Link Lifetimes and Randomized Neighbor Selection in DHTs

Zhongmei Yao

Joint work with Dmitri Loguinov

Internet Research Lab Department of Computer Science Texas A&M University, College Station, TX 77843

April 15, 2008

- Background and Motivation
 - Terminology and related work
- Link Lifetime Model for switching systems
 - General DHT space, neighbor dynamics, A semi-Markov chain
- Lifetimes of Deterministic Links
- Lifetimes of Randomized Links
- Wrap-up

Terminology

- User churn
 - User arrivals and departures are not synchronized
- Link creation in routing tables
 - Each user generates k out-links pointing to its neighbors
- Non-switching systems (e.g., Kad and Gnutella)
 - The link points to the same neighbor until it fails
- Switching systems (classic DHTs)
 - Links switch to new neighbors before the current neighbor dies
- Link lifetimes
 - Time duration when the neighbor adjacent to the link is alive $_3$

Terminology

- Repair of failed links
 - Detect failed links and replace with alive peers within \boldsymbol{S} time units
- Link churn
 - The dynamic behavior of links

- Background and Motivation
 - Terminology and related work
- Link Lifetime Model for switching systems
- Deterministic Links
- Randomized Links
- Wrap-up

- The DHT space: consider a unit ring where hash indexes of users are uniform in [0, 1)
 - Random-split: zones are split at the hash indexes of joining users
- Fixed rules for selecting neighbors in routing tables — The successor of each neighbor pointer is *v*'s neighbor
 - Link ownership changes under churn
 - Recovery: an existing neighbor dies and the ownership is assigned to the successor of the failed neighbor
 - Switch: a link switches to new users who arrive into the zone before the current successor fails

1)

Link ON/OFF Behavior

- Denote by Y_j is the zone size from the neighbor pointer to the initial neighbor who starts the *j*th cycle
 - Variable Y_1 is the zone size of the initial neighbor obtained when user v joins the system
- It determines the arrival rate of new users that split the zone and become the owner of the neighbor pointer
 - Large Y_j implies that more users arrive into the zone
- Other Y_j correspond to link recovery: the initial neighbor is found in replacement of the failed neighbor for j = 2, 3, ...

Link Lifetime Model Overview

- Define the conditional link lifetime R(y) as the link ON duration conditioned on the zone size Y_j = y
 We use a semi-Markov chain to study R(y)
- Properties of link lifetimes can then be examined:

$$P(R_j < x) = \int_0^1 P(R(y) < x) f_{Y_j}(y) dy$$

the PDF of Y_i

– Compute the distribution of Y_j for deterministic DHTs and randomized DHTs accordingly

Conditional Link Lifetimes

- Denote by A_t^{y} the number of switches (to new users) that have occurred in [0, t] for given zone size $Y_j = y$
- Using notation A_t^y , we describe:

 $R(y) = \inf\{t > 0 : A_t^y = F | A_0^y = 0, Y_j = y\}$ Conditional link lifetime Conditional on zone size 11

Conditional Link Lifetimes

- <u>Theorem 1</u>: Process $\{A_t^y\}$ is a semi-Markov process where the sojourn time τ_i in each state $A_t^y = i$ follows a general distribution
 - This process is fully determined by the distribution of residual lifetime Z of the initial neighbor, the distribution of user lifetimes L, and the arrival process of new users splitting the given zone
 - Based on this semi-Markov chain, one can obtain the distribution P(R(y) < x) and expectation E[R(y)]
- Next, we focus on the distribution of zone size Y_j to get final results on link lifetimes

- Background and Motivation
 - Terminology and related work
- Link Lifetime Model for switching systems
- Deterministic Links
- Randomized Links
- Wrap-up

- <u>Theorem 2</u>: In deterministic DHTs, the limiting distribution of Y_1 is exponential with mean 1/E[N] and that of Y_j for j = 2, 3, ... is Erlang-2 with mean 2/E[N] as system population N becomes sufficiently large
- The mean link lifetime is given by:

$$E[R_j] = \int_0^\infty E[R(y)] f_{Y_j}(y) dy$$

the mean conditional the PDF of Y_j link lifetime

Exponential User Lifetimes

- Properties of link lifetimes R_j for exponential user lifetimes with $E[L] = 1 \ {\rm hour}$

Pareto User Lifetimes

Pareto L with $\alpha = 2.2$ and E[L] = 1 hour

- The initial neighbor is reliable since $E[Z_j] > E[L]$
- $E[R_j]$ is very close to E[L] for j = 2, 3, ...
- $E[R_1] > E[R_2]$ since Y_1 is stochastically smaller than Y_2
 - A smaller zone size leads to a larger mean link lifetime

Discussion

- Our model shows that link lifetime R in deterministic DHTs is stochastically smaller than residual lifetime Z of the initial neighbor holding the link
 - Switching to newly arriving users makes R smaller
 - Unlike non-switching systems, classic DHTs do not obtain benefits from heavy-tailed L
- Abandon switching systems?
 - Non-switching DHTs create inconsistence in routing tables and may expect longer routing delay
- We propose a new method that not only retains the advantage of switching systems, but increases link lifetimes

- Background and Motivation
 - Terminology and related work
- Link Lifetime Model for switching systems
- Deterministic Links
- Randomized Links
- Wrap-up

Improvement: Randomized Links

- We utilize the freedom of selecting links in randomized DHTs to propose min-zone selection
 - User v uniformly samples m points in $[id(v) + 2^i/2^{64}, id(v) + 2^{i+1}/2^{64}]$, and then selects the point whose successor has the minimum zone size
 - Upon link failure, user v uses the same strategy to find a replacement
 - Zone size Y_j is exponential but has a smaller mean $E[Y_j] = 1/(mE[N])$, where N is system population, for all j
- For comparison purpose, we also examine max-age selection
 - The only difference is that age is used as selection criteria

Link Lifetimes under Min-Zone Selection

Link Lifetimes for $\alpha \leq 2$

• <u>Theorem 3</u>: For Pareto user lifetimes with shape $1 < \alpha \le 2$ and min-zone selection, $E[R] \rightarrow \infty$ as the system size and mapproach ∞ . For maxage selection and any α >1, E[R] is finite.

- We developed a model for link lifetimes R in DHTs
 - The mean link lifetime in deterministic DHTs is very close to the mean user lifetime
 - Switching leads to smaller link lifetimes
- We proposed min-zone selection which sufficiently increases R for heavy-tailed user lifetimes
 - It allows us to achieve a spectrum of neighbor selection strategies while keeps routing tables consistent
 - For m = 1, it is the regular switching in DHTs
 - For $m = \infty$, the probability of switching is reduced to be 0
 - Additionally, it benefits DHTs by balancing load such that users with smaller zone sizes are responsible for fewer keys while forwarding more queries