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Unstructured P2P Link Lifetimes Redux
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Abstract—We revisit link lifetimes in random P2P graphs under
dynamic node failure and create a unifying stochastic model that
generalizes the majority of previous efforts in this direction. We
not only allow nonexponential user lifetimes and age-dependent
neighbor selection, but also cover both active and passive neighbor-
management strategies, model the lifetimes of incoming and out-
going links, derive churn-related message volume of the system,
and obtain the distribution of transient in/out degree at each user.
We then discuss the impact of design parameters on overhead and
resilience of the network.
Index Terms—In-degree, stochastic modeling, user churn.

I. INTRODUCTION

P 2P NETWORKS organize users into a distributed graph
that is jointly maintained and dynamically restructured by

its participants under churn [2], [3], [9], [11], [12], [18], [21],
[24]. Many P2P properties (e.g., message overhead, resilience
to disconnection, and ability to reach other peers with queries)
depend on the behavior of node degree, which is determined
solely by the lifetime of edges in the graph. Despite the sizeable
volume of analytical work on P2P networks [7], [13]–[17], [19],
[25], [27]–[31], accurate characterization of link lifetime has
been elusive.
We start by defining terminology and our modeling objec-

tives. Suppose is the random lifetime of user and is
its residual (i.e., remaining) lifetime at time , conditioned on
being alive at . If peer creates link during join into the
system or repair of broken edges, we call the initiator and
the recipient of the connection. For such a link created at time ,
there are actually two lifetimes: out-link duration ,
which is how long the connection stays active from 's perspec-
tive, and in-link duration , which is the same from
's perspective.
In the traditional sense, the link remains online only for

time units. However, the degree at each user de-
pends asymmetrically on the individual variables and ,
which makes them, rather than , our target in this
paper. It should be noted that links are treated as directional for
the analysis. However, system performance (e.g., query routing
and resilience) is still determined by the combined in/out degree
at each user (i.e., edges are undirected for all other purposes).
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Link lifetimes depend on how peers select their neighbors
during join and replacement of failed edges. If this process
is independent of age (e.g., based on geographical proximity,
random hash function, presence of certain shared content), then
analysis falls under the so-called uniform selection, where it has
been shown [30] that is the residual of . However, even
under uniform selection, the distribution of in-link lifetime
has remained unexplored.
For age-biased neighbor selection, two methods have been

proposed in the analytical literature. The first one, called
max-age [25], [31], selects uniformly random peers and
then picks the one with the largest age. The rationale is that
under heavy-tailed user lifetimes, residuals are stochastically
larger for users with higher age.1 The second method, called
age-proportional [31], selects each user in linear proportion to
its current age. This is implemented using a random walk on the
graph using a Markov chain whose transition probabilities are
functions of current ages of the users adjacent to each link. For
these two specific techniques, the distribution of has been
derived in [25] and [31]. However, extension to more general
preference functions or analysis of has not been offered.

A. Contributions

To understand the impact of neighbor choice on the degree
of the system and message overhead to maintain the graph, our
first contribution is to propose a novel modeling paradigm for
out-link churn that allows arbitrary age-biased neighbor selec-
tion using a general preference function , where is the
age of potential neighbors at the time of edge creation. We pro-
vide a set of conditions under which there exists a simple ex-
pression for the asymptotic distribution of as network size

and explain how to select to obtain the three spe-
cial cases considered in prior work (i.e., uniform, max-age, and
age-proportional).
The new model is flexible enough to cover both active

and passive systems (i.e., with and without neighbor replace-
ment [14]), which represent the two most commonly modeled
approaches. Since max-age employs a very complex nonlinear

that does not immediately reveal the impact of on ,
we propose an alternative mechanism that performs similarly,
but allows closed-form tuning of out-link lifetime.
Our second contribution is to analyze the edge-replacement

process and obtain the rate at which neighbors are sought in
the system. Since each search may require substantial network
resources (e.g., flooding and/or random walks), minimization of
may be beneficial in practice. We show that , which depends

1Variable is said to be stochastically larger than iff
for all [20]. We call lifetimes heavy-tailed if

for all , i.e., given that a user has survived to any positive
age , the remaining lifetime is stochastically larger than . If the inequality is
reversed, we call such distributions light-tailed.

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



756 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 3, JUNE 2015

on the distribution of and replacement delay , can be con-
trolled using and is automatically minimized by any P2P
system whose is sufficiently heavy-tailed (e.g., Pareto life-
times with and age-proportional selection).
Our third contribution is to develop a novel approach to

modeling the distribution of in-link lifetime . We show
that under Pareto lifetimes (often observed in real P2P sys-
tems [1], [22], [26]), is stochastically larger than lifetimes ,
but smaller than residuals . Interestingly, this indicates that
in-link users are more reliable than new arrivals, but less so
than random live peers in the system. We also observe that
increasing the bias toward nodes with large age, i.e., using a
more aggressive , leads to a surprising reduction in .
This indicates that there exists an inherent tradeoff between in-
and out-edge resilience. As becomes stochastically larger,

gets stochastically smaller and eventually converges in
distribution to . While a somewhat similar result was ob-
served in DHTs [9], [29], the reasons for these phenomena are
completely different as we discuss below.
Our fourth contribution is to show that incoming links in the

proposed framework are delivered to each peer through a non-
homogeneous Poisson process whose rate is determined by the
age-preference function . This allows us to obtain the tran-
sient distribution of in-degree , where is the current
age of a live peer, extending the result of [27] to nonuniform
selection. We discover that bounded preference functions (e.g.,
uniform, max-age) guarantee finite as the user's age

