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Analysis of Link Lifetimes and Neighbor
Selection in Switching DHTs

Zhongmei Yao, Member, IEEE, and Dmitri Loguinov, Senior Member, IEEE

Abstract—Several models of user churn, resilience, and link lifetime have recently appeared in the literature [13], [14], [36], [37]; however,
these results do not directly apply to classical Distributed Hash Tables (DHTs) in which neighbor replacement occurs not only when current
users die, but also when new users arrive into the system, and where replacement choices are often restricted to the successor of the
failed zone in the DHT space. To understand neighbor churn in such networks, which we call switching DHTs, this paper proposes a
simple, yet accurate, model for capturing link dynamics in structured P2P systems and obtains the distribution of link lifetimes for fairly
generic DHTs. Similar to [9], our results show that deterministic networks (e.g., Chord [30], CAN [25]) unfortunately do not extract much
benefit from heavy-tailed user lifetimes since link durations are dominated by small remaining lifetimes of newly arriving users that replace
the more reliable existing neighbors. We also examine link lifetimes in randomized DHTs equipped with multiple choices for each link and
show that selecting the best neighbor in these scenarios is rather complicated as it depends on the desired load-balancing, link resilience,
and overhead. We offer insight into the various selection algorithms, their performance, and possibilities for improvement.

Index Terms—Distributed Hash Tables, Link Lifetimes, Neighbor Churn.
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1 INTRODUCTION

R ESILIENCE of distributed peer-to-peer (P2P) networks
under user churn has recently attracted significant

attention and has become an important research area
[2], [5], [12], [13], [15], [16], [17], [18], [27], [31], [36].
Traditional metrics of performance in this analysis have
been the ability of the graph to stay connected during user
departure [14], [18], [24], behavior of immediate neighbors
during churn [12], data delivery ratio [32], evolution of
out-degree [13] and in-degree [36], and churn rate in the
set of participating nodes [9]. All metrics above depend on
one fundamental parameter of churn – link lifetime, which
is defined as the delay between formation of a link and its
disconnection due to a sudden departure of the adjacent
neighbor.

In many P2P networks, each user v creates k links
to other peers when joining the system, where k may
be a constant or a function of system size [19], and
detects/repairs failed links in order to remain connected
and perform P2P tasks (e.g., routing and key lookups)
[25], [27], [28], [30]. Under fairly general conditions on
user lifetimes [13], [36], link behavior is often modeled
as an ON/OFF process in which each link is either ON
at time t, which means that the corresponding user is
currently alive, or OFF, which means that the user adjacent
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to the link has departed from the system and its failure
is in the process of being detected and repaired. ON
durations of links are commonly called link lifetimes and
their OFF durations are called repair delays.

With this setup, it is not hard to see that link lifetimes
play a key role in the study of resilience, performance, and
reliability of P2P networks. For instance, longer average
link lifetime means that users must repair failed links
less frequently, which leads to smaller churn rates in
the terminology of [9], and that queries are less likely
to encounter dead neighbors during routing [12], which
yields larger data delivery ratios [32] and higher lookup
success rates.

If links do not switch to other users during each ON
duration (i.e., keep connecting to the same neighbors
until they fail), then link durations are simply residual
lifetimes of original neighbors. We call this model never-
switching and note that it applies to certain unstructured
P2P networks [8] and some DHTs [28]. Link lifetimes for
never-switching systems have been studied in fair detail
under both age-independent [13], [36] and age-biased [32],
[37] selection. However, many DHTs actively switch links
to new neighbors before the current neighbor dies in order
to balance the load and ensure DHT consistency. We call
such systems switching and note that their link lifetimes
require entirely different modeling techniques, which we
present below.

1.1 Analysis of Existing DHTs

We start by introducing a stochastic process that keeps
track of the changes in the identity of neighbors adjacent
to the i-th link of a given user v as they become the current
owner of this link under churn. We show that this process
is a regular semi-Markov chain whose first hitting time to
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the absorbing state (which corresponds to the failure of
the last neighbor) is link lifetime R. Using this model, we
find that the distribution of R is determined not only by
lifetimes of attached users, but also by the zone size of the
original neighbor holding the link. We thus additionally
derive the distribution of zone size during the various
phases of link ownership (i.e., for the initial neighbor and
those obtained after each stabilization).

We next obtain the Laplace transform of the distribution
of R and derive its expected value E[R] for general
user lifetimes L, including heavy-tailed cases. We use
this result to show that under heavy-tailed peer lifetimes
(e.g., Pareto) observed in many real P2P networks [4],
[29], [33], link lifetime R is stochastically smaller than the
residual lifetime Z of the initial neighbor holding the link.
Consistent with simulations in [10], our results also show
that E[R] is very close to E[L], which is in stark contrast
to the results of [13], where E[R] was several times larger
than E[L] depending on Pareto shape α of the lifetime
distribution.

This phenomenon occurs because older (i.e., more reli-
able) neighbors in DHTs are replaced with new arrivals
that exhibit much shorter remaining lifetimes. As a result,
classical DHTs unfortunately do not extract any benefits
from heavy-tailed user lifetimes and suffer much higher
link churn rates than the corresponding unstructured
systems [13]. A similar conclusion was obtained in [9] for
query failure rates in Chord.

1.2 Improvements

One method of overcoming the problem identified above
is to utilize randomized DHTs (e.g., randomized Chord
[11], randomized hypercube [21], and Symphony [20])
in which the i-th finger pointer of a given user v is
randomly selected from some set Si of possible locations
in the DHT space. By trying multiple options in Si and
linking to the user with the best characteristics, the hope
is to improve link lifetime and reduce the impact of
churn on system performance. While freedom of neighbor
choice allows randomized DHTs to operate under never-
switching, where link lifetime is understood pretty well
[13], [32], [36], [37], we next explore their performance
under switching.

The first obvious randomized technique, which we call
switching max-age (SMA), selects m ≥ 1 points in Si

uniformly randomly, places the finger into such generated
point that its successor has the largest current age, and
maintains a neighboring connection to whoever is the
current successor (i.e., owner) of that finger. While quite
effective in never-switching scenarios, this strategy has
minimal impact in switching DHTs since link lifetime is
determined by the remaining session length of not the
first, but the last neighbor holding the link. To overcome
this limitation, we examine several alternative random-
ized strategies that stem from our model of link lifetime
R and discuss the various performance tradeoffs that arise
in each case.

We finish the paper by examining an orthogonal ap-
proach that restricts DHT users to some minimal age
before any links or objects are assigned to them and
discussing how the developed models apply to these
situations. Specifically, we study the delayed-join strategy
of widely deployed unstructured P2P systems, in which
only special nodes with enough uptime (e.g., ultra-peers
in Gnutella) are allowed to route queries and hold keys.
The remaining users (called leaves) can only initiate and
answer queries to/from the system. As nothing prevents a
similar approach from being deployed in a DHT, we show
that for Pareto lifetimes with E[L] = 0.5 hours and 21%
of the graph delegated to support DHT routing, delaying
each join by just 6 minutes increases link lifetime by a
factor of 4.4, which is quite significant in practice. More
examples are discussed later in this paper.

2 GENERAL DHT MODEL

We start by formulating assumptions on the churn model,
DHT space, and link switching in DHTs. Due to limited
space in the printed edition, discussion of related work
can be found below in Section 6, omitted simulations in
Section 7, and all proofs in Section 8.

