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Abstract —Previous analytical work [16], [17] on the resilience of P2P networks has been restricted to disconnection arising from
simultaneous failure of all neighbors in routing tables of participating users. In this paper, we focus on a different technique for
maintaining consistent graphs—Chord’s successor sets and periodic stabilizations—under both static and dynamic node failure. We
derive closed-form models for the probability that Chord remains connected under both types of node failure and show the effect of
using different stabilization interval lengths (i.e., exponential, uniform, and constant) on the probability of partitioning in Chord.

Index Terms —Peer-to-peer networks, graph disconnection, stabilization of Chord.

m � 1g, where m is some sufficiently large
number that can accommodate all nodes without conflict.
Each user v maintains a successor listand a routing table.
Assuming n peers in the system, the former set contains
r ¼ � ðlognÞpeers immediately following v along the ring
and the latter set consists of k ¼ � ðlognÞneighbor pointers,
where the i th neighbor is the first node following the point
idðvÞ þ 2i � 1 on the ring, idðvÞ is the hash index of v, and
i ¼ 1; 2; . . . ; k. Note that routing tables are used to reduce
lookup latency, while successors ensure resilience in the
face of node failure. Even if all routing tables are in the
failed state, Chord is still able to function by forwarding

queries, repairing failures, and finding new neighbors via
successor lists. In contrast, when all r successors of any
node fail simultaneously, the system becomes partitioned
and is potentially unable to recover without a bootstrap. 1

We generally call the event of a user losing all of its
successors ¨s-Rényi theorem [4], we

show that under p-fraction node failure, the probability that
Chord with size n ! 1 remains connected is asymptotically:

lim

n!1

PðX ¼ 0Þ
e� nð1� pÞpr ¼ 1; ð2Þ

where r ¼ � ðlognÞis the number of immediate successors a
user monitors. It is rather surprising to find from (2) that
although the dependency among successor lists of consecu-
tive users is very strong, Chord enjoys the same level of static
resilience as networks where connectivity is determined
using routing tables consisting of largely independent
neighbors [17]. We further show that the rationale behind
this can be explained using the Chen-Stein method [2].

Setting r ¼ clog2 n, where c > 0 is a constant, (2) indicates
that asn ! 1 , the probability that Chord remains connected
approaches 1 ifc > � 1=log2 pand 0 if c < � 1=log2 p. Note that
this holds for both complete and incomplete Chord graphs.
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1. Although neighbors in some routing tables may still be alive, there is
no guarantee that the system can return to a consistent state after
partitioning.
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Successor lists are generally used in routing only during
the last step of a lookup or when all finger pointers
corresponding to desired jump lengths have failed. As long
as each node has at least one live peer in its successor list, the
system is able to correct (after some delay) all stale finger
pointers and repopulate each successor list with r correct
entries, thus ensuring consistency and efficiency of subse-
quent lookups. However, when the entire successor list of
any user v fails, Chord becomes partitioned[26]. The goal of
this paper is to understand disconnection of Chord in the
face of node failure and find the best stabilization algorithm
that keeps Chord connected with the highest probability.

2.2 Resilience under Node Failure
Performance of DHTs under p-fraction node failure (i.e.,
static node failure) [10], [11], [26] and churn (i.e., dynamic
node failure) [6], [14], [18], [19], [20], [21], [24] have received
significant attention since the advent of structured P2P
networks. While the problem of connectivity under failure
for general graphs remains NP-complete [8], [12], [28],
recent work [17] shows that several types of deterministic
and random networks remain connected if and only if they
do not develop isolated nodes after the failure. Despite its
importance, the methodology in [17] only considers the
resilience of neighbor tablesrather than that of successors and
does not model stabilization. The issues studied in this
paper are analytically different due to the much stronger
dependency between successor lists of neighboring nodes
than between their finger tables and the fact that stabiliza-
tion requires an entirely different model than the one in [17].

Another modeling work by Krishnamurthy et al. [14]
studies the probability of finding a neighbor or successor in
one of its three states (alive, failed or incorrect) and uses this
model to predict lookup consistency and latency for
exponential user lifetimes and exponential stabilization
intervals.

3 STATIC NODE FAILURE

In this section, we tackle resilience of Chord under static
node failure, which means that the system sustains a one-
time simultaneous failure event where each user becomes
dead with an independent probability p. This analysis
introduces a new model of handling-dependent random
events in Chord and can be applied to systems of nonhu-
man entities (e.g., file systems) where failures can, in fact, be
synchronized. The next section covers the more typical case
of user churn observed in human-based P2P systems.