. On the other hand, unbounded preference functions
(e.g., age-proportional) grow in-degree to infinity, which in-
evitably forces popular users to reject incoming requests after
they become overloaded (as often seen in Gnutella [8]). This
not only increases neighbor search latency and message over-
head, but also does not guarantee eventual connection success
in asymptotically large networks.
We finish the paper by studying the combined in/out degree

in both passive and active systems, making observa-
tions on the usage of our models to select parameters of the
system to achieve desired performance, which forms our fifth
contribution.

II. OUT-LINK CHURN

To model a P2P system, one requires three underlying as-
sumptions—a churn model, neighbor-replacement behavior at
each peer, and a preference function during link formation. We
outline these next.

A. Active Systems

Consider a network of participants forming a random P2P
graph, where each node can be modeled by a stationary al-
ternating-renewal process representing the user's ON/OFF states
[28, Sec. III]. To allow for heterogeneity in user behavior, we as-
sume that peer randomly draws its lifetime cumulative distri-
bution function (CDF) from some finite pool of available distri-
butions and maintains outbound links to existing peers
in the graph. Repair of broken connections along out-links in-
curs some random delay that is needed to detect the failure and
find a replacement user. This process is illustrated in Fig. 1,
which shows the status of the first two outgoing links of user .

Fig. 1. Active model: connection churn along out-links at user .

In the figure, the direction of the arrows indicates whether the
link is going up (upon creation) or down (upon failure), is
the remaining lifetime of the th selected neighbor along the
th link, and is the corresponding search delay.
Note that inbound links are never repaired as this would

lead to an explosive (snowball) edge-creation process and
eventually a complete graph. As , the system described
above is fully equivalent to a homogeneous network with

initial outbound connections and all users having the
same lifetime CDF , which is a mixture of all possible
lifetime distributions weighted by the probability that users
select them and the frequency of each user's appearance in the
system [28, Theorem 1].

B. Passive Systems
An alternative approach [14] is to never replace the failed

links and only restrict neighbor creation to the initial
edges during join. This model simplifies operation and reduces
overhead at the expense of seemingly poor resilience and low
branching factor during search. However, coupling between
the diminishing expected out-degree and the in-
creasing expected in-degree as user age
creates an intriguing possibility that the average combined
degree may remain more or less constant. If so, this
allows the user to stay connected with almost no superfluous
activity (e.g., keep-alive messages, flooding of the graph to
find replacement neighbors). As this idea has not been modeled
before, we naturally have to investigate its viability later in the
paper.

C. Age-Dependent Neighbor Selection
The rest of this section presents our first contribution—a

novel modeling framework for out-link churn that subsumes
all previous approaches in this field by allowing arbitrary
age-biased neighbor selection. While the results below typi-
cally require , one should not be discouraged by this
assumption since systems with just a few thousand peers match
the developed theory very accurately.
At time , assume a stationary network with

live users whose ages form a collection of asymp-
totically independent identically distributed (i.i.d.) random vari-
ables with distribution [28]

(1)
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where is the tail CDF of user lifetimes.
For Pareto , it is well known [14]
that the shape parameter of both age and residual is ,
i.e., . For our later results, define
the residual of (or the double residual of ) to be a random
variable with CDF

(2)

where is assumed if is Pareto, in which case is
conveniently .
Next, suppose is the

probability that connects to , assuming the latter is alive
and conditioning on the ages of live peers other than
. As , selection strategy may obtain users with

a distribution of residuals that does not converge. To preclude
such cases, we require that asymptotically pick user
proportional to some function of its current age.
Assumption 1: There exists a nonnegative weight function

with for and , where
, such that

(3)

in distribution as .
Since the probability space changes with , the random sum

in (3) must converge in distribution rather than in probability.
We start with two preliminary results that we use throughout
the paper. The first one presents a convenient expression for
integrals with random upper limits.
Lemma 1: Assume is a nonnegative random variable with

residual and is some function. Then

(4)

Proof: As a convention, we write CDFs in uppercase and
densities in lowercase, both subscripted with the name of the
corresponding variable. Expanding (4)

(5)

Integrating by parts, noticing that , and using
, observe that (5) becomes

(6)

which is the same as (4).
The second preliminary result expands the integral of

using the residual of .
Lemma 2: Assume the same as in Lemma 1, but additionally

suppose for . Then, for any

(7)

Proof: Rewriting (7)

(8)

Since is zero for negative arguments, we can split the
integral into a difference between two expectations

(9)

Applying (4) to each term of (9), we get (7).
We now fix peer and deal with the distribution of its out-

link lifetime .
Theorem 1: Assuming (3) holds and , the collection

of variables is asymptotically i.i.d. with tail distribution

(10)

and mean

(11)