2.1 Churn Model
For user churn, we adopt the recently introduced [36]
framework of n alternating renewal processes represent-
ing periodic online/offline behavior of users observed in
real P2P systems [9], [33]. In this model, each user i is
viewed as alternating between online and offline states,
where the duration of each state is random and has some
user-specific distribution.

While the total number of users n is fixed in this model,
the number of currently alive peers Nt at time t is a random
process that fluctuates over time. Once stationarity is
reached, we usually replace Nt with its limiting version
N = limt→∞ Nt. As a consequence of this churn model
[36, Theorem 5], user arrivals into the system follow a
Poisson process with a constant rate λ = E[N ]/E[L],
where E[N ] is the average number of users in the steady
state and E[L] is the mean user lifetime.

2.2 DHT Classification
Many traditional DHTs, including those with d-
dimensional number spaces, can be mapped to a 1D ring
by treating node IDs as some large integers. Depending
on the DHT and the mapping applied, each node may
hold a single contiguous or several non-contiguous zones
on the ring. Due to limited space, we explicitly deal
only with Chord-like systems; however, we believe that
our neighbor-dynamics model introduced in the next
section is general enough to apply to a variety of other
underlying graphs. Furthermore, while numerical results
for link lifetime in non-Chord DHTs may somewhat
differ from those shown below, the main qualitative
conclusions of the paper (i.e., switching reduces link
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Fig. 1. User v’s fingers and neighbors in the DHT.

lifetime) should hold almost universally as long as users
exhibit heavy-tailed session durations.

Assume that the network maps keys and users using
a uniform hashing function into the same identifier (ID)
space, which is a continuous ring in the interval [0, 1) [23].
Each user v is responsible for a fraction of the DHT space
from its predecessor to v’s own hash, which we call the
user’s zone. As the network evolves, one of v’s functions
is to store objects that map to its zone and answer queries
related to them.

To facilitate routing, each peer selects k finger pointers
f1, f2, . . . , fk in the DHT space and creates transport-layer
(usually TCP) connections to users whose zones hold the
corresponding finger. Define owner(x) to be the nearest
live peer in the clockwise direction from x. Then, v’s out-
link i is connected to user owner(fi). This is illustrated in
Fig. 1(a), where live users are marked with circles and v’s
fingers are shown as arrows. Observe in the figure that
currently u = owner(fi); however, this may change as the
system experiences churn and additional users arrive in
the interval [fi, u] as shown in Fig. 1(b).

One strategy [25], [30] for dealing with zone churn,
which we call switching and study throughout this paper,
is to maintain invariance of neighbori = owner(fi) at
all times. As peers join, they split existing zones and
inherit not only the objects, but also the in-links, that
now belong to their zone. This provides new arrivals
with their share of in-degree and routing load, as well
as guarantees certain finger-consistency properties and
system-wide routing bounds. As shown in Fig. 2, the
finger rules of switching systems can be further classified
as either rigid, which means fi is a deterministic function
of v’s ID, or flexible, which means fi is selected from a
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Fig. 2. DHT taxonomy and link lifetime analysis.
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Fig. 3. Switch and recovery of v’s link i.

certain (often randomized) set of options.
The second strategy [28], [38] for handling new arrivals,

which we call never-switching, is commonly found in
generalized hypercubes whose function owner(fi) treats
all users within some fixed ϵi-proximity of fi as equally
suitable for neighboring. This allows v to retain the initial
neighbor since property ||neighbori − fi|| ≤ ϵi cannot be
altered by new arrivals. Link lifetimes in never-switching
DHTs are covered by prior analysis of unstructured P2P
systems [13]. The last strategy [22], which we call com-
bination, performs periodic switching based on various
neighbor-quality metrics (e.g., ping delay, uptime, geo-
graphic proximity). However, exact modeling of its link
lifetimes is far too involved to be included here.

2.3 Switching Neighbor Dynamics
We next formalize the link process in switching DHTs. Our
discussion focuses on the behavior of one particular link
i (other links are similar) and the lifetimes of neighbors
adjacent to it during v’s online session. As user v contin-
ues to stay in the system, the identity of its neighbors (i.e.,
finger owners/successors) may change over time as users
join and leave the system. There are two types of changes
in neighbor tables – graceful handoffs of existing zones
to arriving users and node departures without explicit
notification of v [30].

The former type, which we call a switch, occurs when
a new arrival takes ownership of a link by becoming
the new successor of the corresponding neighbor pointer.
This is shown in Fig. 1(b) where a new arrival w splits
the zone of an existing neighbor u and becomes v’s new
neighbor along link i since w = owner(fi). The latter type
of neighbor change, which we call a recovery, happens
when an existing neighbor dies and the successor of the
failed neighbor takes over that zone to become the new
neighbor of v.

We next define several additional metrics to facilitate ex-
planation in later parts of the paper. Notice that one cycle
in the life of a particular neighbor pointer is composed of
several switches and one recovery as shown in Fig. 3(a). In
the figure, thick horizonal lines represent online presence
of peers that own v’s neighbor pointer in the DHT space.
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Fig. 4. Zone size U and remaining zone size Yj of user u.

The topmost line represents the original neighbor (with
residual lifetime Z1) acquired by v during join. As peers
split the zone of the current neighbor, the link switches to
two additional users. Switch is complete after a new user
performs all join tasks [30]. Once the last user dies at time
R1, the link is considered dead and a replacement process
is initiated.1 Recovery is finished after S time units when
another node takes over the zone of the dead peer and is
selected as v’s new neighbor.

The second recovery cycle behaves identical to the first
one (except the zone size of the initial neighbor is larger)
and leads to link failure after R2 time units. This ON/OFF
nature of the link process is shown in Fig. 3(b) where we
assume that all repair delays S are i.i.d. random variables,
but distributions of link lifetimes R1, R2, . . . may depend
on the cycle number (in fact they do in certain cases
studied below).

The final note is that it is important to distinguish the
residual lifetime of the first neighbor from that of a link.
While in never-switching systems the former metric (e.g.,
variables Z1, Z2, . . .) determines how long a link stays
alive, this is no longer the case in switching networks.
Instead, the latter metric formalized as R1, R2, . . . deter-
mines query performance and a user’s ability to tolerate
churn. Our next step is to understand the behavior of
these random variables under general lifetime distribu-
tions.

3 LINK LIFETIME MODEL

In this section, we construct a semi-Markov model for the
distribution of lifetimes R1, R2, . . . of a given link in a
user’s routing table.

3.1 Preliminaries
Recall that arriving users split zones of existing nodes
based on a uniformly random hash function. Denote by U
the random zone size of existing users in a stationary sys-
tem as shown in Fig. 4(a). Further assume that during join
or the current recovery step that starts cycle j, successor
u takes over pointer i as shown in Fig. 4(b). Then, define

1. Specifics of detecting failure are not essential to our results as repair
delay is not studied in this paper.
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Fig. 5. State diagram for the process {Aj
δ, δ ≥ 0} of

neighbor changes.

Yj to be the remaining zone size between this pointer and
the hash index of u. Intuitively, if the remaining zone Yj

is large, then it is likely that a new arrival will soon split
the zone and the ownership of the link will be transferred
to another peer. Therefore, link lifetimes are determined
not by the distribution of U , but rather by that of Yj . We
derive both metrics later in the paper and next show how
they can be used to obtain R1, R2, . . .

