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Abstract—Previous analytical work [16], [17] on the resilience of P2P networks has been restricted to disconnection arising from

simultaneous failure of all neighbors in routing tables of participating users. In this paper, we focus on a different technique for

maintaining consistent graphs—Chord’s successor sets and periodic stabilizations—under both static and dynamic node failure. We

derive closed-form models for the probability that Chord remains connected under both types of node failure and show the effect of

using different stabilization interval lengths (i.e., exponential, uniform, and constant) on the probability of partitioning in Chord.

Index Terms—Peer-to-peer networks, graph disconnection, stabilization of Chord.
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1 INTRODUCTION

PEER-TO-PEER (P2P) networks have received tremendous
interest in recent years among both Internet users and

computer networking professionals. One of fundamental
problems in the study of these systems is the ability of the
network to stay connected under node failure [1], [3], [7],
[9], [10], [11], [15], [16], [20], [22], [24], [26], [29], [33]. While
previous analytical work [16], [17] on disconnection of P2P
networks has focused on neighbor tables and partitioning
arising from failure of entire routing tables, structured P2P
networks usually maintain auxiliary sets called successor
lists [25], [26], whose sole purpose is to recover the system
from inconsistent states and provide resilience [26]. In this
paper, we focus on the partitioning of a widely used
Distributed Hash Table (DHT) called Chord [26] whose
successor rules are easily susceptible to analytical modeling.
Note that similar results can be obtained for other types of
successor/leaf sets.

Recall that Chord [26] maps users (and keys of data
items) using a uniform hashing function onto the Chord
ring f0; 1; . . . ; 2m � 1g, where m is some sufficiently large
number that can accommodate all nodes without conflict.
Each user v maintains a successor list and a routing table.
Assuming n peers in the system, the former set contains
r ¼ �ðlognÞ peers immediately following v along the ring
and the latter set consists of k ¼ �ðlognÞ neighbor pointers,
where the ith neighbor is the first node following the point
idðvÞ þ 2i�1 on the ring, idðvÞ is the hash index of v, and
i ¼ 1; 2; . . . ; k. Note that routing tables are used to reduce
lookup latency, while successors ensure resilience in the
face of node failure. Even if all routing tables are in the
failed state, Chord is still able to function by forwarding

queries, repairing failures, and finding new neighbors via
successor lists. In contrast, when all r successors of any
node fail simultaneously, the system becomes partitioned
and is potentially unable to recover without a bootstrap.1

We generally call the event of a user losing all of its
successors node isolation and note that it determines the
likelihood of graph partitioning:

P ðgraph disconnectsÞ ¼ PðX > 0Þ; ð1Þ

where X is the number of users that are isolated in the
system. Due to the strong dependency among successor
lists of consecutive users along the circle and entirely
different stabilization strategies studied in this paper,
previous neighbor churn models [16] cannot be applied to
obtain the probability in (1). We perform this task below for
both static and dynamic node failure.

1.1 Static Failure

Many prior studies have been interested in the resilience of
structured P2P networks against static node failure [10], [11],
[26], i.e., when each node independently fails with a certain
probability p. Applying the Erdös-Rényi theorem [4], we
show that under p-fraction node failure, the probability that
Chord with sizen!1 remains connected is asymptotically:

lim
n!1

P ðX ¼ 0Þ
e�nð1�pÞpr

¼ 1; ð2Þ

where r ¼ �ðlognÞ is the number of immediate successors a
user monitors. It is rather surprising to find from (2) that
although the dependency among successor lists of consecu-
tive users is very strong, Chord enjoys the same level of static
resilience as networks where connectivity is determined
using routing tables consisting of largely independent
neighbors [17]. We further show that the rationale behind
this can be explained using the Chen-Stein method [2].

Setting r ¼ c log2 n, where c > 0 is a constant, (2) indicates
that as n!1, the probability that Chord remains connected
approaches 1 if c > �1= log2 pand 0 if c < �1= log2 p. Note that
this holds for both complete and incomplete Chord graphs.
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1. Although neighbors in some routing tables may still be alive, there is
no guarantee that the system can return to a consistent state after
partitioning.
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1.2 Dynamic Failure

As observed in deployed structured P2P file-sharing
systems [23], [27], users continually join and fail at a high
rate of churn. The second part of this paper focuses on the
connectivity of Chord under dynamic node failure. We
assume that each joining user v obtains r clockwise closest
peers as its successor list, and then, stays in the system for L
time units, where L is drawn from some user lifetime
distribution F ðxÞ. To handle abrupt node departures (i.e.,
failure), v stabilizes its successor list every S time units,
where S can be random or constant, and brings the number
of successors back to r after each stabilization. For a
particular stabilization to be successful, at least one user
among r successors must stay alive for the entire interval S.

Assuming exponential user lifetimes L and exponential
intervals S, we show that probability � that node v is
isolated due to simultaneous failure of its r successors
within v’s lifetime is upper bounded by

� � ��!r!

ð�þ rÞ! ; ð3Þ

where � ¼ E½L�=E½S�. Furthermore, we prove that as �!1
(e.g., E½S� becomes sufficiently small), the above upper
bound becomes exact.

We then examine how individual node isolations affect
partitioning of the system as nodes continuously join and
leave. Using the Chen-Stein method, we establish that when
r!1, the probability that Chord stays connected after
experiencing N user joins is asymptotically:

lim
N!1

P ðX ¼ 0Þ
ð1� �ÞN

¼ 1; ð4Þ

where � is the node isolation probability given in (3). This
result shows that isolations of individual users in Chord can
be treated as independent when system size and successor
lists become large. While a similar phenomenon has been
observed in [17] without proof for independent neighbor
behavior in routing tables, our result in (4) is again for
dependent node isolations and is formally proven.

As (4) indicates that the task of studying global
connectivity can be reduced to that of local connectivity,
we next focus on isolation probability � under different
stabilization strategies. We derive closed-form models of �
for uniform and constant S, both of which have been
suggested for use in Chord [26]. Our results show that both
stabilization strategies are much better than the exponential
S suggested in [14], often reducing � by several orders of
magnitude. We further show that constant stabilization
delays S are optimal and keep Chord’s isolation probability
as E½S� ! 0 approximately equal to:

� � ��!

ð�þ rÞ! ; ð5Þ

where � ¼ E½L�=E½S�. The amount of improvement over the
exponential version (3) of this metric is by a factor of r!,
which is significant in most cases.