Proof: Asymptotic independence of the 's is a conse-
quence of the following facts. For any positive integer , the
chance that peer selects the same individual more than once
in the first cycles (across all links) in Fig. 1 becomes negli-
gible as .Moreover, there are increasingly many users of
similar ages, and the choice of one does not substantially change
the pool of remaining users of similar ages. Therefore, collec-
tion of ages for live users at any time is asymp-
totically i.i.d. with distribution . Thus, the users selected
by peer during its first cycles are asymptotically indepen-
dent, which holds for all and thus shows that 's converge in
distribution to an i.i.d. set.
Next, we establish (10). Recall that the joint distribution of

age and residual time from renewal theory implies

(12)

where and . Now consider independent users
with ages , and let be the corre-
sponding residual lifetimes, which are conditionally indepen-
dent, given all the ages [5]. Thus, the tail distribution of residual
lifetime for any live user is asymptotically

(13)

Let be the residual of the user that selects conditional
on . Then, its tail CDF is a sum of probabilities
that each live user survives at least time units and ran-
domly selects as a neighbor

(14)

Applying (13)

(15)

Invoking (3), this reduces in the limit as to

(16)
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Noticing that , where
is the density of age, and expanding the expectation

(17)

Applying in (17), we get

(18)

which is equivalent to the second formula in (10). Recalling that
is zero for negative arguments, we get the first formula of

(10) as well.
We now establish (11). Recall that the expectation of nonneg-

ative random variables is the integral of its tail [20]. Using the
first expression in (10), this observation produces

(19)

Applying (7) with to this integral, we get (11).
Theorem 1 shows that weight serves as a simple tuning

knob for out-neighbor resilience. Specifically, the tail of in
(10) is that of age scaled by a normalization factor

. Under heavy-tailed , variable
for is stochastically larger than , which indicates that

is stochastically larger than for nondecreasing and
stochastically smaller for nonincreasing . For light-tailed
, this relationship is reversed.
Similarly, the expected residual in (11) is that of

a random live peer (i.e., ) normalized by the ratio of
to . For heavy-tailed lifetimes, where is

stochastically larger than , this leads to if
is nondecreasing and if is nonincreasing.
For light-tailed distributions, this relationship is again reversed
since is stochastically smaller than in those cases.

D. Examples

We next consider selection strategies used in prior literature
and explain how to map them into our new model. In the first
strategy, suppose finds neighbors in proportion to some func-
tion applied to peer age

(20)

which produces uniform [14] and age-proportional [31]
methods using and , respectively.
In the second strategy, uniformly randomly selects

users from the system into a set and then picks the th-order
statistic (e.g., minimum, maximum, median) of the sampled
ages to identify the best neighbor, where . To obtain
the corresponding connection probability, denote by the rank
order of among the ages of live users (from the smallest
to the largest) and observe that this technique exhibits

(21)

which is the number of ways to select ages smaller than
and ages larger than in a system of users, nor-

malized by the number of ways to pick initial peers. Max-age
selection [25], [31] falls under (21) with . For light-tailed
, usage of (i.e., min-age) might be more appropriate in-

stead. Note that both and could depend on , but must be
bounded as .
While the above two strategies are seemingly different, they

in fact can be reduced to the same asymptotic model.
Theorem 2: Both (20) and (21) satisfy (3) with respective

weights and

(22)

where .
Proof: From the law of large numbers, (20) is directly

equivalent to (3). However, analysis of (21) requires more work.
To this end, using the properties of rank-order statistics [23], we
first obtain that

(23)

in distribution as . This result says that the fraction of
users whose rank is below that of converges in distribution
to the actual probability that the random age of a live user is
smaller than , which holds uniformly for all .
Next, recalling that as and leveraging

(23) in the limit, we get

(24)

and

(25)

Using (24) and (25) in (21) shows that

(26)

We thus get that the maximum deviation of from
across all shrinks to zero as

(27)

In order for (27) to be equivalent to (3), we must next show
that since the latter has this term, while the former
does not. Letting be the Beta function

(28)
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Finally, noticing that for any connection function and
set of user ages

(29)

we get (3) after invoking (27).
Besides the two strategies explained above, a much wider

class of methods can be covered under the umbrella of (3)
as long as asymptotically selects each live user with
probability proportional to . This modeling approach
conveniently decouples analysis from complex summations

in the first strategy, sets in the second strategy,
and various other details whose contribution in the limit is
insignificant. From this point on, we do not dwell on the exact
details of neighbor selection, but instead assume that it satisfies
(3) and is uniquely described by .
We now return to (10) and (11) to perform a self-check

against prior derivations in the literature and common sense.
Result (10) becomes [28, Lemma 2] under uniform selection,
[31, Theorem 4] under max-age, and [31, Theorem 6] under
age-proportional. For exponential lifetimes and any , we
trivially get . In (11), uniform selection produces

and age-proportional ,
which is consistent with the previously obtained expressions
for these special cases [31]. As expected, exponential leads
to for all .

