as a reduces to
1.2, the convergence takes a much longer time as shown in
Fig 2(b), where simulations approach the model when system
age grows to more than 7 = 10 hours = 114 years.



The above analysis shows that the asymptotic result ¢ — 0
as a — 1 is not readily achievable in finite P2P systems.
Furthermore, recent measurement studies of user lifetimes
suggest that P2P networks exhibit « that is bounded away from
1 (e.g., @ = 1.06 in [1]). Hence, most current P2P systems are
not likely to satisfy the condition for ¢ — 0 under uniform
selection and thus need to utilize either a large number of
neighbors k or perform dynamic replacement of dead links
with E[S] <« oo.

E. Discussion

While the general form of ¢ in the exact model (11) is
very complex, a simple qualitative rule of increasing resilience
(i.e., reducing ¢) can be formulated based on the properties of
residual lifetimes selected by the users of a P2P system. Notice
that for a fixed lifetime distribution F'(x), higher resilience is
achieved by selecting neighbors that exhibit larger (in some
sense) remaining lifetimes. Thus, given two strategies S1 and
Sy for selecting neighbors, the strategy that obtains a neigh-
bor with a larger residual lifetime during every replacement
instance 7 guarantees a lower isolation probability since the
chosen neighbors survive longer and increase the chance that
the current user will depart before becoming isolated. Since
comparison of residual lifetimes of obtained neighbors in Sy
and Ss can be performed only in the probabilistic sense, the
above discussion can be formalized as following: strategies
that produce stochastically larger® distributions of residuals
guarantee lower isolation frequency and higher resilience.

Note, however, that future residual lifetimes of sampled
peers are usually not available in practice. Instead, assuming
that F'(x) is not memoryless (i.e., non-exponential), current
user age A may be used as a robust predictor of R. To
understand this correlation for Pareto F'(z), consider the
probability that a peer’s remaining lifetime is larger than y > 0
given that its current age A is x > O:

P(R>ylA=z)= <1+y>_ . (17)

B+
Observe that the above conditional probability is a mono-
tonically increasing function of age, i.e., the larger z, the
more likely a node is to survive at least y time units in the
future. This implies that users with larger age demonstrate
stochastically larger residual lifetimes R.

This result can be generalized to all heavy-tailed distribu-
tions (defined in terms of conditional mean exceedance [8]
or tail-decay rate [27], e.g., Pareto, Weibull, and Cauchy),
in which the expected remaining lifetime increases and R
becomes stochastically larger with age. In contrast, light-tailed
distributions (e.g., uniform and Gaussian), exhibit expected
residual lifetimes that are decreasing functions of age. Finally,
for the exponential distribution, age does not affect residual
lifetimes and hence does not provide any useful information
for neighbor selection.

Armed with these observations and prior measurement
results that demonstrate heavy-tailed user lifetimes in real

2Variable X is stochastically larger than Y if P(X > z) > P(Y > z)
for all z € R [28].

P2P systems [1], the rest of the paper explores two simple
neighbor-selection methods that rely on age of existing peers
to increase network resilience.

III. MAX-AGE SELECTION

Recall that under uniform selection, each alive user is
chosen by an arriving node v with the same probability. To
prevent v from connecting to weak neighbors that are about to
depart (i.e., users with short remaining lifetimes), this section
leverages the heavy-tailed nature of the lifetime distribution
F(z) and models the max-age neighbor-selection strategy
proposed in [1], [11], [25]. In this approach, a joining node
v uniformly randomly selects m alive users from the system
and chooses the user with the maximal age. It then repeats
this procedure k times to obtain its k initial neighbors. The
same process is executed every time a dead link is detected.

In what follows in this section, we first analyze the distri-
bution of residuals obtained by the max-age method and then
discuss the corresponding isolation probability ¢.