We finish the paper by studying nonexponential life-
times observed in real P2P graphs [30]. Even though models
of � for heavy-tailed (e.g., Pareto) user lifetimes are

currently intractable, we show that � in such systems is
upper bounded by the exponential metric (3) and demon-
strate the distance to the upper bound in simulations. We
further show that the conclusion that stabilization intervals
with smaller variance lead to smaller � holds for Pareto
lifetimes as well.

The rest of the paper is organized as follows: Section 2
provides the basics of Chord and related work on static and
dynamic node failure. In Section 3, we derive closed-form
results on static resilience of Chord. In Section 4, we
formalize the successor list model and derive node isolation
probability and graph disconnection probability in Chord
under dynamic node failure. Section 5 deals with node
isolation probability under different stabilization strategies
and finds the optimal method to keep Chord connected
with the highest probability. In Section 6, we show
simulation results on isolation probability for heavy-tailed
user lifetimes. Section 7 concludes this paper.

2 BACKGROUND

2.1 Chord Basics

In Chord, each key is assigned to the successor node, i.e., the
first peer whose identifier is larger than the key in the
clockwise direction along the ring. As illustrated in Fig. 1,
each node v’s successor list consists of the first r consecutive
nodes following v, while finger pointers in v’s routing table
connect to neighbors with exponentially increasing dis-
tances to v.

Finger tables are used during key lookup where the
originating node performs jumps of exponentially decreas-
ing length until it finds the node responsible for the key or
encounters an inconsistent state (e.g., stale pointer and dead
successor) at one of the intermediate nodes. Inconsistent
states in finger tables and successor lists are periodically
repaired using a stabilization technique, which allows Chord
to fix links broken during user departure, detect new peer
arrival, and ensure lookup success during churn. When any
node v leaves the system, its predecessor u notices v’s
departure during its periodic stabilization. Peer u then
replaces v with the next alive user along the circle and
adjusts its successor list accordingly. This process tolerates
multiple nodes failing simultaneously and only requires
that no successor list sustains a failure of all r nodes within
a given stabilization interval. Similarly, node v learns of
new arrivals during its stabilization process and properly
adjusts its successor list to include the new peers.
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Fig. 1. User v’s successors and neighbors in Chord. (a) r successors.
(b) k finger table links.



Successor lists are generally used in routing only during
the last step of a lookup or when all finger pointers
corresponding to desired jump lengths have failed. As long
as each node has at least one live peer in its successor list, the
system is able to correct (after some delay) all stale finger
pointers and repopulate each successor list with r correct
entries, thus ensuring consistency and efficiency of subse-
quent lookups. However, when the entire successor list of
any user v fails, Chord becomes partitioned [26]. The goal of
this paper is to understand disconnection of Chord in the
face of node failure and find the best stabilization algorithm
that keeps Chord connected with the highest probability.

2.2 Resilience under Node Failure

Performance of DHTs under p-fraction node failure (i.e.,
static node failure) [10], [11], [26] and churn (i.e., dynamic
node failure) [6], [14], [18], [19], [20], [21], [24] have received
significant attention since the advent of structured P2P
networks. While the problem of connectivity under failure
for general graphs remains NP-complete [8], [12], [28],
recent work [17] shows that several types of deterministic
and random networks remain connected if and only if they
do not develop isolated nodes after the failure. Despite its
importance, the methodology in [17] only considers the
resilience of neighbor tables rather than that of successors and
does not model stabilization. The issues studied in this
paper are analytically different due to the much stronger
dependency between successor lists of neighboring nodes
than between their finger tables and the fact that stabiliza-
tion requires an entirely different model than the one in [17].

Another modeling work by Krishnamurthy et al. [14]
studies the probability of finding a neighbor or successor in
one of its three states (alive, failed or incorrect) and uses this
model to predict lookup consistency and latency for
exponential user lifetimes and exponential stabilization
intervals.

3 STATIC NODE FAILURE

In this section, we tackle resilience of Chord under static
node failure, which means that the system sustains a one-
time simultaneous failure event where each user becomes
dead with an independent probability p. This analysis
introduces a new model of handling-dependent random
events in Chord and can be applied to systems of nonhu-
man entities (e.g., file systems) where failures can, in fact, be
synchronized. The next section covers the more typical case
of user churn observed in human-based P2P systems.

3.1 Basic Asymptotic Model

Suppose that Chord is in a consistent state such that each
node correctly links to its r closest successors. Under static
node failure, p fraction of nodes in the system fail
simultaneously, where 0 � p � 1 is a given number [10],
[11], [17], [26]. Define a Bernoulli random variable Xi

indicating whether node i is isolated due to the fact that its r
successors all fail while i survives:

Xi ¼
1; user i is alive and its r successors failed;
0; otherwise:

�
ð6Þ

Unlike [17], our definition does not involve finger tables
since we are only interested in disconnection/isolation
arising from disrupted successor lists. Then, the number of
isolated nodes X in the system is the sum of a large number
of dependent random variables Xi:

X ¼
Xn
i¼1

Xi; ð7Þ

where n is the number of nodes in Chord. It is then clear
from (1) that the probability that Chord remains connected
(i.e., is not partitioned) is equal to P ðX ¼ 0Þ. The next
theorem provides an asymptotic closed-form expression of
P ðX ¼ 0Þ; however, we should note that this result is very
different from similar analysis in [17] for two reasons: 1) the
model in [17] only considers variables Xi with diminishing
dependency as r!1, which is not the case here; 2) the
final result on the behavior of X is given in [17] without a
formal proof due to a much wider variety of neighbor sets
covered by [17].

Theorem 1. The probability that each user in Chord remains

connected to at least one successor under p-fraction node
failure is asymptotically:

lim
n!1

P ðX ¼ 0Þ
e�nð1�pÞpr

¼ 1; ð8Þ

where r is the number of successors at each node.