E. Max-Age Discussion
The max-age is an interesting function

in the sense that it favors older peers, but without becoming un-
bounded in like age-proportional. The main stumbling block
to understanding max-age is the obscure impact of on ,
even when we have a simple closed-form model for the double-
residual . In addition, the complex shape of max-age's
makes computation of various metrics developed below very
tedious. To overcome this problem, we next propose an approx-
imation to the max-age technique that allows a simple closed-
form expression for . Also note that replacing max-age
with a directly evaluated function in (20) avoids drawing

initial samples,
Since multiplying by a constant does not affect , we

need to consider only term , which stays near zero for
small , thenmakes a sharp, almost linear, transition to 1 at some
threshold , and finally remains near 1 for larger . While a
three-segment piecewise linear approximation is possible, we
find that , where is an indicator of event ,
is sufficient for our examples. To ballpark , one needs to solve

, where is the desired level (such as 0.5) at
which the transition from 0 to 1 is considered nonnegligible.
Assuming denotes the inverse of the CDF and

, we get

(30)
Using , we construct a step-function to approximate

max-age with under Pareto lifetimes with ,
which results in h. Fig. 2(a) shows the resulting tail
distributions of , together with those of age-proportional
and residual . As , the figure shows that the tails

Fig. 2. Tail of for Pareto with , h. (a) Comparison to
max-age. (b) Different .

under our approximation and max-age are
indistinguishable. As both tails exhibit a linear slope matching
that of , it can be conjectured that they are Pareto-like with
shape . For max-age, verifying this result is nontrivial, but
the step-function readily produces from (10)

(31)

which shows that is .
Going back to Fig. 2(a), observe that the age-proportional tail

is much heavier than the other ones since its is
Pareto with . In fact, the age-proportional scheme more
than doubles of max-age with .While it is possible
to blindly tweak parameter in max-age to obtain the same

, we next show that allows a simple closed-form
relationship between and . Applying (11)

(32)

which under Pareto lifetimes becomes

(33)

For example, with and the same parameters
as in the figure (i.e., h, ), we achieve

h, which compares favorably to age-proportional's
8.6. Fig. 2(b) shows the resulting tails. In contrast, age-propor-
tional does not have any tuning knobs as all linear functions

are equivalent when used in (20).

F. Power-Law Bias
Since power functions logically generalize uniform and age-

proportional, we investigate them next.
Theorem 3: Suppose is with (i.e.,

) and , where . Then,
is .

Proof: Rewriting (17)

(34)

Define . Noticing that ,
we immediately get

(35)
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and thus

(36)

Applying [10, Eq. 3.194.3] yields

(37)

and therefore

(38)

which is the tail of the distribution.
Theorem 3 is a striking result indicating that power-law

neighbor selection inherits Pareto tails in out-link lifetimes for
both positive and negative , with a clear stochastic ordering
between them. Values of result in undefined since

and Assumption 1 fails to hold. Therefore, the
lightest achievable tails arise when , in which case

in distribution, i.e., both new arrivals and
neighbors behave probabilistically the same. As increases, the
tails get heavier and goes through the well-known uniform
selection ( ) and age-proportional ( ). For ,
it is possible to increase further. However, this may
severely impact the in-degree of long-lived peers and overload
them with a massive amount of inbound connection requests,
some of which they may have to reject. We later develop the
necessary mechanisms for analyzing this tradeoff.

III. MESSAGE OVERHEAD

Our second contribution is to analyze the edge-replacement
process and obtain the rate at which neighbors are sought
in the system, which provides a platform for understanding re-
silience and message overhead of the system. Since each search
may require substantial network resources (e.g., flooding and/or
random walks), minimization of might be one of the possible
objectives in practice.

A. Edge-Creation Process
In light of Theorem 1, the rest of the paper uses a single

variable to represent the remaining uptime of an
out-neighbor. Similarly, we assume that search delays are i.i.d.
and replace them with , where is some CDF
of a nonnegative random variable.
Define to be the length of one up/down cycle

in Fig. 1, and let be its CDF, where
denotes convolution. Focusing on a single link, define to

be the instance when this link gets its th out-neighbor, where
and for . Then, suppose that

is a renewal process whose interrenewal delays are distributed
according to

otherwise.
(39)

Note that counts the number of replacements in ,
where the first renewal always occurs at 0 (i.e., ).
Then, the expected number of outbound connections generated
along a single out-link of in the interval is the renewal
function , which can be expressed as [20]

otherwise
(40)

where is the -fold convolution of .
In passive systems, where the failed neighbors are not re-

placed, the counting process in (39) reduces to .

B. Cost of Active Replacement

First notice that the number of edges generated along each
out-link during the lifetime of a user (i.e., in ) is a random
variable . Thus, the average number of connections created
per join is simply , which is the only contributor to the
churn-related overhead of the system. Informally speaking, this
term depends on the number of out-links , search delay , and
the rate of churn in the out-neighbors.
To understand this better, observe that connections generated

by during its presence in the system can be either initial (i.e.,
during join) or replacement (i.e., during out-link repair). This
difference can be seen in Fig. 1, which shows two initial and
three replacement edges. Denote by

(41)

the expected number of replacement edges thrown by a peer
during its lifetime. Then, the average rate at which out-links are
created by a live user in the system is

(42)

The first term is responsible for the initial edges and
cannot be minimized unless is reduced. The second term, i.e.,

, is determined by the resilience of out-links and may
be controlled by either increasing the tail weight of the lifetime
distribution or changing function to be more aggressively
biased towards older peers.