A. Residual Lifetime Distribution

Denote by €2, the set of m candidate nodes, by U,, the
residual lifetime of the max-age user in €,,,, and by H¢(z) =
P(U,, > z) the CCDF of random variable U,,,. Then, we get:

He(z) = P(Rz— > z]A; = mgi{Aj}), (18)

JE€
where A; is the current age of a user ¢ in €, and R; is its
residual lifetime. Intuitively, (18) states that U,, equals R;
given that user ¢ has the maximum age in €2,,. Next, from
renewal process theory, the equilibrium age distribution of
existing users in the system is [21]:

Fae) = P(A < 2) = ﬁ /Ow(1 _ F(w)du, (19

where E[L] < co. The following theorem shows that H¢(z)
is fully determined by the number of sampled users, lifetime
distribution F'(x), and age distribution F4 ().

Theorem 4: Given that a user’s age is larger than that of
m — 1 uniformly selected alive users in the system, its residual
lifetime has the following CCDF:

@) =t [ TP+ )PP w)dy, Q0)

where F'4(z) is given by (19).
Next, we use exponential lifetimes as an example to verify
(20). Using F'(z) = Fa(x) =1 — e™#*, (20) reduces to:

H(z) = m,u/ e HETY) (1 — eIyl gy — eTHT(2])
0

Hence, it follows from (21) that for exponential lifetimes:
PU, >x)=P(L>z)=e " forany m>1, (22)

which is consistent with the memoryless property of the ex-
ponential distribution. Substituting Pareto lifetimes into (20),
we obtain:

iy [0 0-(4))
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(a) accuracy of (23) with m =6 (b) comparison of (28) to (26)

Fig. 3. Accuracy of models (23) and (28) for Pareto lifetimes with E[L] =
0.5 hours and o = 3 in a graph with n = 5,000 nodes.

where E[L] = 3/(a —1).

Although no closed-form solution for (23) exists in the
general case, we next perform a self-check using m = 1.
Note that for m = 1, (23) yields:

He(a) = 21 m(1+“y)*ady= (1+29) 7" 2w

B Jo B p
which indicates that P(U; > z) = P(R > z) (i.e., max-
age selection with m = 1 reduces to single-user uniform

selection).

Our next result shows that U,, is stochastically larger than
U,,—1 for any heavy-tailed F'(z) and any m > 2.

Theorem 5: For any distribution in which larger age implies
stochastically larger residuals (i.e., function (17) is monoton-
ically increasing in z), the following holds:

PUp >2) > P(Up-1>2), =>0,m2>2. (25)

Simulation results in Fig. 3(a) show for m = 6 that
model (23) is very accurate and random variable Ug is indeed
stochastically larger than R (simulations with other m and
those confirming (25) are omitted for brevity). Next, we solve
for the expectation of U, in closed-form for Pareto lifetimes
and show the effect of m on the average residual lifetimes of
selected neighbors.

Lemma 5: For Pareto L ~ 1 — (1 4+ z/8) %, a > 2, the
expectation of U,, is given by:

ﬂm!l"(g—:%)

ElUn) = e =D = Dhm = Ly

(26)

m > 1,

where I'(x) is the gamma function. For a < 2, the expected
residual lifetime converges to infinity as system age 7 be-
comes large:

Tlim ElU,] =00, m2>1. 27

To better understand the effect of m on the mean of U,,,
we approximate E[U,,] as follows. Setting ¢ = F(g—:f) and
expanding the gamma function in the denominator, (26) for

o > 2 yields:

1/(a—1)
1) . (28)

E[Up] ~ ¢E|[L] (m +=

We next discuss several examples that use (28) with dif-
ferent «. For Pareto lifetimes with E[L] = 0.5 hours and
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Fig. 4. Comparison of model ¢ to simulations using the max-age selection
strategy for Pareto lifetimes with E[L] = 0.5 hours and o = 3, exponential
search times and k = 7 in a graph with 5,000 nodes.

a = 3, it can be seen from (28) that E[U,,] follows the curve
0.886(m + 0.33)%% ~ \/m as m — oo. However, for smaller
«, a more aggressive increase in E[U,,] can be obtained. For
a — 2, E[U,,] ~ m is approximately linear, and for o < 2,
E[U,,] = oo for any m > 1 (as before, the last results only
holds conditioned on 7 = o). It is also apparent from (28)
that as shape parameter « tends to infinity, the impact of m
on E[U,,] is weakened and E[U,,] — E[L], which confirms
a well-known fact [12] that Pareto lifetimes with very large «
behave as exponential random variables.