Proof. Denote by a Bernoulli random variable Yi the event
that node i has failed. Then, we have

p ¼ P ðYi ¼ 1Þ ¼ 1� P ðYi ¼ 0Þ: ð9Þ

Define Ln to be the length of the longest consecutive
run of 1s in sequence fY1; . . . ; Yng:

Ln ¼ max
1�i�n�kþ1

fk : Yi ¼ Yiþ1 ¼ � � � ¼ Yiþk�1 ¼ 1g: ð10Þ

Now, note that computing P ðX ¼ 0Þ can be reduced
to finding the distribution of Ln and ensuring that no run
longer than r� 1 peers exists:

P ðX ¼ 0Þ ¼ P ðLn < rÞ: ð11Þ

Given that r ¼ �ðlognÞ so that r!1 as n!1, the
distribution of Ln converges to the following based on
the Erdös and Rényi law [4]:

P ðLn < rÞ
e�nð1�pÞpr

! 1; ð12Þ

as n!1, which immediately leads to (8). tu
We now make several notes about this result. First,

observe that Ln defined in (10) can be heuristically
interpreted as the maximum of a large number of geometric
variables. Indeed, under static node failure, variables fYig in
(9) are independent Bernoulli trials, e.g., f0; 1; 0; 0; 1; 1; . . .g.
Denote by K the random number of 0s (i.e., alive nodes)
among n Bernoulli trials and by W1;W2; . . . ;WK the length
of consecutive runs of 1s (i.e., node failures) on Chord ring.
By the strong law of large numbers, as n!1, K=n! 1� p
and ðW1 þ � � � þWKÞ=n! p almost surely. Therefore, Ln is
the maximum of approximately nð1� pÞWis:
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Ln � maxðW1; . . . ;Wnð1�pÞÞ: ð13Þ

Recalling that the geometric CDF P ðWi � r� 1Þ ¼ 1� pr if

r� 1 < np, we then have that for n!1,

P ðLn � r� 1Þ � ð1� prÞnð1�pÞ � e�nð1�pÞpr : ð14Þ

Now, note that the upper bound in (14) becomes tight as

nð1� pÞ increases and/or pr decreases. Our second note is
that [4] provides an independent, but much more complex
proof for the asymptotical result in (12). Finally, observe

that (8) is valid for r < np as long as nð1� pÞ ! 1, which
indicates that Theorem 1 holds for many choices of r < np,

not only r ¼ �ðlognÞ as in Chord.
The asymptotic result in (8) allows us to utilize a very

accurate approximation:

P ðChord is connectedÞ ¼ P ðX ¼ 0Þ � e�nð1�pÞpr ; ð15Þ

which we verify next in finite-size graphs. Simulation

results of P ðX ¼ 0Þ in Chord under static node failure are
presented in Table 1. In simulations, each node selects its

node ID according to a uniform hashing function and
connects to its r successors. After p fraction of users are

uniformly randomly chosen and removed, the graph is
checked to see how many users X are isolated. Notice from
the first three columns in Table 1 that simulation results

with r ¼ d2 log2 ne and p ¼ 2�1=2 ¼ 0:993 show that as n

increases from 1,000 to 10,000, the discrepancy between

model (15) and simulation results reduces fast. The rest of
the table shows additional examples of model’s accuracy for

several choices of p and r.
It is interesting to see from (15) that if the length of a

successor list r is independent of n, then the probability that
the system remains connected approaches 0 as n!1
(since in this case, e�nð1�pÞp

r ! 0). Therefore, r must grow
when n increases in order to ensure the network con-

nectivity under static node failure. Letting r ¼ c log2 n for
Chord ring, where c > 0 is a constant, we obtain that

exp �nð1� pÞpc log2 n
� �

¼ exp �ð1� pÞn1þc log2 p
� �

: ð16Þ

It is then easy to notice from (16) that P ðX ¼ 0Þ ! 0 if
1þ c log2 p > 0 and P ðX ¼ 0Þ ! 1 if 1þ c log2 p < 0. This
demonstrates that as system size becomes large, condition

c > �1= log2 p is both necessary and sufficient for Chord to
stay connected with probability close to 1.

3.2 Discussion

We next relate our results in Theorem 1 to those in [17,
Proposition 3]. Recall that [17] defines isolation as an event of
a user losing all of its neighbors in Fig. 1b. Their results show
that all users have at least one alive neighbor with probability:

P ðX ¼ 0Þ � e�nð1�pÞpk ; ð17Þ

where n is the system size, p is the independent node failure
probability, and k is the number of neighbors in each node’s
table. Note that we have obtained an almost identical result
(15) for successor lists in Chord, which is rather surprising
since the dependency among isolation of nodes in Chord is
much more significant than assumed in [17] (e.g., node i

and node iþ 1 in Chord share r� 1 common successors).
In fact, observe that the probability that node i is isolated

due to the failures of its r successors is simply:

� ¼ P ðXi ¼ 1Þ ¼ ð1� pÞpr; 1 � i � n; ð18Þ

where Xi is the Bernoulli variable defined in (6). Note that
given that r!1 as n!1, it is readily seen from (18) that
�! 0 as n!1. Using (18), the approximation in (15) can
be transformed into:

P ðX ¼ 0Þ � e�n� � ð1� �Þn; ð19Þ

where Taylor expansion e�x ¼ 1� x holds for small enough
x as n!1. Thus, (19) indicates that

P ðX ¼ 0Þ ¼ P
 \n

i¼1

½Xi ¼ 0�
!
�
Yn
i¼1

P ðXi ¼ 0Þ; ð20Þ

as n!1, which shows that variables Xi in Chord behave
as if they are completely independent. Note that when r!
1 as n!1, node isolations become rare events. Then, (20)
can be explained by the Chen-Stein theorem [2], which
proves that the number of occurrences of dependent rare
events Xi is approximately a Poisson random variable
under certain conditions (this method will be explicitly
used in the next section when we discuss these conditions).
Therefore, as n!1, Chord asymptotically exhibits the
same static resilience using its successor lists composed of
largely dependent users as other P2P networks using
mostly independent peers in their neighbor sets [17].
However, the rate of convergence of P ðX ¼ 0Þ in (15) and
(17) is different.
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Comparison of Simulation Results of P ðX ¼ 0Þ under Static Node Failure to Model (15) in Chord



4 DYNAMIC NODE FAILURE: GENERAL RESULTS

Recent measurements of P2P networks [5], [23], [27], [30]
show that peers continuously join and depart the system,
which is often called churn. Thus, unlike static node failures
which happen simultaneously, node failures in human-based
P2P networks often occur dynamically as the system evolves
over time. In this section, we first introduce the successor list
model under churn, examine probability � that all successors
of node vs fail within its lifetime, and then derive the
probability that Chord remains connected when stabilization
intervals are exponentially distributed. We leave derivations
for nonexponential intervals for the next section.