For simplicity of notation, define conditional link lifetime
R(y) as the duration of the link conditioned on the fact
that the remaining zone size Yj is y > 0. Then, observe
that the CDF (cumulative distribution function) of link
lifetimes Rj can be written as:

P (Rj < x) =

∫ ∞

0

P (R(y) < x)fYj (y)dy, (1)

where fYj
(y) is the PDF (probability density function) of

remaining zone size Yj (note that the distribution of Yj

depends on cycle number j). Similarly, we can obtain the
expectation of Rj as:

E[Rj ] =

∫ ∞

0

E[R(y)]fYj (y)dy. (2)

Thus, the task of deriving link lifetime Rj is reduced to
analyzing the properties of conditional link lifetime R(y)
and the distribution of remaining zone size Yj . In the rest
of this section, we construct a semi-Markov process for
each R(y) and leave the derivation of the distribution of
Yj to a later section.

3.2 Neighbor Dynamics

For each zone size y, let variable Ay
δ count the number

of switches (i.e., replacements by new users) that have
occurred along the link in the time interval [0, δ], where
time 0 denotes the instance when user v finds the first
neighbor at the beginning of the current cycle. Denote by
Ay

δ = F a special absorbing state into which Ay
δ arrives if

the current neighbor attached to the link is in the failed
state at time δ.

Then, it is easy to see that {Ay
δ ; δ ≥ 0} is a continuous-

time stochastic process with state space {F, 0, 1, 2, . . .}
whose state transitions are shown in Fig. 5. As depicted
in this figure, for each state i ≥ 0, the process can jump
into either state i + 1, which means that a given zone is
further split by a new arrival (i.e., the number of switches
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increases by 1), or state F , which represents link failure.
The initial state of the process at time 0 is always 0.

Using notation {Ay
δ}, variable R(y) can be described as

the first-hitting time of process {Ay
δ} onto state F given

that Ay
0 = 0:

R(y) = inf{δ > 0 : Ay
δ = F |Ay

0 = 0, Yj = y}. (3)

The next theorem shows that {Ay
δ ; δ ≥ 0} is a semi-

Markov chain that describes the process of new users
entering a given zone of initial length y and repeatedly
splitting it.

Theorem 1. Process {Ay
δ , δ ≥ 0} for a given remaining zone

size Yj = y is a regular semi-Markov chain. The sojourn time
τi in state i follows the following general distribution:

P (τi > x) =

{
P (W0 > x)P (Zj > x) i = 0

P (Wi > x)P (L > x) i ≥ 1
, (4)

where Zj is the residual lifetime of the first neighbor that starts
the j-th cycle, L is user lifetime with CDF F (x), Wi is an
exponential random variable with rate λi:

λi = E[N ]y/(E[L]2i), i ≥ 0, (5)

and E[N ] is the mean system size. Furthermore, transition
probability pi,i+1 from state i to i+ 1 is given by:

pi,i+1 =

{
P (W0 < Zj) i = 0

P (Wi < L) i ≥ 1
, (6)

and the probability pi,F to absorb from state i is equal to 1 −
pi,i+1.

This theorem shows in (5) that as the number of
switches within a zone (i.e., variable i) increases, arrival
rate λi of new users into the zone decreases exponentially
fast (or alternatively, the mean waiting time E[Wi] until
the next arrival increases at the same rate). As i → ∞, the
likelihood of a new arrival into the zone diminishes and
the delay in state i becomes simply the lifetime of the last
user holding the edge. For small i, however, analysis is
much more complex as shown in the next subsection.

3.3 Conditional Link Lifetimes
Next, we study the distribution and expectation of condi-
tional link lifetime R(y). To understand our next theorem,
several definitions are necessary. First, denote the CDF of
sojourn time τi in state i by Gi(t) = P (τi < t).

Second, observing from (4) that τi of chain {Ay
δ} is in-

dependent of the next state, define a semi-Markov kernel
matrix Q(t) = [qik(t)] using [6]:

qik(t) = pikGi(t), i, k ∈ {F, 0, 1, . . .}, (7)

where pik is the transition probability from state i to state
k given in (6). The Laplace (Stieltjes) transform of qik(t) is
then simply:

q̂ik(s) =

∫ ∞

0

e−stdqik(t) = pik

∫ ∞

0

e−stdGi(t). (8)

Finally, define the Laplace transform of the first hitting
time R(y) from state 0 to F as R̂(s, y) = E[e−sR(y)].

Although it is known that the Laplace transform of the
first-hitting time of a semi-Markov chain can be computed
using spectral properties of kernel Q(t) [3], this approach
hides the effect of system parameters on the resulting
distribution. Due to the simplicity of state transitions of
chain {Ay

δ}, we next derive R̂(s, y) without involving
matrix operations on Q(t).

Theorem 2. The Laplace transform R̂(s, y) of conditional link
lifetime R(y) is given by:

R̂(s, y) = q̂0F (s) +
∞∑
k=1

(
k−1∏
i=0

q̂i,i+1(s)

)
q̂kF (s), (9)

where q̂ik(s) are shown in (8).

With R̂(s, y) in hand, we can apply the inverse Laplace
transform to retrieve the distribution of R(y) and take the
derivatives of R̂(s, y) to get its moments. Next, we use a
simpler approach to obtain the mean E[R(y)].

Theorem 3. The expected conditional link lifetime is:

E[R(y)] = E[τ0] +

∞∑
k=1

(
k−1∏
i=0

pi,i+1

)
E[τk], (10)

where E[τk] is the expected sojourn time in state k shown in
(4) and pi,i+1 are state transition probabilities in (6).

Theorems 1–3 demonstrate that variable R(y) is fully
determined by user lifetimes L and residual neighbor
lifetimes Zj . Our remaining steps are to analyze the prop-
erties of Zj and derive the distribution of remaining zone
sizes Yj for both deterministic and randomized DHTs.

4 RIGID FINGERS

In DHTs with rigid (often called deterministic) finger rules,
each neighbor pointer of user v is generated based on
a fixed distance between the pointer and the user. We
start this section by deriving a model for R(y) under two
types of user lifetimes and then analyze the distribution
of residual zone size Yj .

4.1 Residual Lifetimes of Neighbors

Under the user churn model assumed in this paper,
the distribution of neighbor residual lifetime under age-
independent selection converges to the following equilib-
rium CDF as system age t → ∞ [36, Theorem 3]:

Fe(x) =
1

E[L]

∫ x

0

(1− F (u))du, (11)

where F (x) is the user lifetime distribution. Since recovery
in our DHT model is not biased with respect to user age,
(11) is also the CDF of residual lifetime for users that are
found during recovery, which we formally state in the
next lemma.
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Lemma 1. For all j ≥ 1, the CDF of residual lifetime Zj of
the initial neighbor that starts the j-th cycle converges to (11)
as system age approaches infinity.

Given Lemma 1, the mean residual lifetime E[Zj ] can
be expressed directly using the properties of L as [35]:

E[Zj ] =
E[L2]

2E[L]
. (12)

It is important to emphasize that Lemma 1 holds when
switching occurs in DHTs in response to Poisson user
arrivals into the system and may not hold otherwise.
When a neighbor pointer switches to a new user, it loses
track of which peer on the ring will be the neighbor that
will start the next cycle in the link’s ON/OFF process.
Hence, neighbor selection during link recovery is essen-
tially uniformly random among the existing neighbors
(due to random hash indexes) and independent of the
selected neighbor’s age.

4.2 Exponential Lifetimes
If user lifetimes L are exponential with rate µ = 1/E[L],
it is easy to obtain from Lemma 1 that Zj of the initial
neighbor, for all cycles j ≥ 1, is exponential with the same
rate µ. Due to the memoryless property of exponential
distributions, the remainder of Zj obtained at any random
instant (i.e., when a switch occurs) is still exponential
with rate µ. Therefore, it makes no difference whether
the current neighbor is replaced by a new arrival or
not. Interestingly, this result is valid not only for Poisson
arrivals, but also for any arrival process independent of
user lifetimes that results in non-explosive chain {Ay

δ}.