Model (26) is confirmed to be exact using simulations not
shown here due to limited space. Fig. 3(b) shows the accuracy
of the match between E[U,,] predicted by the exact model (26)
and that by the approximate model (28) for oo = 3. Additional
examples with smaller o are omitted for brevity.

B. Isolation and Resilience

To obtain model ¢, we approximate the tail of U, in (20)
with its hyper-exponential equivalent in (1) and then compute
¢ by applying Theorem 2 as in Section II-C. Fig. 4 shows
¢ predicted by the model compared to simulations for Pareto
lifetimes with E[L] = 0.5 hours, k = 7, exponential search
delays, and two values of m. As the figure illustrates, the
derived result is very accurate and indeed shows inversely
proportional dependency between the number of sampled users
m and ¢. The influence of m on isolation probability for Pareto
lifetimes is presented more clearly in Fig. 5. As the trendlines
show, ¢ is approximately a power-law function m~“ for each
fixed E[S], where exponent a is 2.4 — 5.7 in the figure. Thus,
for « = 3, m = 10 sampled users reduce ¢ by a factor of
251 and m = 30 by a factor of 3,508; however, for a = 2,
m = 10 drops ¢ by a factor of 489,000 and m = 30 by a
factor of 2.5 billion. Interestingly, while E[U,,] may exhibit an
unimpressive growth as a function of m (i.e., linear or slower),
the corresponding ¢ demonstrates much faster decay rate and
almost always provides significant benefits as m increases.

In systems that do not replace neighbors and o« — 1,
the limiting isolation probability in (16) is reduced along the
corresponding curve in Fig. 5, i.e., proportionally to m™“.
Thus, for any finite m, (16) does not qualitatively change its
decay rate toward zero as a function of v = a/(a — 1) and
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leads to no novel discussion. In the next section, however, we
develop another neighbor selection framework that guarantees
a much stronger result in which ¢ converges to zero for any
1 < a < 2, any number of neighbors £ > 1, and any search
delay as system age and size tend to infinity. An additional
reason for improving the max-age method in the next section
is the difficulty of implementing uniform neighbor selection in
decentralized P2P networks without global knowledge at each
node. Distributed methods of uniform sampling of users exist
[6], [31]; however, they require either k-regular graphs [6] or
complex walk patterns [31]. In both cases, max-age selection
forces a user to sample m peers to obtain a single neighbor
and may not scale well for large m. In contrast, the method
we describe below needs only one sample per neighbor and
operates in graphs with irregular degree distributions.

IV. AGE-BIASED RANDOM-WALK SELECTION

In this section, we first introduce a new neighbor selection
strategy that is based on random walks over weighted directed
graphs and then deal with the distribution of neighbor residual
lifetimes and the corresponding isolation probability.

A. Random Walks on Weighted Directed Graphs

We start by designing a simple random-walk algorithm,
which we call age-weighted, whose stationary distribution 7
ensures that the probability that a user u is selected by another
peer is proportional to u’s current age. Recall that a directed
graph G = (V, E) consists of a vertex set V' and edge set E
(note that we use notation G instead of G(¢) at time ¢ under
the assumption that G remains the same while a random walk
is performed). Let u — v represent a directed link (u,v) € E,
N, ={v €V :u — v} be the set of out-degree neighbors
of u, and N, = {v € V : u « v} be the set of in-degree
neighbors of u. Further define A, to be the age of user u and
set the weight of each incoming edge v — w at node u to be
u’s age normalized by the number of in-degree neighbors:

Ay
w(v,u) = ——. 29)
[N |
It then follows that the in-degree d;, of w is simply its age:
dy = Y wv,u) = A, (30)