4.1 Successor List Model

When each user v joins the system, it acquires a successor
list with r nearest nodes, and then, maintains it through
periodic stabilizations (i.e., checks for consistency and dead
users). We assume that v does not attempt to track failure of
individual users as soon as they occur, but rather performs
stabilization every S time units on the entire successor list
(i.e., as done in Chord). At each stabilization interval, v
corrects its successor list by skipping over failed nodes and
appropriately adding to the list new arrivals (if any) [20],
which always brings the number of successors at the end of
stabilization back to r as long as the system has not been
disconnected at some earlier time. For stabilization to be
successful, at least one user among r successors must
survive the entire stabilization interval. The interval S
between two successive stabilizations reflects the duration
needed to complete network-related activity to detect
failure, exchange neighbor information, and any stabiliza-
tion rate-limiting applied by the nodes.

Fig. 2 illustrates the evolution of user v’s successor list in
our simple model. As shown in this figure, the number of
successors is r in the beginning of each stabilization interval
of size S. This number then monotonically decreases over
time until the next interval starts. If all r successors fail
within any interval S before v departs, v is isolated and
Chord is disconnected.

In general, as users continuously join and leave the
system, the evolution of a node’s successor list is rather
complicated. It involves not only newly arriving users that
replace existing successors, but also remaining lifetimes of
existing successors at the start of each stabilization interval.
For exponential lifetime distributions F ðxÞ, however, user
disconnection under this successor list model becomes
tractable as we show next.

Before we proceed with derivations, we introduce the
rules for running simulations whose purpose in this paper
is to verify model accuracy under real-life conditions (i.e.,

P2P systems of finite age and size). In simulations, user
arrivals occur according to a Poisson process. The rate of
this arrival process is given by E½N �=E½L�, where E½N� is the
mean system size in equilibrium and E½L� is the mean user
lifetime. When a new user joins the system, it is assigned a
uniformly random ID in the set f0; 1; . . . ; 232 � 1g and given
r immediate successors. Each user then monitors its r
successors, stabilizes them every S-interval, and departs
from the system after L time units, where L is drawn from
some user lifetime distribution F ðxÞ. We use exponential
F ðxÞ ¼ P ðL � xÞ ¼ 1� e�x=E½L� for the majority of closed-
form results below, but later extend our analysis to Pareto
F ðxÞ ¼ 1� ð1þ x=�Þ�� [27], [31] in Section 6.

4.2 Node Isolation

Denote by ZðtÞ the number of successors of node v at time t,
where t ¼ 0 is the time when v joins the system. Note that
Zð0Þ ¼ r and ZðtÞ � r at any age t. In the following, we
show that fZðtÞg is a Markov chain for exponential user
lifetimes and exponential stabilization intervals, which is
followed by the derivation of the exact model of node
isolation probability �. This exact model is necessary for
verifying the accuracy of our later closed-form bounds on �.

Observe from Fig. 2 that state transitions of process
fZðtÞg are triggered by either failure of existing successors
or stabilizations that occur at rate of � ¼ 1=E½S�. Due to the
memoryless property of exponential lifetime distributions,
the failure rate of each existing successor (no matter old or
new) is � ¼ 1=E½L�, which is the key reason that makes the
successor list tractable for exponential L. This leads to the
following lemma:

Lemma 1. For exponential lifetimes L � expð�Þ and exponential
stabilization intervals S � expð�Þ, the process fZðtÞg is a
continuous-time Markov chain with the state space
f0; 1; . . . ; rg and transition rate matrix Q ¼ ðQjj0 Þ:

Qjj0 ¼

�; j 6¼ r; j0 ¼ r;
j�; 1 � j � r; j0 ¼ j� 1;
��� j�; j0 ¼ j < r;
�j�; j ¼ j0 ¼ r;
0; otherwise;

8>>>><
>>>>:

ð21Þ

where � ¼ 1=E½S� and � ¼ 1=E½L�.
Proof. We first consider state ZðtÞ ¼ r, i.e., the full list of

successors at time t (see Fig. 3). Note that if a stabilization
occurs when the current state is ZðtÞ ¼ r, some current
successors may be replaced by newly arriving users
based on the successor rule. However, the successor
failure rate is � ¼ 1=E½L� for both old successors and
newly joining users due to the memoryless property of
exponential distributions. Thus, it makes no difference
whether new successors replace old ones or not (i.e., no
matter if stabilizations happen when the state is r). This
immediately follows that the transition probability from
state r to r� 1 is pr;r�1 ¼ 1, triggered by the failure of a
successor, and the sojourn time in state r is exponential
with rate ar ¼ r�. We then readily obtain that the
transition rate from r to r� 1 is arpr;r�1 ¼ r�.

Likewise, given that the stabilization intervals
S � expð�Þ, it is not hard to obtain that the transition
rate from state j to j� 1 is j� for 1 � j < r, and the
transition rate from state j to r is � for 1 � j < r. This
directly leads to the desired result. tu
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The state diagram and transition rates of process fZðtÞg
are illustrated in Fig. 3, where each state models the number

of alive successors and absorbing state 0 corresponds to

user isolation. We usually write matrix Q in (21) in the

canonical form:

Q ¼ 0 0
r Q0

� �
; ð22Þ

where r ¼ ðqj0ÞT for j 6¼ 0 is a column vector representing

the transition rates to the absorbing state 0 and Q0 is the rate

matrix obtained by removing the rows and columns

corresponding to state 0 from Q.
Define the first-hitting time T onto state 0 as

T ¼ infðt > 0 : ZðtÞ ¼ 0jZð0Þ ¼ rg: ð23Þ

Then, the isolation probability � ¼ P ðT < LÞ can be

reduced to [34, Theorem 11]:

� ¼ �ð0ÞVBV �1r; ð24Þ

where �ð0Þ ¼ ð0; . . . ; 1Þ1�r is the initial state distribution, V

is a matrix of eigenvectors of Q0, and B ¼ diagðbjÞ is a

diagonal matrix with:

bj ¼ 1=ð�� 	jÞ; ð25Þ

� ¼ 1=E½L�, 	j � 0 is the jth eigenvalue of Q0, and Q0 and r

are in (22).
Simulation results of isolation probability � are shown

in Fig. 4. Notice from this figure that model (24) is very

accurate compared to simulations. Also, observe that as �

or r increase, node isolation probability sharply decreases.

While (24) allows easy numerical computation, it provides

little qualitative information about how � behaves as a

function of � and r. It is further difficult to compare the

various stabilization strategies (studied later in the paper)

if an explicit model of � is not derived. We perform this

task next.