C. Examples

While the expected search delay plays a major role in
out-degree resilience models [14], [31] regardless of its magni-
tude, it has only a mild impact on link lifetimes and their churn
rate, unless it becomes comparable to . Since measurement
studies have shown [26] that is at least 1 h and considering
that finding a neighbor should not take longer than 30–60 s, ex-
amples below often assume that is negligible.
Theorem 4: For exponential lifetimes, holds for all

and . For heavy-tailed lifetimes and uniform selec-
tion, is always smaller than , eventually reducing to 0 as

. For light-tailed lifetimes and uniform selection, is al-
ways larger than .
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Proof: For exponential , the number of replacements
in is simply a Poisson random variable with rate .
Therefore

(43)

which leads to and thus in (41) reduces to .
Next, under uniform selection and zero search delay, cycle

length is the residual lifetime . Then, the derivative
of is

(44)

Since under heavy-tailed lifetimes for all
, it is easy to see from (44) that , indicating

that

(45)

This directly leads to and thus for all
. As the lifetime tail becomes heavier (e.g., Pareto gets

smaller), the number of renewals of size in monotoni-
cally reduces. Eventually, as , residual converges to in-
finity almost surely and becomes larger than with probability
1, i.e., . In these limiting cases, no replacements
happen in and thus .
Similarly, given for lighted-tailed lifetimes

(e.g., the uniform distribution), we get from (44) that
, which establishes and thus .

This result shows that by providing users with neighbors
whose remaining lifetimes are stochastically larger than
, Pareto systems exhibit smaller link-related churn and thus

lower overhead compared to the exponential case. In the best
scenario of (i.e., almost surely), the amount
of replacement traffic can be reduced to zero, while the total
number of neighbor searches shrinks by half compared to
exponential lifetimes, i.e., from per user join to .
As measurement studies show [1], [26] in real P2P
networks, this effect might be achievable in practice.
Under nonuniform selection, conclusions similar to those in

Theorem 4 hold, except the reasoning replaces residuals with
out-link lifetimes , i.e., the more heavy-tailed , the smaller
. We can also state that the fraction of all connection requests
that come from initial edges is . If this metric
is above (i.e., heavy-tailed lifetimes), the system is driven
by join overhead. If it equals , then we have the exponential
case where both types of edges are equally likely. Finally, if is
smaller than (i.e., light-tailed ), then the system is driven
by edge failure.
We next compare against simulations, which we perform

throughout the paper by emulating full graphs with hetero-
geneous users, each with its own ON/OFF renewal process. The
number of live peers at any time is approximately half the
system, i.e., . Simulations run for a sufficient
amount of time to make the system stationary and achieve

Fig. 3. Model (41) and simulations of under Pareto with h
and (active system). (a) Uniform ( ). (b) Age-proportional
( ).

convergence of the metric being measured. Fig. 3 shows that
(41) matches simulation results very well for both uniform and
age-proportional neighbor selection, remains bounded by as
predicted in Theorem 4, and decreases as shape becomes
smaller. Age-proportional maintains lower compared to
uniform, achieving as , which can be explained
by its (almost surely) for .

D. Passive Systems
When out-neighbor failure is ignored, we have and thus

, which represents the optimal case from the over-
head standpoint. On the flipside, passive systems throw fewer
edges for the same value of and thus grow their in-degree at
a lower rate than active systems. To examine if

can in fact stay bounded away from zero, we first
need to analyze in-link lifetime , whose distribution, com-
bined with , will eventually determine .

IV. IN-LINK CHURN
Our third contribution is to derive the distribution and mean

of in-link lifetime , shedding light on its relationship to resid-
uals of live peers and lifetime of fresh arrivals. We now
focus on node receiving edges from a random live peer .
Unlike earlier analysis, link is considered failed when
user departs, not .

A. Distribution and Mean
We start with the distribution of and the average lifetime

of in-neighbors , the latter of which also allows us to de-
termine in-link failure rate .
Theorem 5: The complementary CDF (CCDF) of in-link life-

time is asymptotically

(46)

and its mean is

(47)

Proof: We first establish (46). Our goal is to determine the
fraction of edges created (i.e., selections made) in with
residual lifetimes of the originating nodes larger than as
. Assume fixed and examine interval . Place all user

sessions entirely contained in this interval (i.e., both created and
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terminated before ) into set (dead) and those still ongoing at
into set (live).
For each user , define to be the age process of the

user (i.e., current age if the user is alive at , and 0 otherwise) and
to be its renewal process (39) of neighbor selection for

the th link. It then follows that makes selections
for link at instances when its own residual is larger than ,
which makes the total number of such edges thrown in
equal to

(48)

where accounts for the
edges created by live users within their current age .
Note that the bias applied by determines howmany of the

created edges arrive to , notwhich ones. Therefore, is equally
likely to receive any of the generated links and the probability
that an incoming edge in has a lifetime larger than is
simply . This shows that among all edges created in

, which is equivalent to placing into a stationary system,
the tail distribution of is

(49)

Next, since in probability as , which is a
consequence of the churn model in [28], and , it follows
that the second summation term in (48) is upper-bounded by a
constant as . Then, from the law of large numbers and
independence of from

(50)

where . Combining (49) and (50), we get (46),
which immediately leads to (47) following the proof of (11) in
Theorem 1.
Interestingly, (46) is very similar to (10), except the tail of
now depends on that of instead of and the normaliza-

tion factor is determined by a monotonically increasing function
instead of . The various cases considered following

Theorem 1 apply here as well, i.e., is stochastically larger
than for heavy-tailed lifetimes and smaller for light-tailed. To
perform a sanity check, notice that in passive systems