Theorem 4. For user lifetimes L with CDF 1 − e−µx, link
lifetime Rj is independent of remaining zone size Yj and has
the same distribution as L:

P (Rj < x) = 1− e−µx, for all j ≥ 1, (13)

where µ = 1/E[L].

Theorem 4 indicates that switching has no impact on
link lifetimes in any DHT with exponential user lifetimes,
which makes analysis of system performance in such
systems very simple. However, we should note that this
result does not hold for any non-exponential lifetime
distribution. As recent measurements of P2P networks
show that user lifetimes are often heavy-tailed [4], [33], we
next use the Pareto distribution P (L < x) = 1−(1+x/β)−α

with shape parameter α > 1 and scale parameter β > 0 to
estimate the performance of real DHTs under churn.

4.3 Pareto Lifetimes
For Pareto L, it is clear from Lemma 1 that the residual
lifetime Zj of initial neighbors follows the CDF P (Zj <
x) = 1 − (1 + x/β)−(α−1) for all j ≥ 1, which shows
that Zj are also Pareto-distributed but more heavy-tailed.
Next, we apply Theorem 2 to obtain the Laplace transform
R̂(y, s) and Theorem 3 to obtain the mean of R(y).

Theorem 5. For Pareto lifetimes L, the mean conditional link
lifetime E[R(y)] is given by (10) with

E[τi] = βeλiβEαi(λiβ), pi,i+1 = λiE[τi] (14)

where arrival rate λi is given in (5), Ek(x) =
∫∞
1

e−xu u−kdu
is the generalized exponential integral, αi = α − 1 for i = 0,
and αi = α for i ≥ 1. Furthermore, the Laplace transform
R̂(y, s) is given by (9) with

q̂i,i+1(s) = λiE[τi]A, q̂iF (s) = (1− λiE[τi])A, (15)

where A = 1+(1−λi−s)βe(λi+s)βEαi
((λi+s)β), and E[τi]

is shown in (14).

We next derive the distribution of zone sizes in deter-
ministic DHTs in order to obtain a computable model for
Rj .

4.4 Zone Sizes

In order to determine the distribution of zone sizes U and
Yj in Fig. 4, we must decide on the zone splitting method.
The derivations below only cover the random-split [34]
mechanism (i.e., zones are split at hash indexes of arriving
users) that is used in Chord [30] and only consider one-
dimensional DHTs. A similar derivation can be carried
out for the center-split [19], [25] strategy (i.e., zones are
always split in the center) and multi-dimensional DHTs,
but this analysis is much more tedious and is not shown
here.

Since all arriving users are placed in the interval [0, 1),
the average zone size is approximately 1/E[N ], where
N is the random system size in the steady-state.2 The
next result states that in equilibrium DHTs, zone sizes
no larger than 1/

√
E[N ] are distributed approximately

exponentially. Since most zone sizes do not deviate from
the mean very far, this result directly applies to random
variable U defined earlier.

Lemma 2. As the mean system size tends to infinity, the
distribution of small zones in the DHT becomes approximately
exponential:

lim
E[N ]→∞

P (U > x)

e−E[N ]x
= 1 (16)

for all x such that x2E[N ] → 0.

Our next task is to obtain the distribution of remaining
zone size Yj in each cycle j ≥ 1.

Lemma 3. For a given zone size y, assume that y2E[N ] → 0
as E[N ] → ∞. Then, the PDF fYj (y) of remaining zone size
Yj is asymptotically:

lim
E[N ]→∞

fY1(y)

E[N ]e−E[N ]y
= 1 j = 1

lim
E[N ]→∞

fYj (y)

E[N ]2ye−E[N ]y
= 1 j ≥ 2

, (17)

2. Approximation E[1/N ] = 1/E[N ] is asymptotically accurate as
system size tends to infinity for the ON/OFF churn model of [36]. This
follows from the fact that N/E[N ] converges to 1 in probability.
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Fig. 6. Comparison of E[Rj ] to E[Zj ] in a deterministic
DHT with mean size E[N ] = 2, 500 users, Pareto lifetimes
with mean E[L] = 1 hour, and β = E[L](α− 1).

where E[N ] is the mean system size in equilibrium.

Lemma 3 shows that the distribution of Y1 is exponen-
tial and that of Yj for j ≥ 2 is Erlang-2 (i.e., the distribution
of the sum of two exponentials).

4.5 Putting the Pieces Together
The final step is to apply (1) and (2) to uncondition the
distribution of link lifetime Rj and its mean E[Rj ] using
the distribution of initial zone size Yj given in (17). To
this end, substituting E[R(y)] shown in Theorem 5 and
the PDF of Yj in (17) into (2) leads to the final result
on the mean link lifetime E[Rj ]. Similarly, to get the
distribution of Rj , we first retrieve the distribution of R(y)
from R̂(s, y) in Theorem 5 by applying an existing inverse
Laplace transform software package [1]. Then substituting
the distribution of R(y) and (17) into (1) leads to the final
model of the distribution of Rj .

Fig. 6 shows simulations results and the model of the
mean link lifetime E[Rj ] and the average residual lifetime
E[Zj ] of the initial neighbor that starts the j-th cycle. The
model of E[Zj ] is obtained using (12) and the general so-
lution to E[Rj ] is given in (2). As shown in the figure, both
models match simulation results very well. Furthermore,
as α becomes smaller, the difference between E[Rj ] and
E[Zj ] increases as expected.3 The above results also show
that the process of switching to new users can significantly
reduce the lifetime of a link and that deterministic DHT
systems with Pareto L can exhibit E[Rj ] very close to E[L].
This is in contrast to unstructured P2P systems where
E[Rj ] can be 11 − 16 times higher than E[L] depending
on shape parameter α [4], [33].

Further observe from the model and Fig. 6 that link
lifetimes are completely characterized by two random
variables R1 and R2 since Rj for j ≥ 3 has the same
distribution as R2. This arises from the fact that zone
size Y1 is different from Y2, while Yj for j ≥ 3 are all
distributed as Y2. Since Y1 is stochastically smaller than Y2

(see Lemma 3), it follows that R1 is stochastically larger

3. Recall that smaller α leads to stochastically larger Zj and thus
increases reliability of never-switching systems [13].
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Fig. 7. Link lifetimes R4 are less heavy-tailed than Pareto
user lifetimes L in a deterministic DHT with mean size
E[N ] = 2, 500 peers, E[L] = 1 hour, and β = (α− 1)E[L].

than R2. Furthermore, from the analysis of the Markov
chain in previous sections, it becomes clear that selecting
neighbors with smaller initial residual zone sizes leads to
larger link lifetimes since such neighbors are less likely to
be replaced by newly arriving users and the link’s E[Rj ]
will be closer to E[Zj ].

The most intriguing result shown in Fig. 6 is that E[Rj ]
for all j ≥ 2 is very close to the mean user lifetime E[L]
under different values of α (e.g., E[R4] = 0.986 hours for
α = 3 and 1.096 for α = 2.2). However, from the model
of the tail distribution of link lifetime R4 shown in Fig.
7, observe that the distribution of Rj for j ≥ 2 is actually
different from that of lifetime L and is less heavy-tailed
than the original distribution. A similar result holds for
other values of α and other distributions, which we do
not show for brevity.