4.3 Closed-Form Bounds on �

Note from Fig. 2 that the sequence of stabilization intervals

forms a renewal process with cycle length S. It then follows

that isolation probability � is equal to the probability that r

successors simultaneously fail in any interval S before user

v’s lifetime expires. Note that the probability that all r

successors fail in a particular interval S is given by

f ¼ P ðmaxfL1; . . . ; Lrg < SÞ; ð26Þ

where Li � expð�Þ is the remaining lifetime of the ith

successor at the beginning of a particular interval. Then,

from Jensen’s inequality [13, page 118], it is not hard to

obtain the following closed-form upper bound on � and

prove that it becomes exact as the ratio E½L�=E½S� ! 1.

Theorem 2. For L � expð�Þ and S � expð�Þ, isolation prob-

ability � is upper-bounded by

� < �f; ð27Þ

where f ¼ �!r!=ð�þ rÞ! and � ¼ E½L�=E½S� ¼ �=�. More-

over, the bound becomes tight as stabilization intervals become

negligible compared to user lifetimes:

lim
�!1

�

�f
¼ 1: ð28Þ

Proof. Given that S � expð�Þ, probability f that all r

successors fail with a particular interval S in (26)

reduces to

f ¼
Z 1

0

1� e��t
� �r

�e��tdt: ð29Þ

Setting � ¼ �=� and z ¼ 1� e��t, (37) yields

f ¼ ��
Z 1

0

zrð1� zÞ� 1

�ð1� zÞ dz ¼
�!r!

ð�þ rÞ! : ð30Þ

It is ready to see from (30) that as �!1 and/or r!1,

f ! 0.
Next, note from Fig. 2 that the evolution of node v’s

successor list can be decomposed into a sequence of
stabilization intervals. Let random variable D be the
number of stabilization intervals with user v’s lifetime L.
Conditioning on D ¼ j, we obtain that isolation prob-
ability �ðjÞ is approximately:

�ðjÞ ¼ 1� ð1� fÞj; j 	 1; ð31Þ

where ð1� fÞj is the probability that user v survives all j

stabilization intervals and f is given in (30).
It is then clear from Jensen’s inequality [13] in the

discrete form that for concave function �ðjÞ shown in
(31), the unconditional isolation probability � yields:

� ¼ E½�ðDÞ� � 1� ð1� fÞE½D�; ð32Þ

showing that our remaining task is to obtain E½D�.
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Fig. 3. Markov chain fZðtÞg modeling a node’s successor list.

Fig. 4. Comparison of model (24) to simulation results on node isolation

probability � for exponential lifetimes with E½L� ¼ 0:5 hours and

exponential stabilization intervals with E½S� ¼ E½L�=�. (a) fixed � ¼ 15.

(b) fixed r ¼ 16.



For exponential S, it is not hard to obtain that the
renewal function E½DðtÞ�, the expected number of
stabilizations that have been executed by fixed time t,
is simply:

E½DðtÞ� ¼ �t; for all t 	 0: ð33Þ

Then, the mean number of stabilization intervals within
random time units L can be obtained as

E½D� ¼
Z 1

0

E½DðtÞ�fLðtÞdt; ð34Þ

where fLðtÞ is the PDF of user lifetimes L. Substituting
(33) into the above readily leads to

E½D� ¼ �E½L� ¼ �; ð35Þ

where � ¼ E½L�=E½S�. Using (35), (32) can be transformed
into

� � 1� ð1� fÞ� � �f; ð36Þ

where f < 1 is given in (30), showing that �f is an upper
bound for �.

Finally, note from Taylor expansion that as �!1,
ð1� fÞj ! 1� jf for given j where f ¼ Oð��rÞ from (30).
This immediately leads �ðjÞ in (31) into:

�ðjÞ
jf
¼ 1� ð1� fÞj

jf
! 1; �!1: ð37Þ

Invoking (37), isolation probability � can be transformed
into the following for �!1:

�

f�
¼
P1

j¼1 �ðjÞP ðD ¼ jÞ
f�

! fE½D�
f�

; ð38Þ

which directly leads to (28) recalling (35). tu
The result in (28) indicates that for �!1, probability

� for any user v to become isolated within its lifetime L

can be approximated as the summation of probabilities
that v is isolated in each stabilization interval. Indeed, an
average user has approximately � ¼ E½L�=E½S� intervals in
its lifetime and it gets isolated in any interval with
probability f . Thus, since � is asymptotically equal to �f ,
isolation events in different intervals behave as if they
were independent.

Table 2 illustrates the relative distance between the upper
bound in (27) and the exact result (24) for E½L� ¼ 0:5 hours
and r ¼ 8. It is clear from the table that as � increases, the
two models converge and the upper bound is never
violated. Also, note that other comparisons for different
values of E½L� and r exhibit similar results and are omitted
for brevity.

We finish this section by examining how individual node
isolations affect the connectivity of Chord as users con-
tinuously join and depart the system.

4.4 Graph Disconnection

Notice that Bernoulli variable Xi in (6) can be used to
indicate whether user i is isolated due to the failure of its
successor list under churn as well. Then, node isolation
probability can be expressed as

� ¼ P ðXi ¼ 1Þ ¼ 1� P ðXi ¼ 0Þ; ð39Þ

where � is given by (24) or approximated by the upper
bound in (27). If user i is isolated during its lifetime, we
consider the system disconnected during that user’s
presence in the system; otherwise, the network is said to
survive the join of peer i.

Supposing that N users have joined the system, we
have that

XN ¼
XN
i¼1

Xi ð40Þ

is the number of isolations among N join events. In the
following, we use the Chen-Stein method [2] to study the
probability that Chord survives N user joins without
disconnection, i.e., P ðXN ¼ 0Þ. Note that, again, this result
is stronger than that in [17] since it applies to successor lists
that exhibit much higher dependency during failure than
neighbor lists studied in prior work and relies on more
rigorous derivations.

Theorem 3. Given that N�r! 0 as N !1, the probability
that Chord survives N user joins without disconnection
approaches:

lim
N!1

P ðXN ¼ 0Þ
ð1� �ÞN

¼ 1; ð41Þ

where XN is defined in (40) and � is given in (24).

Proof. The basic idea of the Chen-Stein method is that the
distance between the distribution of XN , i.e., a sum of
N-dependent Bernoulli variables, and that of a Poisson
random variable of the same mean can be upper-
bounded by [2]

jP ðXN ¼ 0Þ � P ðVN ¼ 0Þj � �ðb1 þ b2 þ b3Þ; ð42Þ

where VN is a Poisson random variable with mean
E½VN � ¼ E½XN � ¼ N� and � ¼ minð1; 1=E½XN �Þ is no
greater than 1. Convergence to the Poisson distribution
happens when all of b1 � b3 tend to zero as N !1. Our
main task is to compute these metrics and observe under
what condition they become negligibly small.