, which converts (46) to
. We get the same result for exponential in active sys-

tems since for has the same distribution as from
the memoryless property.
Consistency between model (46) and simulation results for

Pareto lifetimes is illustrated in Fig. 4. For uniform selection,
Fig. 4(a) shows that is stochastically smaller than resid-
uals , but larger than . This indicates
that peers throwing in-links are less reliable than random live
users, but more reliable than fresh arrivals. More interestingly,
Fig. 4(b) shows that the tail of under age-proportional se-
lection is lighter than that under uniform selection. This occurs
because of the lower churn rate in the replacement links
and thus a higher fraction of inbound connections coming from

Fig. 4. Comparison of (46) to simulations for Pareto with , mean
0.5 h, and (active system). (a) Uniform ( ). (b) Age-proportional
( ).

newly joining peers. Hence, more aggressive functions re-
duce message overhead and increase resilience of out-links at
the expense of lowering resilience of in-links. In the worst case,

may “deteriorate” down to , which is reminiscent of the
situation occurring in DHTs [29], where it happens due to the ar-
rival of new users who take over the zones of existing neighbors.
Turning attention to (47), exponential lifetimes or passive

systems produce and therefore
. For all other cases, (47) is still quite easy to interpret

as it shows that is determined by the ratio of
to , i.e., how many renewal cycles of size can fit
into vs . For heavy-tailed lifetimes, is stochas-
tically larger than and this ratio is above 1, which means that

(for light-tailed distributions, the opposite is
true). Furthermore, whenever .

B. Discussion
The distribution of is rather complex because in-links are

a combination of initial edges (with lifetime ) thrown by ex-
isting users. It was conjectured in [30] that is simply
the residual lifetime of . The rationale for this was that a failed
out-edge occurred equally likely within the lifetime of , and
thus 's remaining uptime had to follow .
Since is conditioned on the fact that 's out-link has failed

at least once, we easily obtain that the distribution of is more
heavy-tailed than that of . However, its relationship to
is far from obvious. In our next result, we aim to address this
question.
Theorem 6: As , the tail distribution of replacement

in-link lifetime converges to

(51)

Proof: Derivations here are mostly identical to those in
Theorem 5, with the only caveat being subtraction of initial
edges from (48). Recall that due to the
initial edge being thrown when joins the system. This initial
edge needs to be subtracted from , but only for
those users whose . This leads to

(52)

which reduces to (51) after canceling in and re-
placing with 1 in the denominator.
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Fig. 5. Comparison of (51) to simulations for Pareto with mean 0.5 h and
(active system). (a) Uniform ( , ). (b) Age-proportional

( , ).

Note that this result is meaningful only for active systems
since is undefined for networks that do not replace neighbors.
It is easy to verify that for exponential , (51) produces the usual

. However, for lifetimes that exhibit memory, we
have yet another distribution that does not equal any of ,

, or . Fig. 5 shows that the tail of is “sand-
wiched” right between and , i.e.,
, where means stochastically smaller.
While much of related work [12]–[14], [25], [31] has focused

on the lifetime of out-links, it turns out that in-links have a much
more interesting and complex behavior. Armed with the distri-
bution of , we next obtain the in-degree of live users.

V. IN-DEGREE

In our fourth contribution, we examine the aggregate
edge-arrival process to a live user from the rest of the system
and obtain the distribution of its in-degree at different ages .
Recall that outbound connections from increase the in-degree
of other peers in the network. However, this increase is only
temporary as all of the established out-links are terminated
when fails at the end of its lifetime. Both active and passive
neighbor-replacement models [14], [30] do not impose any
limits on the in-degree (i.e., all inbound connections are ac-
cepted) and rely on the system to be self-balancing, i.e., higher
in-degree means faster combined failure of in-neighbors, which
should lead to eventual stabilization of in-degree at some finite
value. The models developed later in this section help us answer
whether this is indeed true.

A. In-Link Arrival Process

Recall that is the rate at which users gen-
erate outgoing edges. Now, fix a node and define
to be its age process, which is the time elapsed since 's last join
into the system if it is alive at , and 0 otherwise.
Theorem 7: Under Assumption 1 and , the arrival

process of in-links to converges in distribution to a nonhomo-
geneous Poisson process with local rate , where

(53)

Furthermore, the corresponding in-link lifetimes converge in
distribution to i.i.d. random variables with CCDF (46).

Proof: At time , all users in the system are generating out-
edges at an overall rate , which equals the rate at which
edges are being absorbed by the live users. If at a given time
the age of user is , the selection process and (3)
imply that receives edges at a rate asymptotically proportional
to . Thus, the instantaneous rate of in-links arriving to at
is

(54)

in the limit.
These edges are coming from asymptotically independent

users, as it is increasingly unlikely that gets more than one
edge from the same user as . The in-link arrival process
is thus, asymptotically, a superposition of i.i.d. simple point
processes, which must be a Poisson process by the traditional
point process theory [4]. Finally, asymptotic independence of
the users generating these edges implies that of their residual
lifetimes, which we know from Theorem 5 follow tail distribu-
tion in (46).
Note that Theorem 7 applies to both passive and active sys-

tems, where the only difference arises in parameter (i.e., 0 for
passive and (41) for active). We next focus on understanding
whether users can achieve a balance between arrival of new
in-edges and failure of existing ones.