Given this disappointing performance of classical (i.e.,
rigid) DHTs, a natural question arises as to whether
flexible (often called randomized) fingers can improve link
lifetimes. In such systems, one obvious choice is never-
switching, which retains the initial neighbor along each
link i until it dies. Such algorithms have been covered in
related work [13], [32], [37] and are not addressed here. In-
stead, in Sections 9 and 10 below we study link dynamics
of switching DHTs under flexible finger rules and dissect
the impact of delayed joins (i.e., age-based decisions to
promote peers and/or increase their responsibility) on
link lifetime.

5 CONCLUSION

This paper formalized the notion of “link lifetimes” in
certain types of DHTs where link pointers switch to new
neighbors in response to arriving peers. We introduced
a semi-Markov process to model random replacement of
neighbors along a given link and showed that lifetimes
of deterministic links are much worse than those in un-
structured P2P networks with heavy-tailed user lifetimes.
For randomized DHTs, our results showed that finger
placement based on both node age and zone size was
the most general approach. We also demonstrated that
if none of the approaches above were viable, simply
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delaying assignment of responsibility to arriving users by
just several minutes could yield significant improvements.
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[6] E. Çinlar, Introduction to Stochastic Processes. Englewood Cliffs, NJ:
Prentice Hall, 1997.

[7] L. Devroye, “Law of the Iterated Logarithm for Order Statistics of
Uniform Spacings,” Annals of Probability, vol. 9, pp. 860–867, 1981.

[8] Gnutella. [Online]. Available: http://www.gnutella.com/.
[9] P. B. Godfrey, S. Shenker, and I. Stoica, “Minimizing Churn in

Distributed Systems,” in Proc. ACM SIGCOMM, Sep. 2006.
[10] P. B. Godfrey, Personal Communication, 2006.
[11] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,

and I. Stoica, “The Impact of DHT Routing Geometry on Resilience
and Proximity,” in Proc. ACM SIGCOMM, Aug. 2003, pp. 381–394.

[12] S. Krishnamurthy, S. El-Ansary, E. Aurell, and S. Haridi, “A Statis-
tical Theory of Chord under Churn,” in Proc. IPTPS, Feb. 2005, pp.
93–103.

[13] D. Leonard, V. Rai, and D. Loguinov, “On Lifetime-Based Node
Failure and Stochastic Resilience of Decentralized Peer-to-Peer Net-
works,” in Proc. ACM SIGMETRICS, Jun. 2005, pp. 26–37.

[14] D. Leonard, Z. Yao, X. Wang, and D. Loguinov, “On Static and
Dynamic Partitioning Behavior of Large-Scale Networks,” in Proc.
IEEE ICNP, Nov. 2005, pp. 345–357.

[15] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek, “Com-
paring the Performance of Distributed Hash Tables under Churn,”
in Proc. IPTPS, Feb. 2004, pp. 87–99.

[16] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-
Efficient Management of DHT Routing Tables,” in Proc. USENIX
NSDI, May 2005, pp. 1–11.

[17] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil,
“A Performance vs. Cost Framework for Evaluating DHT Design
Tradeoffs under Churn,” in Proc. IEEE INFOCOM, Mar. 2005, pp.
225–236.

[18] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the
Evolution of the Peer-to-Peer Systems,” in Proc. ACM PODC, Jul.
2002, pp. 233–242.

[19] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, “Graph-Theoretic
Analysis of Structured Peer-to-Peer Systems: Routing Distances and
Fault Resilience,” in Proc. ACM SIGCOMM, Aug. 2003, pp. 395–406.

[20] G. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed
Hashing in a Small World,” in Proc. USITS, Mar. 2003, pp. 127–140.

[21] G. S. Manku, M. Naor, and U. Weider, “Know thy Neighbor’s
Neighbor: the Power of Lookahead in Randomized P2P Networks,”
in Proc. ACM STOC, Jun. 2004, pp. 54–63.

[22] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer In-
formation System Based on the XOR Metric,” in Proc. IPTPS, Mar.
2002, pp. 53–65.

[23] M. Naor and U. Wieder, “Novel Architectures for P2P Applications:
The Continuous-Discrete Approach,” in Proc. ACM SPAA, Jun. 2003,
pp. 50–59.

[24] G. Pandurangan, P. Raghavan, and E. Upfal, “Building Low-
Diameter Peer-to-Peer Networks,” IEEE J. Sel. Areas Commun.,
vol. 21, no. 6, pp. 995–1002, Aug. 2003.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” in Proc. ACM SIGCOMM,
Aug. 2001, pp. 161–172.

[26] S. I. Resnick, Adventures in Stochastic Processes. Boston, MA:
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SUPPLEMENTAL MATERIAL

6 RELATED WORK

Among the recent studies of link lifetimes, one direction
focuses on never-switching P2P systems. Leonard et al.
[13] show that heavy-tailed lifetimes allow link lifetime
E[R] to be significantly larger than user lifetime E[L].
Additional results of this model and its application to
unstructured networks are available in [14], [36], [37]. An-
other recent study [32] examines DHTs without switching
with a focus on the delivery ratio, which is the fraction of
time that all forwarding nodes between each source and
destination are alive. Their results show that the delivery
ratio is a function of link lifetime R for all examined
neighbor-selection techniques.

Another direction covers switching networks exempli-
fied by traditional DHTs. Godfrey et al. [9] study the
impact of node-selection techniques on the churn rate and
observe that switching DHTs exhibit dramatically smaller
link lifetimes than never-switching networks. In their no-
tation, switching/never-switching are agnostic neighbor
replacement strategies, where the former is called Active
Preference List (APL) and the latter encompasses both
Passive Preference List (PPL) and Random Replacement
(RR). Krishnamurthy et al. [12] compute the probability
that neighbors in Chord are in one of three states (alive,
failed, or incorrect) and use this model to predict lookup
consistency and query latency.

Additional work [2], [5], [15], [16], [17], [27], [31] fo-
cuses on measurement and simulation of structured P2P
systems under churn.

7 SIMULATIONS

Before we show experimental results of discrete-event
simulations, we define rules for generating DHTs under
churn. In simulations, user arrivals follow a Poisson pro-
cess with a constant rate E[N ]/E[L], where the mean
system size E[N ] and the average user lifetime E[L] are
determined a-priori. Each user departs at the end of its
lifetime L, which is drawn from a given distribution
F (x). In addition, each joining user obtains a uniformly
random hash index in [0, 1), follows the random-split
algorithm during join, and performs recovery when its
successors die. After the system has evolved for enough
time, we compare simulation results to the derived models
to assess their accuracy in finite graphs and systems with
age t < ∞.

7.1 Residual Lifetimes of Initial Neighbors
Simulations of residual lifetimes Zj of initial neighbors
for j = 2, 3 and two lifetime distributions are shown in
Fig. 8. As demonstrated by the figure, Lemma 1 correctly
predicts that recovery obtains neighbors whose residu-
als can be considered drawn uniformly randomly from
the system and whose residual lifetimes are given by
(11). This result holds for both heavy-tailed (e.g., Pareto)
and light-tailed (e.g., uniform) user lifetimes. Additional
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simulations for larger j and other lifetime distributions
confirming (11) are not shown here for brevity.