Define Bi to be a set of users who share at least one
successor of user i in Chord:

Bi ¼ fi� rþ 1; . . . ; i; . . . ; iþ r� 1g; ð43Þ
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TABLE 2
Comparison of the Asymptotic Model (27) to the Exact Model

(24) of Node Isolation Probability � with E½L� ¼ 0:5 Hours,
� ¼ E½L�=E½S�, and r ¼ 8



with i 2 Bi and size jBij ¼ 2r� 1. Note that Bi represents
the neighborhood of i such that variables Xi and Xj, for
any node j 2 Bi, are dependent. Metrics b1 and b2 are,
respectively, given by [2]

b1 :¼
XN
i¼1

X
j2Bi

P ðXi ¼ 1ÞP ðXj ¼ 1Þ; ð44Þ

b2 :¼
XN
i¼1

X
j6¼i;j2Bi

P ðXi ¼ Xj ¼ 1Þ: ð45Þ

As in [2], b3 ¼ 0 since Xi is independent of Xj for all
nodes j outside i’s neighborhood Bi.

To calculate b1, note that (44) yields

b1 ¼
XN
i¼1

X
j2Bi

�2 ¼ Nð2r� 1Þ�2: ð46Þ

Likewise, we obtain from (45) that

b2 ¼
XN
i¼1

�
X

j 6¼i;j2Bi

P ðXj ¼ 1jXi ¼ 1Þ

� N�ð2r� 2Þ:
ð47Þ

The last step is to observe that b1 ¼ N�2ð2r� 1Þ ! 0
and b2 � N�ð2r� 2Þ ! 0 as N !1. Finally, given
b1 þ b2 ! 0, it is shown in (42) that X approaches a
Poisson random variable with mean E½XN �. This directly
leads to

lim
N!1

P ðXN ¼ 0Þ
e�E½XN �

¼ lim
N!1

P ðXN ¼ 0Þ
e�N�

¼ 1: ð48Þ

Recalling that �! 0 as N !1 given the assumption
of this theorem and using Taylor expansion e�� ¼ 1� �
for �! 0, (47) yields

lim
N!1

P ðXN ¼ 0Þ
ð1� �ÞN

¼ 1; ð49Þ

which establishes the desired result. tu
Theorem 3 indicates that as long as � is sufficiently small,

probability P ðXN ¼ 0Þ that Chord accommodates N joining
users without partitioning simply converges to the product
of probabilities that individual nodes remain nonisolated.
Observe that (41) holds under a wider set of conditions on �
that do not necessarily require N�r! 0, but derivations in
those cases are more tedious. Also, note that a typical way of
accomplishing N�r! 0 is to scale r with N so as to
converge � to zero faster than product Nr converges to
infinity. The last note is that (41) is valid for any user lifetime
distribution, where � should be derived accordingly.

Armed with (41), we propose the following approxima-
tion to P ðXN ¼ 0Þ for finite N :

P ðXN ¼ 0Þ � ð1� �ÞN; ð50Þ

where the exact model of � for exponential lifetimes is given
by (24) and its asymptotic approximation is shown in (27).

Comparison of simulation results of P ðXN ¼ 0Þ to (50)
is presented in Table 3 where model � is computed based
on (24). Notice from the first three columns in this table
that simulation results are very close to (50) from N ¼ 103

to 106 for � ¼ 40. The rest of this table shows that as �

increases (i.e., � gets closer to zero), the model becomes

more accurate as expected. Simulations for different r

show similar results that are omitted for brevity. As an

example of applying (50), assume that Chord has a mean

size 5,000 users, r ¼ dlog2 5;000e ¼ 13 successors, E½L� ¼
0:5 hours, and E½S� ¼ 21 seconds. We then obtain from (50)

that the probability that Chord survives N ¼ 1 billion user

joins without disconnection is 0.999987. If we assume that

each user joins and departs the network once per hour, this

duration corresponds to 228 years. Furthermore, the

system survives for N ¼ 100 billion joins (i.e., 22,831 years)

with probability 0.998558.

5 DYNAMIC NODE FAILURE: EFFECT OF

STABILIZATION INTERVALS

Results in the previous section only apply to exponential

intervals S between two consecutive stabilizations. Though

many modeling studies assume exponential stabilization

intervals [14], [16] to obtain Markovian models, Chord by

default uses uniform intervals [26]. In this section, we study

isolation probability � for uniform S, deal with � for

constant S, and then, find the optimal method for

stabilizing successors.

5.1 Uniform Stabilization Delays

Denote by fu the probability that all r successors of node v

fail within interval S, where S is uniformly distributed in

½0; 2E½S��. Based on the renewal process with cycle length S,

it is not hard to show that for uniform S, node isolation

probability �u converges to

�u
�fu
! 1; ð51Þ

as E½S� ! 0, which is similar to the result shown in (28).

Then, the ratio of isolation probability �u for uniform S to �

for exponential S is �u=� ¼ fu=f , where f is given in (27).

Deriving fu, we obtain the next theorem.

Theorem 4. For fixed r and E½L� and uniform S 2 ½0; 2E½S��, the

ratio of isolation probability �u for uniform S to � for

exponential S converges to the following constant:
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TABLE 3
Comparison of Model (50) of P ðXN ¼ 0Þ to Simulation Results

for r ¼ 8, Mean System Size 2,500, Exponential L with
E½L� ¼ 0:5 Hours, and Exponential S with E½S� ¼ E½L�=�



lim
E½S�!0

�u
�
¼ 2r

ðrþ 1Þ! : ð52Þ

Proof. The proof proceeds in two steps. First, for exponen-

tial L with a given E½L� and uniform S in interval

½0; 2E½S��, f in (26) is reduced to

fu ¼
Z 1

0

ð1� e��tÞrfSðtÞdt ¼
Z 2E½S�

0

ð1� e��tÞr

2E½S� dt:

Recalling � ¼ E½L�=E½S�, the above yields

fu ¼
�

2

Z 1�e�2=�

0

xr

ð1� xÞ dx

¼ �ð1� e
�2=�Þrþ1

2ðrþ 1Þ 2F1ðrþ 1; 1; rþ 2; 1� e�2=�Þ;

where 2F1ða; b; c; zÞ is a hypergeometric function, which

is always 1 for z ¼ 0. Note that as E½S� ! 0 (i.e., �!1
since E½L� is fixed), z ¼ 1� e�2=� ! 0. This immediately

follows that

lim
E½S�!0

fu ¼
�ð1� e�2=�Þrþ1

2ðrþ 1Þ ¼ 2r

ðrþ 1Þ�r ; ð53Þ

where the last step is obtained using Taylor expansion.
Next, recall from (38) that isolation probability � for

any distribution of S can be expressed as the product of f
and E½D� as �!1, where D is the random variable
denoting the number of stabilization intervals with a
lifetime L.