B. In-Degree Distribution

As node connectivity, isolation probability, and routing
performance (e.g., coverage during flooding) rely on transient
properties of node in-degree, we specifically target small age
in our analysis.
Theorem 8: For a fixed age , in-degree of a live

peer converges in distribution as to a Poisson random
variable with mean

(55)

Proof: Notice that we can view arrival of in-edges to each
live user as an queuing system. Specifically, edges
find according to a nonhomogeneous Poisson process with
rate shown in Theorem 7. Furthermore, each in-link can
be modeled by a virtual queue whose service time is . Then,
it is well known [6] that the number of busy queues (i.e., live
in-neighbors) at fixed time has a Poisson distribution with
mean (55).
While this result shows a clear dependence of on

the tail of , an alternative form will be useful later. Substi-
tuting (46) and (53) into (55), then expanding using (42),
yields

(56)

In Fig. 6, we plot the distribution of in-degree for
max-age and age-proportional selection along with a Poisson
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Fig. 6. Poisson result in Theorem 8 and simulations at h under Pareto
lifetimes with , , and (active system). (a) Max-age

( ). (b) Age-proportional ( ).

distribution with the mean in (56). As the figure shows, the
in-degree at given age follows the model very well.

C. Examples With Active Systems
The next question relates to our ability to simplify

under active neighbor replacement (we cover the
passive case in Section VI-B). For exponential lifetimes,
the CDF of in-neighbor residuals remains the same, i.e.,

. From Theorem 4, we have
and thus (55) becomes

(57)

Under uniform selection, yields a scaled CDF of
the original lifetime distribution

(58)

while age-proportional with results in the lifetime
CDF being subtracted from a linear function of

(59)

A more captivating case arises when is not exponential.
To expand for general lifetimes, we need the next result,
which treats as a signed measure (i.e., difference between
two nondecreasing right-continuous functions). This allows in-
tegrals to be taken with respect to , without forcing
to be differentiable or even continuous.
Theorem 9: For , the mean in-degree of a live user

at fixed age is given by the Lebesgue–Stieltjes integral

(60)

Proof: Moving the expectation outside in (56)

(61)

Setting to represent the integral in (61) conditional on
and recalling that is a signed measure, observe

(62)

Using (62) in (61) leads to

(63)

where

(64)

Applying (4) to (64) twice, first with and then
with , leads to

(65)

Substituting (65) into (63) produces (60).
Not surprisingly, max-age does not admit closed-form sim-

plification from any of (55), (56), or (60). However, invoking
Theorem 9 for the other three methods does lead to rather in-
teresting expressions. Note that renewal functions below
depend on and are thus unique to each formula.
Theorem 10: The step-function produces in (60)

(66)

uniform selection exhibits , and
age-proportional yields

(67)

Proof: Step function is right-continuous
and thus satisfies the requirement of the theorem. From the def-
inition of Lebesgue–Stieltjes integrals

(68)

for any integrable function . Combining this observation
with leads to (66), which also produces

as a special case with .
For age-proportional, setting makes (60) into

(69)

Invoking (7) with for the integral in (69) and moving
inside the parentheses, we get (67).

Fig. 7 shows simulations of , leveraging the simplest
available model for each case. The figure demonstrates that the
considered models are indeed very accurate, albeit somewhat
sensitive to the size of the graph. Specifically, uniform and
max-age are accurate for as small as 2 K. However, the
age-proportional case (with its for ) requires

to maintain a large-enough pool of long-lived peers
for a sufficiently randomized neighbor selection.
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Fig. 7. Comparison of models of to simulation results for h,
, and (active system). (a) Uniform/exponential ( ).

(b) Uniform/Pareto ( ). (c) Max-age/Pareto ( , ).
(d) Age-proportional/Pareto ( ).

Comparing the exponential and Pareto cases in
Fig. 7(a) and (b), the latter saturates at a higher value (i.e., 19.1
instead of ) and delivers more edges to long-lived
users. This explains its smaller and lower overhead
discussed earlier. Interestingly, under uniform selection in
Fig. 7(a) and (b), saturation point is
simply the ratio of the rates at which in-links arrive to a user
(i.e., ) and at which they fail (i.e., ). This can be
seen using in (66) and letting , followed by
substitutions from (42) and (47).
The max-age strategy in Fig. 7(c) almost completely ignores

small-age peers, but then starts accumulating in-degree at a
more healthy pace, surpassing uniform selection by h
and reaching 62 neighbors in 10 h. A similarly interesting case
is age-proportional in Fig. 7(d), whose expected degree also
starts slow, gaining just 5.7 neighbors in the first hour, but then
becomes wildly aggressive, hitting 35 neighbors in 3.7 h and
112 in 10 h. Eventually, transitions to a linear function
proportional to , reaching the final point in
the figure with 645 neighbors in 2 days.

D. Discussion

From (55) and assuming , uniformly bounded
preference functions, i.e., for some constant
and all , lead to finite mean degree . Likewise, if
is allowed to grow in to infinity, it follows that

as . Since the number of connections at each host
must be bounded (e.g., due to shortage of sockets, bandwidth,
and/or processing power), we arrive at a surprising discovery
that age-proportional may lead to peer overload with traffic, re-
jected connections, and possibly unbounded join delays. In fact,
our analysis shows that if selection is made using flooding or
random walks, which find nodes in proportion to their degree

and thus age, these strategies may also experience overload and
be unsuitable for real networks.