7.2 Link Lifetime
We next verify the model of Rj for both exponential and
Pareto cases. In the former case, the accuracy of (13) is
shown in Fig. 9. Notice from the left subfigure that E[Rj ]
is equal to the mean user lifetime E[L] and from the right
subfigure that the distribution of Rj is indeed exponential,
which holds for any j ≥ 1 (only R3 is shown in the
figure). In the latter case, Fig. 10 shows simulation results
of E[R(y)] for several values of remaining zone sizes y and
plots the corresponding model from Theorem 5. Besides
the accuracy of the model, notice from this figure that
as remaining zone size y reduces, E[R(y)] increases and
converges to E[Z1], where the distribution of neighbor
residual lifetime Z1 is given in (11).

7.3 Zone Size
As demonstrated in Fig. 11, model (17) is very accurate
even for small average system size E[N ] = 500 users.
Additional simulation results confirming (17) for larger
E[N ] and different j are not shown for brevity.
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8 PROOFS

8.1 Theorem 1

Proof: For the heterogeneous churn model of [36] used
in this work, new user arrivals into the DHT space ap-
proach a Poisson process with constant rate [36, Theorem
5]:

λ =
E[N ]

E[L]
, (18)

where E[N ] is the mean number of users in an equilibrium
system and E[L] is the mean user lifetime. Then from the
Marked Poisson theorem [26], the arrival process into any
fixed zone with size y is Poisson with average rate:

λ0 = λq0, (19)

where q0 = y is the probability that a given zone of length
y is selected from the DHT space [0, 1). This indicates that
the wait time W0 to transition from state 0 to state 1 (i.e.,
the delay before the next arrival into the remaining zone
of size y between the neighbor pointer and the current
neighbor) is exponentially distributed with rate λ0.

Next, as the given zone is successively divided by new
arrivals over time, its length is reduced over time, which
in turn reduces the user arrival rate into the zone. Since a
given zone of length y is uniformly divided under random
split by a new arrival, the expected length of the new zone
is simply y/2. Recalling the technique used in (19), we
obtain that the wait time Wi to transition from state i to
state i+ 1 is exponential with rate:

λi = λqi =
E[N ]

E[L]
· y

2i
, i ≥ 0, (20)

where the probability of selecting the new zone is qi =
y/2i, which depends not only on state i, but also the initial
zone size y.

We now consider transitions to state F . Given Aδ = i,
i ≥ 1, a jump to state F is triggered by the departure of the
current user, which happens L time units after the chain
arrives to state i, where L is the random user lifetime. For
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(17) in a deterministic DHT with mean size E[N ] = 500
under churn produced by Pareto L with α = 3 and E[L] = 1
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state i = 0, the delay before the jump to state F is slightly
different and equals the original user’s remaining lifetime
Zj where j is the cycle number of Rj . It then follows
that due to the independence among user departures and
arrivals in a sufficiently large system, the sojourn time τi
in state i is simply:

τi =

{
min(W0, Zj) i = 0

min(Wi, L) i ≥ 1
, (21)

where Wi ∼ exp(λi) and is independent of Zj and L. Since
Zj and L may follow general distributions, respectively,
sojourn time τi may have a non-exponential distribution.

Finally, transition probability pi,i+1 from state i to i+1
is given by:

pi,i+1 =

{
P (W0 < Zj) i = 0

P (Wi < L) i ≥ 1
, (22)

and the probability pi,F to absorb from state i is equal
to 1 − pi,i+1. Note that due to Wi → ∞ for i → ∞, it
is clear that pi,i+1 → 0 as i → ∞ and the decay rate is
exponentially fast. Thus, {Ay

δ} is regular.
Recognizing that these transitions behave like a

discrete-time Markov chain and sojourn times in states
depend only on their current states and follow general
distributions, we immediately conclude that {Ai

δ} is a
regular semi-Markov chain (SMC).

8.2 Theorem 2
Proof: Generalize the first hitting time from any start-

ing state i ≥ 0 to state F as:

TiF = inf{δ > 0 : Ay
δ = F |Ay

0 = i, Yj = y} (23)

and define the following Laplace transform for TiF :

T̂iF (s) = E[e−sTiF ] =

∫ ∞

0

e−stdFTiF
(t), (24)

where FTiF (t) is the CDF of TiF . Then, from first-step
analysis, (24) can be transformed into:

E[e−sTiF ] = piFE[e−sτi ] + pi,i+1E[e−s(τi+Ti+1,F )], (25)



where pik is the transition probability from state i to k
shown in (6). Noting that τi is independent of Ti+1,F and
conditioning on the current state being i, (25) reduces to:

E[e−sTiF ] = piFE[e−sτi ] + pi,i+1E[e−sτi ]E[e−sTi+1,F ]

= q̂iF (s) + q̂i,i+1(s)E[e−sTi+1,F ], (26)

where q̂i,k(s) is defined in (8). Using the above recurrent
functions and observing that q̂i,i+1(s) → 0 for i → ∞ (due
to transition probability pi,i+1 → 0 in this case), we readily
obtain:

E[e−sT0F ] = q̂0F (s) +
∞∑
k=1

(
k−1∏
i=0

q̂i,i+1(s)

)
q̂kF (s), (27)

which establishes (9) upon recalling that R(y) is defined
as T0F .

8.3 Theorem 3

Proof: Given that the chain currently is in state i ≥ 0,
it can jump either to state F or i+1. Then by conditioning
on the first jump, it is not hard to see that:

E[TiF ] = E[τi] + pi,i+1E[Ti+1,F ], (28)

where TiF is defined in (23). Using the above recurrence
functions, we easily obtain:

E[R(y)] = E[T0F ] = E[τ0] + p01E[T1F ]

= E[τ0] + p01 (E[τ1] + p12E[T2F ])

= E[τ0] +
∞∑
k=1

(
k−1∏
i=0

pi,i+1

)
E[τk], (29)

where the last step is obtained by induction and recalling
that pi,i+1 → 0 for i → ∞.

8.4 Theorem 5

Proof: Since Zj ∼ Pareto(α − 1, β) for all j ≥ 1, we
obtain the distribution of sojourn time τ0 in state 0 from
(4):

P (τ0 > t) = P (W0 > t)P (Zj > t)

= e−λ0t
(
1 +

t

β

)−(α−1)

, (30)

where λ0 is given in (5). Then, we easily get the PDF of
τ0:

fτ0(t) = −dP (τ0 > t)

dt
= λ0e

−λ0t
(
1 +

t

β

)−(α−1)

+
α− 1

β
e−λ0t

(
1 +

t

β

)−α

, (31)

and its mean:

E[τ0] =

∫ ∞

0

P (τ0 > t)dt =

∫ ∞

0

e−λ0t
(
1 +

t

β

)−α+1
dt

= βeλ0βEα−1(λ0β), (32)

where Ek(x) =
∫∞
1

e−xu u−kdu is the generalized expo-
nential integral. Next, the transition probability p01 from
state 0 to 1 can be computed from (6) as:

p01 = P (W0 < Zj) =

∫ ∞

0

P (W0 < t)fZ(t)dt

=

∫ ∞

0

(
1− e−λ0t

) α− 1

β

(
1 +

t

β

)−α

dt

= 1− (α− 1)eλ0βEα(λ0β)

= λ0βe
λ0βEα−1(λ0β) = λ0E[τ0], (33)

where the last step is established upon recalling (32). Sub-
stituting (31) and (33) into (8) and doing certain algebra,
we obtain the Laplace transforms of the semi-Markov
kernel starting from state 0:

q̂01(s) = p01

∫ ∞

0

e−stfτ0(t)dt = λ0E[τ0]

× [1 + (1− λ0 − s)βe(λ0+s)βEα−1((λ0 + s)β)], (34)
q̂0F (s) = (1− λ0E[τ0])

[
1 + (1− λ0 − s)β

× e(λ0+s)βEα−1((λ0 + s)β)
]
. (35)

Laplace transforms q̂i,i+1(s) and q̂iF (s), i ≥ 1 can be
obtained by replacing λ0 with λi and α − 1 with α in
the above equations. Invoking Theorems 2-3, we have the
desired result.