To obtain E½D� for uniform S, we first derive DðtÞ
conditioning on user v’s lifetime L ¼ t. As E½S� ! 0
(which implies that DðtÞ ! 1), it is clear from the strong
law of large numbers that

DðtÞE½S� ! t: ð54Þ

Invoking (53) and integrating DðtÞ using PDF fLðtÞ of

user lifetimes L leads to

E½S�E½D� ¼
Z 1

0

E½S�DðtÞfLðtÞdt! E½L�; ð55Þ

as E½S� ! 0. The above can be easily transformed into

lim
E½S�!0

E½D�
�
¼ 1; ð56Þ

for any distribution of S. Combining (38) and (55), we

immediately obtain isolation probability �u for uniform S:

�u
�fu
! 1; E½S� ! 0: ð57Þ

It is then ready to see that the ratio of �u to � shown in
(28) for exponential S converges to

�u
�
! fu

f
; �!1; ð58Þ

where f is given in (27) and �!1 is met under given

assumptions in this theorem. Using Sterling’s formula

for �!1 and fixed r, f in (27) can be reduced to

lim
�!1

f ¼ r! e
r

�r
1� r

�þ r

� ��þrþ1=2

¼ r!

�r
; ð59Þ

where the last step is obtained based on Taylor

expansion for fixed r. Finally, substituting (53) and (59)

into (58) directly leads to (52). tu
Simulation results of�u for uniformS are shown in Table 4.

Notice from this table that the ratio �u=� indeed approaches

that given by our model (52) as E½S� becomes small. Since

�u � � for all r, the above result demonstrates that using

uniformS is a better strategy than using exponentialS and the

amount of improvement becomes more significant when r

increases, e.g., �u=� ¼ 7:055� 10�4 for r ¼ 8 and �u=� ¼
6:578� 10�7 for r ¼ 12.

5.2 Constant Stabilization Delays

Next, following the derivations of �u=� in Theorem 4, we

easily obtain isolation probability �c for constant S.

Theorem 5. For fixed r and E½L� and constant S, the ratio of

isolation probability �c to � approaches:

lim
E½S�!0

�c
�
¼ 1

r!
: ð60Þ

Proof. Following the derivations in the proof for Theorem 4,

we readily obtain

fc ¼ ð1� e�1=�Þr ! ��r; �!1; ð61Þ

and

�c
�
! fc

f
; �!1; ð62Þ

where f for exponential S is given in (59) and �!1 is

satisfied under given assumptions. Substituting (59) and

(61) into (62) immediately leads to (60). tu
Table 5 presents simulation results on �c when stabiliza-

tion intervals are constant. Note that ratio �c=� obtained

from simulations is very close to that predicted by model

(60) even for � ¼ 60 and that it converges to (60) as �

increases further. Model (60) indicates that simply stabiliz-

ing successors at constant intervals can reduce isolation

probability �c by a factor of r! compared to � as E½S� ! 0.

To show the exact improvement over exponential S, we

have �c=� ¼ 2:480� 10�5 for r ¼ 8 and 2:088� 10�9 for

r ¼ 12. In addition, it is easy to notice from (51) and (59) that

�c � �u and the ratio �c=�u approaches ðrþ 1Þ=2r � 1 as

E½S� ! 0. This ratio is 0.035 for r ¼ 8 and 0.003 for r ¼ 12.
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Convergence of Simulation Results to Model �u=� ¼ :0127 from

(52) for E½L� ¼ 0:5 Hours, r ¼ 6, and � ¼ E½L�=E½S�



5.3 Optimal Strategy

The above analysis shows that for exponential lifetimes, the
ratio of �c under constant S to �o under any other S can be
transformed into

lim
E½S�!0

�c
�o
¼ P ðmaxfL1; . . . ; Lrg < E½S�Þ

P ðmaxfL1; . . . ; Lrg < SÞ ; ð63Þ

where Li � expð�Þ is the residual lifetime of the ith
successor of node v at the beginning of a particular interval.
While we already established that the above ratio is
asymptotically less than 1 for both exponential and uniform
S, the next theorem indicates that the same result holds for
all other distributions as well.

Theorem 6. For exponential user lifetimes with fixed E½L� > 0

and the same mean stabilization interval E½S� ! 0, node

isolation probability �c under constant S is no greater than

that under any random S.

Proof. For exponential user lifetimes with mean E½L� ¼ 1=�,
recall that the probability that all r successors of node v
fail within a particular interval S is

P ðmaxfL1; . . . ; Lrg < SÞ ¼
Z 1

0

GðxÞfSðxÞds; ð64Þ

where GðxÞ ¼ P ðmaxfL1; . . . ; Lrg < xÞ ¼ ð1� e��xÞr. The
second derivative of GðxÞ is thus

G00ðxÞ ¼ r�2e��xð1� e��xÞr�2ðre��x � 1Þ; ð65Þ

for r 	 3. Then, it is easy to see that for r 	 3:

G00ðxÞ > 0; x < E½L� ln r;
G00ðxÞ � 0; otherwise;

�
ð66Þ

which indicates that GðxÞ is a convex function for x <
E½L� ln r and concave for x > E½L� ln r.

For E½S� ! 0, note that S � E½L� ln r holds with
probability approaching 1. This immediately transforms
(64) into

P ðmaxfL1; . . . ; Lrg < SÞ ¼
Z E½L� ln r

0

GðxÞfSðxÞds; ð67Þ

showing that the convex part of GðxÞ determines the
above metric. Then, for E½S� ! 0, we obtain from
Jensen’s inequality [13] that

P ðmaxfL1; . . . ; Lrg < SÞ 	 P ðmaxfL1; . . . ; Lrg < E½S�Þ;

since GðxÞ is strictly convex for x < E½L� ln r. This
directly leads to

lim
E½S�!0

�c
�o
¼ P ðmaxfL1; . . . ; Lrg < E½S�Þ

P ðmaxfL1; . . . ; Lrg < SÞ � 1; ð68Þ

for any random S, which completes the proof. tu
Theorem 6 shows that using constantS is not only a simple,

but also optimal method to stabilize successors in Chord.