VEN,

and its out-degree d;f is the sum of normalized ages of its
out-degree neighbors:

dl = Z w(u,v) =

'uENu+

€1y

>
veENT INU |

Then, age-weighted random walks are executed by alternat-
ing between walking along incoming and outgoing edges as
we describe next. Given that the walk is currently at node w,
the first jump is performed to an in-degree neighbor h of wu,
h € N, , with probability

w(h,u)

di
The second jump is performed to an out-degree neighbor v of
h with probability:

w(h,v)
dy

Pho = (33)
It is clear that the transition probability from = to v is
Puv = Zhe N PubPho- After the two jumps, v becomes the
current node and this procedure repeats. Each step consists of
two jumps, the node reached after [ steps is selected as the
neighbor of the current user. As shown in [32], the stationary
distribution of this random walk is given by 7 = (m,),
where 7, = d /3,y dy . Recalling (30), we immediately
obtain that age-weighted random walks achieve the desired
distribution:

L, for all u € V.
ZUEV A'U

The starting point of a random walk is determined as
follows. Each new user executes a random walk starting from
an alive user obtained through bootstrap, while each existing
user uniformly randomly selects one of its currently alive
out-degree neighbors as the initial point of the walk. Note
that if a node does not have any incoming edges, it will
never be selected by our walk. To avoid this situation, we
alternate between ending walks with an in-degree and an
out-degree jump, which gives new users an opportunity to
receive incoming edges. Simulations below use random walks
of | = 10 steps as further increasing ! does not result in
measurable improvements in 7 for the cases considered in
this paper.

(34)

Ty —

B. Residual Lifetime Distribution

Denote by Z the residual lifetimes of neighbors obtained
by age-weighted random walks and by H¢(z) = P(Z > x)
its CCDF. Assuming that the walk is executed for longer than
the mixing time of the chain corresponding to the underlying
graphs [16], we obtain the distribution of Z in the next
theorem.

Theorem 6: Given that (34) holds for age-weighted random
walks, neighbor residual lifetime Z has the following CCDF:

1 oo
E[L]E[A]/O y(1 - F(z +y))dy,

for F[L] < oo and mean user age E[A] < cc.

He() = (35)
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It is easy to show that for exponential lifetimes, (35) reduces
to 1 — F(x), again confirming the memoryless property of
exponential distributions. For Pareto lifetimes, the CCDF of
Z is also very simple as we show in the next lemma.

Lemma 6: For Pareto lifetimes L ~ 1 — (1 +x/3)~% with
a > 2, the CCDF of 7 is given by:

. N\ —(a=2)

He() = (1+ ﬁ) .

For 1 < a < 2, Z converges in probability to oo as system
age 7 and size n both tend to co.

Note that for o > 2, the PDF of Z is completely monotone
and thus suitable for our hyper-exponential model. Also notice
that Z is stochastically larger than residual lifetimes R under
uniform selection for all choices of «. In fact, Z shifts the
shape of the Pareto distribution from « to o — 2, which is
not achievable under max-age selection even as m — 0o.
Furthermore, for 1 < o < 2, residuals Z tend to a defective
random variable with all mass concentrated at 400 as system
size and age become infinite. This shows that in asymptotically
large systems, Z exceeds any lifetime I with probability 1 and
no user suffers isolation (more on this below).

(36)

C. Isolation and Resilience

To obtain model ¢ under age-weighted random-walk selec-
tion, we fit the distribution of Z shown in (36) with its hyper-
exponential equivalent and then invoke Theorem 2 to solve
for ¢. Next, we test the accuracy of model ¢ in simulations
where n = 8,000 nodes join and leave the system at random
instances and each node performs age-weighted random walks
to find its neighbors. As shown in Fig. 6, simulation results are
very close to the values predicted by theoretical ¢. Examples
showing the relationship between of ¢ and « are presented in
Fig. 7. As shown in Fig. 7(a), simulation results are consistent
with model ¢ under a variety of values « that allow quick
simulations and do not require very large 7 or n (i.e., a > 3).
It is interesting to observe in the figure that as a decreases,
the gap between ¢ under age-weighted random walks and that
under uniform selection drastically increases and reaches a
factor of 10* for o = 2.5. This shows that age-weighted
random walks are extremely effective in systems with very
heavy-tailed lifetimes (i.e., & below 2.5). Fig. 6(b) shows that