VI. COMBINED DEGREE

Our fifth and final contribution is to analyze the behavior of
joint in/out degree, study resilience of the system, and examine
various ways to select preference function . In this section,
it suffices to consider a single user with out-links.

A. Active Systems
It is not difficult to see that out-degree is a binomial

random variable with parameters and , where the latter is
the probability that an out-link is live at age . Recalling from
Fig. 1 and (39) that for is the time instance
when the th neighbor is selected along a single out-link and

is the remaining lifetime of the corresponding
out-neighbor, we get using integration by parts

(70)

Since the out-degree starts at , the initial likelihood that the
link is active is higher than its stationary equivalent from re-
newal theory

(71)

However, as , monotonically converges to this
lower bound. For small mean search delays ,
the out-degree may be considered virtually constant and equal
to for all , which means that the combined expected degree

in active systems is that shown in Fig. 7 with added
to each point.
A simple way to ballpark the operating range of degree is

to notice that is lower-bounded by
and represents the max-

imum achievable number of neighbors. Under uniform selec-
tion, exponential produces ,
while for Pareto lifetimes, this is typically only slightly higher
as seen from Fig. 7(b).
Making more aggressive (e.g., by shifting in the

step-function to larger values) makes more heavy-tailed, in-
creases resilience of out-links, and reduces their failure rate

, but at the expense of also lowering the resilience of
in-links and increasing the degree of high-age peers. Assuming
the design calls for lower/upper bounds and on the ex-
pected degree, parameters of the step-function may be
determined by solving and
using the smallest suitable . In this case, the system is guaran-
teed to have the maximum resilience and lowest message over-
head among all solutions that keep .

B. Passive Systems
In this case, the network admits closed-form results that do

not depend on renewal function . Recall that in passive sys-
tems, failure rate , in-link lifetimes ,

, and for any random
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Fig. 8. Combined expected degree under Pareto lifetimes with ,
, and (passive system). (a) Step-function. (b) Age-proportional.

variable . Rewriting (56), recalling that for ,
and using Lemma 1, we get

which saturates at . This shows that
unbounded functions may be unsuitable in practice not just
for active, but also passive, systems.
Simplifying (66), we get for the step-function

(72)

which leads to the uniform case via .
Expanding (67) results in

(73)

For exponential , active P2P networks generate out-
bound links at double the rate of passive systems, i.e., at

compared to . It is then
reasonable that their expected in-degree in (58) and (59) is
similarly larger (i.e., exactly by a factor of two) than in passive
systems (72) and (73). Unfortunately, the same conversion
factor does not hold for nonexponential , where
link dynamics are significantly more complex.
The expected out-degree in passive networks is also very

simple and equals the mean number of original neighbors whose
residual is at least , i.e., . Uniform
selection combined with its produces

for all . The other two cases allow the
combined degree to dip below , but then recover and eventually
exhibit . This translates into a limit equal
to for the step-function in (72) and for age-pro-
portional in (73).
Fig. 8 shows this effect in comparison to the uniform case

(drawn as a dashed line). Observe that the combined degree of
the step-function monotonically decays until and only
then begins to recover. The lowest point of the curve is deter-
mined by since , which is 4.5 and 2.88
for the two cases in Fig. 8(a). The two saturations points are

and 72 neighbors, respectively. The

age-proportional case in Fig. 8(b) does not allow the average de-
gree to drop below 6.63, but its increases very aggres-
sively after 1 h and eventually tends to infinity as a linear func-
tion in (73). Interestingly, this rate is exactly
times smaller than in the active case (67).
As age-proportional again fails to bound user degree, we next

analyze how to use the step-function to achieve
for all . Observe that this can be satisfied with any

combination of such that

(74)

Additionally, recalling that the message overhead of the
system is proportional to , it makes sense to
minimize among the pairs that conform to (74). In that case,
a unique optimal solution emerges as and . This
shows that uniform selection minimizes the overhead among
all methods that satisfy , where parameter
actually becomes irrelevant as long as it is no smaller than .
The reasonwhy enforcing the lower bound is so important

specifically in passive systems is that their variance in is
much higher than in active systems, where keeps
the degree bounded away from zero. Approximating as a
sum of two Poisson variables, it follows that

(75)

meaning that the higher the mean of at every point , the
less likely the system is to disconnect. Similarly, maximizing

helps improve resilience. In particular, under uniform se-
lection, we get , which suggests that
30 neighbors commonly seen in Gnutella are excessive even for
passive systems, which Gnutella is not. A more reasonable
would be 16 or even 12, with (75) contained below 10 and
10 , respectively.

VII. CONCLUSION
We introduced a novel stochastic framework for tackling

link lifetimes and degree evolution in random graphs under
churn, covering both passive and active systems under the
same umbrella. This work has shown that neighbor-selection
mechanisms and the lifetime distribution have a significant
impact on the properties of the system, including its message
overhead, node resilience to disconnection, and their ability
to function as part of the system. We also offered practical
guidelines for selecting system parameters and balancing the
various tradeoffs.
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