8.5 Lemma 2
Proof: We assume that the probability that a user

of any given zone size departs is equally likely (i.e.,
zone sizes do not depend on user lifetimes and vice
versa). Then, given that hash index Xi of any user i
is uniformly random in [0, 1) at any time t, it is well-
known that zone sizes U are uniformly distributed on the
simplex {(x1, · · · , xN )|xi ≥ 0;

∑
xi = 1} [7]. It follows that

conditioning on N = z, the probability that a zone of size
x from a given point Xi of user i is unoccupied by the
remaining z − 1 users is simply:

P (U > x|N = z) = (1− x)z−1. (36)

Note that (1− x)z−1 can be transformed into:

(1− x)z−1 = e(z−1) log(1−x) = e−x(z−1)+O(x2)(z−1), (37)

where the expansion uses the Taylor approximation of
log(1−x). Substituting (37) into (36) and keeping in mind
that x = o(1/

√
E[N ]), we obtain:

P (U > x|N = z)

e−xz
= ex+O(x2)(z−1) → 1, (38)

as E[N ] → ∞.
For the heterogeneous user churn model, recall from

[36, Lemma 1] that N is a Gaussian variable with PDF
fN (z). The distribution P (U > x) can then be computed
by integrating P (U > x|N = z) with respect to z:

lim
E[N ]→∞

P (U > x)

e−E[N ]x
=

∫∞
0

e−xzfN (z)dz

e−E[N ]x
, (39)



where the last step is obtained by using (38). It then
follows from (39) that:

lim
E[N ]→∞

P (U > x)

e−E[N ]x
=

e−E[N ]x+V ar[N ]x2/2

e−E[N ]x
, (40)

since e−xN is a lognormal random variable. Recalling
V ar[N ] < E[N ] [36, Lemma 1] and x2E[N ] → 0 as
E[N ] → ∞, (40) yields:

lim
E[N ]→∞

P (U > x)

e−E[N ]x
= 1, (41)

which is the desired result. Finally, note that the require-
ment of x2E[N ] → 0 is tight and cannot be relaxed for
computing the distribution of U .

8.6 Lemma 3
Proof: Due to the memoryless property of the ex-

ponential limiting distribution of U shown in (16), the
remaining zone size Y1 from a neighbor pointer, which
randomly splits the zone of some neighbor u, to the hash
index of u follows the same distribution of U .

Next, note that Yj , j ≥ 2, is the initial zone size of a
replacement neighbor u obtained by user v during each
recovery. At this time, replacement neighbor u covers its
own zone as well as that of the failed user. Thus, it is
clear that Yj = Y1+U , which has the same distribution as
U +U . It then immediately follows that Yj , j ≥ 2, has the
Erlang-2 distribution since it is a sum of two exponentials.

9 FLEXIBLE FINGERS

We start by formalizing the well-known principle of mul-
tiple choices in flexible DHTs. Assume user v has a set Si

of possible values for finger i. It then selects m random
points f1

i , . . . , f
m
i from Si and applies a certain function

best(.) to chose the location of its finger, i.e.,

fi = best(f1
i , . . . , f

m
i ). (42)

As the system churns, switching DHTs maintain
neighbori = owner(fi) at all times. Prior literature [32],
[37] has suggested that in never-switching scenarios v
should choose the zone whose owner has the largest
age. In our context, we call this method switching max-
age (SMA). Intuition suggests that yet another strategy is
possible if v prefers neighbors with the smallest residual
zone size, which we call switching min-zone (SMZ).

9.1 Analysis of SMA
It is clear that link lifetimes Rj for all cycles j ≥ 1 have
the same distribution since the neighbor pointer in each
cycle is uniformly randomly generated within a certain
range of users. Simulation results of SMA and the model
of E[Zj ] from [37] are shown in Fig. 12. Notice from part
(a) that for a fixed number of samples m = 6, as shape
α decreases, the mean link lifetime E[Rj ] increases much
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Fig. 12. Impact of shape α and number of samples m on
mean link lifetime E[Rj ] under SMA in randomized Chord
with mean size E[N ] = 2, 000 for Pareto lifetimes with
E[L] = 1 hour and β = E[L](α− 1).

slower than the mean residual lifetime E[Zj ] of the initial
neighbor as α decreases.

A similar phenomenon appears in part (b) where E[Zj ]
increases at the rate of

√
m for α = 3 (see [37, Lemma

5]), while E[Rj ] rises from 1.17 hours to only 2.09 hours
as m increases from 1 to 19. This demonstrates that the
improvement in terms of the mean link lifetime E[Rj ]
under age-dependent selection is generally very small
since new arrivals sooner or later split initial neighbors
to take ownership of the link and hence ages or residual
lifetimes of original neighbors do not affect link churn rate
very much.

9.2 Analysis of SMZ

To obtain a model for E[Rj ] under SMZ, first note that
residual lifetime Zj of the initial neighbor starting the j-
th cycle follows the distribution given in (11) since all
m samples are uniformly random and zone sizes are
independent of user ages or lifetimes. It is then clear that
for a fixed remaining size Yj = y, the Laplace transform
and the mean conditional link lifetime given in Theorem
5 are both still valid. Next, recall from Lemma 3 that
the residual zone size Y1 of each sample f1

i , . . . , f
m
i is

exponential with rate 1/E[N ]. It then follows that their
minimum is also exponential with rate m/E[N ]. The final
step is to combine Theorem 5 and the new distribution
of Y1 to obtain the distribution of Rj and its mean under
SMZ.

As shown in Fig. 13, the model of E[Rj ] matches
simulation results very well. Most interestingly, the figure
demonstrates that the mean link lifetime E[Rj ] under
SMZ is significantly larger than that under SMA for
both choices of α and that the difference between the
two metrics becomes more pronounced as the number of
samples m increases or shape α decreases. Furthermore,
this figure suggests that as m → ∞, E[Rj ] for SMZ and
α < 2 goes to infinity, while E[Rj ] for SMA converges to
some fixed number regardless of α. The following theorem
confirms this result.
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Fig. 13. Comparison of mean link lifetime E[Rj ] under SMZ
to that under SMA in randomized Chord with mean size
E[N ] = 2, 000 for Pareto user lifetimes with E[L] = 1 hour
and β = E[L](α− 1).

Theorem 6. For Pareto user lifetimes with 1 < α ≤ 2,
the expected link lifetime under SMZ approaches infinity for
sufficiently large system population and random sample size:

lim
E[N ]→∞

lim
m→∞

E[Rj ] = ∞. (43)

For SMA and any α, the mean link lifetime converges to a
constant:

lim
E[N ]→∞

lim
m→∞

E[Rj ] < ∞. (44)

Proof: To obtain E[Rj ] under SMZ for m → ∞, first
note that P (Y1 > y) ≈ e−my/E[N ] → 0 as m → ∞ for all
fixed y > 0. This indicates that Y1 → 0 in probability. It
is then clear that the probability that a new arrival splits
a given zone with size Y1 also approaches 0, and hence
in the limit Rj is simply residual lifetime Zj of the initial
neighbor. Recalling from (11) that E[Zj ] = ∞ for α ≤ 2,
we immediately obtain E[Rj ] → E[Zj ] = ∞ as m → ∞.
The condition E[N ] → ∞ is required for m → ∞.