1E34 | ————— uniform model 1E-14 4 |—— — — — uniform model

age-weighted model age-weighted model
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(a) E[S] = 6 minutes (b) E[S] = 3.6 seconds

Fig. 7. Impact of o on ¢ under uniform selection and under age-weighted
random walks for Pareto lifetimes, E[L] = 0.5 hours, 8 = (o — 1)E[L],
exponential search delays, and k = 7.

the same conclusion holds for E[S] = 3.6 seconds, in which
case ¢ is on the order of 1072 and only allows computation
using the model since simulations are impractical for such
small probabilities.

The most intriguing result shown in Fig. 7 is that ¢ tends
to 0 as « converges to 2 from above. However, as before,
this convergence requires that system age tend to infinity. In
addition, the following result states that system size n must
also be infinite to obtain ¢ = 0.

Theorem 7: For age-weighted random walks, Pareto life-
times with 1 < a < 2, any number of neighbors k£ > 1, and
any type of search delay (including S = o0), the isolation
probability converges to zero as system age 7 and size n
approach infinity: lim,, o limy oo ¢ = 0.

Note that Theorem 7 is a much stronger result than Theorem
3 since ¢ under uniform selection does not asymptotically
approach 0 for any fixed « € (1,2]. However, the asymptotic
result of this section is more difficult to achieve since it
requires not only an equilibrium system, but also an infinitely
large user population.

We finish this section by examining age-weighted random
walks under finite 7 and n using several values of 1 < a < 2.
For such cases, recall from Lemma 6 that Z converges in
probability to oo; however, initial analysis shows that the
convergence rate of Z — oo and ¢ — 0 can only be expressed
using complex Appell hypergeometric functions [4] of 7 and
n for which no closed-form expansion exists. We leave this
task for future work and instead show simulations of ¢ in Fig.
8 as 7 becomes large (n is kept equal to 7 /10). For both
values of «, the figure shows that ¢ monotonically decreases as
system age 7 increases. In fact, for £ = 7, the system achieves
isolation probability below 10~7 without replacing neighbors
at 7 = 30,000 hours and n = 3,000 users. Additional
simulations with k = 7 suggest that increasing n to over 1
million users and keeping the age around 1 year will produce
¢ sufficiently small for most large-scale networks today.

V. RELATED WORK

Construction and maintenance of overlay networks consists
of initial neighbor selection and subsequent replacement of
dead links. Many P2P systems, including structured [19],
[26], [30], [23] and unstructured [2], [24], [17], perform
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neighbor selection and replacement to achieve the desired
routing efficiency and search performance in the face of node
joins and departures. Previous work has used proximity-based
neighbor selection to reduce lookup latency [7], [20], [29],
[17], capacity-based selection to improve system scalability
[2], [11], and age-biased neighbor preference to improve
reliability of the system [1], [11], [25]. Additional studies
have analyzed the tradeoffs between resilience and proximity
[3] as well as studied how well different neighbor selection
and recovery strategies could handle churn in DHTs [22].
Finally, only a handful of modeling studies of user isolation
and neighbor selection under churn exist [9], [12], [15], [18]
and they are mostly limited to exponential user lifetimes and
centralized (age-unrelated) user replacement.

VI. CONCLUSION

This paper derived a general model of resilience for un-
structured P2P networks under heavy-tailed user lifetimes
and formally analyzed two age-dependent neighbor-selection
techniques. Our results show that the proposed random-walk
method may achieve any desired level of resilience without
replacing the neighbors as long as 1 < o < 2 and system
size n and age 7 are sufficiently large. This indicates that
P2P systems under proposed neighbor selection and very
heavy-tailed lifetimes (i.e., @ < 2) become progressively
more resilient over time and asymptotically tend to an “ideal”
system that never disconnects as users join the network.

Future work includes derivation of residual lifetime distribu-
tions in finite systems under age-weighted walks and analysis
of the limiting distribution of U, as m — oo.
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