5.4 Discussion

In this section, we have shown that constant stabilization
intervals outperform any other distribution of S in terms of
resilience against disconnection. This has a simple intuitive
explanation. Recalling the successor list model in Fig. 2,
observe that node isolation more likely occurs during the
longest stabilization interval within a user lifetime. There-
fore, by reducing the variance of S (i.e., keeping all intervals
equally small), one achieves the lowest probability of
disconnection, which is the rationale behind Theorem 6.

One straightforward approach that takes advantage of
this finding is for each node v to perform the jth
stabilization at time tv þ j�v, where tv is the instance when
v joins the system and �v is its interstabilization delay,
which may depend on the user’s resources (CPU, memory),
bandwidth, and desire to stay connected. In situations
where users may simultaneously arrive with similar �v, a
random initial shift may be used to prevent synchronization
effects. In other words, the jth stabilization may occur at
time tv þ !v þ j�v, where !v is some small initial delay
(generated by each user upon join).

6 HEAVY-TAILED LIFETIMES

Without the memoryless property on lifetime L, derivation
of probability f that all r successors fail within interval S is
simply intractable. However, for systems with heavy-tailed
lifetimes [5], [30] where old users are more likely to remain
alive for a longer time in the system, a mixture of old and
new users within a given successor list leads to a smaller f
compared to that for exponential lifetimes. Thus, the
probability of node isolation due to failure of the entire
successor list in Chord is smaller when the distribution of
user lifetimes is heavy-tailed compared to the exponential
case studied earlier in this paper, which we next confirm in
simulations.

We examine four different distributions of interval S,
including exponential with rate 1=E½S�, Pareto with CDF
F ðxÞ ¼ 1� ð1þ x=�Þ�� where � ¼ 3 and � ¼ ð�� 1ÞE½S�,
uniform in ½0; 2E½S��, and constant equal to E½S�. Simulation
results of isolation probability � for exponential and Pareto
lifetimes under the four stabilization strategies are plotted
in Fig. 5. Notice in the figure that S with the highest
variance (i.e., Pareto S) performs the worst, followed by
exponential and uniform cases, while constant S is the best.
Further, observe that � for Pareto lifetimes is smaller than
that for exponential lifetimes under all four stabilization
strategies and the difference becomes smaller as E½S�
decreases. In fact, the model is a very close match to the
Pareto case in Figs. 5c and 5d. These observations confirm
that our exponential model of � provides an upper bound
for systems with heavy-tailed lifetimes over a wide range of
stabilization delays S.

Since graphs in Figs. 5a, 5b, 5c, and 5d are listed in the
order of decaying variance V ar½S�, the figure can be used to

YAO AND LOGUINOV: UNDERSTANDING DISCONNECTION AND STABILIZATION OF CHORD 659

TABLE 5
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(60) for E½L� ¼ 0:5 Hours, r ¼ 6, and � ¼ E½L�=E½S�



suggest that larger variance V ar½S� leads to larger isolation
probability � not only for exponential lifetimes L, but also
for Pareto. The next lemma formally establishes the result
for Pareto lifetimes.

Lemma 2. Let S1 and S2, respectively, denote random intervals of
any two stabilization methods with the same mean
E½S1� ¼ E½S2�. For Pareto lifetimes with CDF 1� ð1 þ
x=�Þ��, � > 1 and � > 0, the following holds:

V ar½S1� 	 V ar½S2� ¼) �ðS1Þ 	 �ðS2Þ; ð69Þ

where �ðSÞ represents isolation probability for stabilization
intervals with random variable S.

Proof. Note from (26) that the probability that all of user i’s
r successors fail in the jth stabilization interval is

fðjÞ ¼
Z 1

0

P ðmaxðL
1; . . . ; L
rÞ � xÞdFSðxÞ; j ¼ 1; 2; . . . ;

where FSðxÞ is the CDF of stabilization intervals and L
k
is the remaining lifetime of the kth successor from when
the jth stabilization starts until this successor departs,
k ¼ 1; . . . ; r. Due to user independence, the above is
reduced to

fðjÞ ¼
Z 1

0

Yr
k¼1

P ðL
k < xÞdFSðxÞ: ð70Þ

Defining hðxÞ :¼
Qr

k¼1 P ðL
k < xÞ, (70) yields

fðjÞ ¼
Z 1

0

hðxÞdFSðxÞ ¼ E½hðSÞ�: ð71Þ

Next, observe that for Pareto lifetimes, the probability
that a node’s remaining lifetime L
k is less than x
conditioned on that its age A is y is given by

P ðL
k < xjA ¼ yÞ ¼ 1� 1þ x

� þ y

� ���
; ð72Þ

for x 	 0; y 	 0. In case of age y ¼ 0, (72) is simply the
lifetime CDF of a newly arrived user. Since the second
derivative of (72) with respect to x is nonnegative for any
given age y 	 0, we reach that the second derivative of
hðxÞ is nonnegative, showing that hðxÞ is a nondecreas-
ing convex function.

We thus obtain from [32, p. 488] that for any
nondecreasing convex function hðxÞ,

V ar½S1� 	 V ar½S2� ¼) E½hðS1Þ� 	 E½hðS2Þ�;

which then leads to the desired result. tu
Lemma 2 shows that for Pareto lifetimes, stabilization

with constant intervals S (whose V ar½S� ¼ 0) leads to the

smallest isolation probability, which is consistent with

Theorem 6. However, this result may not hold for other

distributions of user lifetimes since it depends on whether

function hðxÞ in (71) is convex or not.

7 CONCLUSION

This paper tackled the problem of deriving formulas for the
resilience of Chord’s successor list under both static and
dynamic node failure. We found that under static node
failure, Chord exhibited the same resilience through the
successor list as that many other DHTs and unstructured P2P
networks [17] through their randomized neighbor tables. We
also showed that when Chord experienced continuous node
joins/departures, node isolation could be treated as inde-
pendent when system size and successor lists were suffi-
ciently large. We further demonstrated that stabilization with
constant intervals was optimal and kept Chord connected
with the highest probability under exponential and Pareto
lifetimes. Similar results are expected to hold for other heavy-
tailed distributions and a variety of nonchord DHTs. We
leave this direction for future work.
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