When SMA is used, it is shown in [37, Theorem 5] that
residual lifetimes Zj → ∞ with probability 1 as m → ∞
for Pareto lifetimes. It is then easy to obtain using the
semi-Markov chain {Ay

δ} in Theorem 1 that sojourn time
τ0 in state 0 is min(Zj ,W0) → W0 as m → ∞, where W0

is exponential with rate λ0 given in (5), and transition
probability p0,1 = P (W0 < Zj) → 1. After the chain jumps
into state 1, sojourn times are min(L,Wi), which are no
longer affected by the number of samples m. Hence, E[Rj ]
is finite since the mean sojourn time in each state i is finite
and the probability that the chain jumps into the failed
state increases exponentially fast.

Assuming multiple-selection model (42), the above
analysis indicates that SMZ is significantly better than
SMA for very heavy-tailed user lifetimes. Since real sys-
tems have been observed to exhibit α ≈ 1.06 in [4]
and α = 1.09 in [33], this result paves a simple way
for building better DHTs in practice. The amount of
actual improvement in E[Rj ] for these two values of
α is shown in Fig. 14, where the growth rate in both
curves is approximately linear in m. The figures also
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Fig. 14. Approximation of E[Rj ] as a linear function of
number of samples m under SMZ for Pareto user lifetimes
with E[L] = 1 hour and β = E[L](α− 1).

show the corresponding linear fits to the model, which
can be used to predict how m affects link lifetime E[Rj ]
in these two cases. For instance, with α = 1.09, users
can obtain E[Rj ] ≈ 76 hours by sampling m = 10
points for each suitable link in a randomized DHT. For
α = 1.06, the corresponding average link lifetime is 127
hours. Comparing these numbers to E[Rj ] ≈ E[L] = 1
hour in deterministic DHTs, the extent of improvement is
undoubtedly dramatic.

9.3 Hybrid Age-Zone (HAZ)
If the DHT is not restricted to placing fingers into one
of the m generated points as in (42), both age-based and
zone-based selection, as well as switching and never-
switching DHTs, can be covered by a more general tech-
nique we call Hybrid Age-Zone (HAZ). In this method,
v obtains m random points f1

i , . . . , f
m
i for link i and

chooses the neighbor with the largest age, but actual
finger placement emulates SMZ. Specifically, assume l ≥ 1
is some integer and si is the zone size of the chosen max-
age neighbor. Then, define {ςj}lj=1 to be l i.i.d. uniform
random variables in [0, si] and Qi = min(ς1, . . . , ςl) to be
their minimum, i.e., P (Qi > x) = (1 − x/si)

l. Then, the
finger is placed at distance Qi from the chosen neighbor:

fi = succ(best(f1
i , . . . , f

m
i ))−Qi, (45)

where function best(.) selects the point whose owner has
the maximum age and succ(x) is the successor of x.
During v’s lifetime, fi stays fixed and v remains connected
along link i to owner(fi) regardless of churn.

This method has two tuning knobs. Parameter m con-
trols the tradeoff between join overhead and resilience
of the initial neighbor. Parameter l controls the tradeoff
between frequency of switching (and thus routing load
through new users) and “longevity” given to the initial
neighbor. It should be noted that the main model of
the paper, fed with proper zone-size distributions and
neighbor residuals, covers link lifetimes of HAZ(m, l);
however, exploring the myriad of options along the entire
2D plane of (m, l) is beyond our scope. Instead, we make
several simple observations.



Notice that combination HAZ(1, 1) corresponds to rigid
fingers, HAZ(m, 1) to SMA, HAZ(1, l) to SMZ, but
without the extra overhead, and HAZ(m,∞) to never-
switching max-age (NSMA). As shown above, SMA with-
out the SMZ component increases overhead, but pro-
vides very little resilience improvement and is thus not
advisable. Therefore, m should be increased only if l
is sufficiently large, where the actual thresholds depend
on the lifetime distribution, desired load-balancing, and
constraints on join overhead.

10 DELAYED JOINS

If link lifetime is the primary objective of a DHT design,
then clearly flexible fingers and never-switching (i.e., HAZ
with l = ∞) is the optimal solution. However, it is unclear
if any fundamental improvement can be achieved for
rigid fingers and, if so, how this impacts flexible DHTs.
We next explore the possibility of changing the lifetime
distribution of joining users and making it more heavy-
tailed.

Given Pareto lifetimes, one possibility is to prevent
young (i.e., unreliable) peers from holding objects and
links until their age increases beyond a certain threshold
η ≥ 0. In other words, a peer arrives in the DHT and
establishes its outgoing finger pointers as usual; however,
it is not allowed to receive in-links or hold any objects
until its age A(t) exceeds η. Having out-fingers allows all
users to search the system and store their own keys on
remote peers, but there is no responsibility (e.g., storing
of other peers’ keys or routing of their queries) until these
new arrivals have statistically “proven” their resilience to
the community. While this concept has found application
in unstructured P2P systems (e.g., Gnutella requires a
certain amount of uptime and bandwidth before a node
can become an ultra-peer), there is nothing stopping it
from being deployed in DHTs.

In order to understand this system, notice that one can
apply earlier analysis in the paper by substituting F (x)
with a new user lifetime distribution:

F ′(x) = P (L′ < x) = P (L < x+ η|L > η), (46)

where L′ is the random variable describing the residual
lifetime of users with age A(t) = η.

The amount of improvement in E[L′] vs E[L], as well
as residuals E[Z ′

j ] vs E[Zj ], depends on the tail of the
original lifetime distribution. Assuming Pareto F (x) with
parameters (α, β), we get from [37, page 5] that L′ is
Pareto with parameters (α, β + η), which leads to:

E[L′] = E[L] +
η

α− 1
, α > 1 (47)

and
E[Z ′

j ] = E[Zj ] +
η

α− 2
, α > 2. (48)

Both rigid and flexible fingers obtain resilience benefits.
In the former case, E[R′

j ] ≈ E[L′] and, in the latter case,

TABLE 1
Link Lifetimes under Delayed Joins

Delay η (min) E[L′] (hours) Ratio r Reliable fraction
0 0.5 1 100%
6 2.2 4.4 21%
12 3.8 7.6 12%
18 5.5 11 7.8%
30 8.8 17.6 4.8%
45 13 26 3.1%
60 17 34 2.4%

E[R′
j ] = E[Z ′

j ] assuming the simplest case of NSMA with
m = 1. Interestingly, both improve by the same factor:

r =
E[L′]

E[L]
=

E[Z ′
j ]

E[Zj ]
= 1 +

η

β
. (49)

Also observe that the fraction of users that survive at
least η time units is simply r−α. Thus, for a given r,
smaller α allows more users to participate in the system
and thus achieve better load distribution.

Several examples are shown in Table 1 for E[L] = 0.5
hours and α = 1.06. Observe in the table, that 21% of
the users can deliver a DHT with r = 4.4 times larger
link lifetimes under both rigid and flexible fingers. This
requires delaying each join by just 6 minutes. With 4.8% of
the graph, the DHT can offer an 17.6-fold improvement,
while the top 2.4% of the peers can increase link lifetimes
by a factor of 34, all of which is quite significant in
practice. Additional benefits, including avoiding frequent
key transfers to arriving users, key loss during departure,
and disruption in routing, make delayed-join systems
significantly more robust in practice.