3.1 Basic Asymptotic Model
Suppose that Chord is in a consistent state such that each
node correctly links to its r closest successors. Under static
node failure, p fraction of nodes in the system fail
simultaneously, where 0 � p � 1 is a given number [10],
[11], [17], [26]. Define a Bernoulli random variable X i

indicating whether node i is isolateddue to the fact that its r
successors all fail while i survives:

X i ¼
1; useri is alive and its r successors failed;
0; otherwise:

�
ð6Þ

Unlike [17], our definition does not involve finger tables
since we are only interested in disconnection/isolation
arising from disrupted successor lists. Then, the number of
isolated nodes X in the system is the sum of a large number
of dependentrandom variables X i :

X ¼
Xn

i¼1

X i ; ð7Þ

where n is the number of nodes in Chord. It is then clear
from (1) that the probability that Chord remains connected
(i.e., is not partitioned) is equal to PðX ¼ 0Þ. The next
theorem provides an asymptotic closed-form expression of
PðX ¼ 0Þ; however, we should note that this result is very
different from similar analysis in [17] for two reasons: 1) the
model in [17] only considers variables X i with diminishing
dependency as r ! 1 , which is not the case here; 2) the
final result on the behavior of X is given in [17] without a
formal proof due to a much wider variety of neighbor sets
covered by [17].

Theorem 1. The probability that each user in Chord remains
connected to at least one successor underp-fraction node
failure is asymptotically:

lim
n!1

PðX ¼ 0Þ
e� nð1� pÞpr ¼ 1; ð8Þ

wherer is the number of successors at each node.

Proof. Denote by a Bernoulli random variable Yi the event
that node i has failed. Then, we have

p ¼ PðYi ¼ 1Þ ¼1 � PðYi ¼ 0Þ: ð9Þ

Define L n to be the length of the longest consecutive
run of 1s in sequence f Y1; . . . ; Yng:

L n ¼ max
1� i � n� kþ 1

f k : Yi ¼ Yiþ 1 ¼ � � � ¼ Yiþ k� 1 ¼ 1g: ð10Þ

Now, note that computing PðX ¼ 0Þcan be reduced
to finding the distribution of L n and ensuring that no run
longer than r � 1 peers exists:

PðX ¼ 0Þ ¼PðL n < r Þ: ð11Þ

Given that r ¼ � ðlognÞso that r ! 1 as n ! 1 , the
distribution of L n converges to the following based on
the Erdös and Rényi law [4]:

PðL n < r Þ
e� nð1� pÞpr ! 1; ð12Þ

as n ! 1 , which immediately leads to (8). tu

We now make several notes about this result. First,
observe that L n defined in (10) can be heuristically
interpreted as the maximum of a large number of geometric
variables. Indeed, under static node failure, variables f Yi g in
(9) are independent Bernoulli trials, e.g., f 0; 1; 0; 0; 1; 1; . . .g.
Denote by K the random number of 0s (i.e., alive nodes)
among n Bernoulli trials and by W1; W2; . . . ; WK the length
of consecutive runs of 1s (i.e., node failures) on Chord ring.
By the strong law of large numbers, as n ! 1 , K=n ! 1 � p
and ðW1 þ � � � þ WK Þ=n ! p almost surely. Therefore, L n is
the maximum of approximatelynð1 � pÞWi s:
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L n � maxðW1; . . . ; Wnð1� pÞÞ: ð13Þ

Recalling that the geometric CDF PðWi � r � 1Þ ¼1 � pr if
r � 1 < np , we then have that for n ! 1 ,

PðL n � r � 1Þ � ð1 � pr Þnð1� pÞ � e� nð1� pÞpr
: ð14Þ

Now, note that the upper bound in (14) becomes tight as
nð1 � pÞincreases and/or pr decreases. Our second note is
that [4] provides an independent, but much more complex
proof for the asymptotical result in (12). Finally, observe
that (8) is valid for r < np as long as nð1 � pÞ ! 1 , which
indicates that Theorem 1 holds for many choices of r < np ,
not only r ¼ � ðlognÞas in Chord.

The asymptotic result in (8) allows us to utilize a very
accurate approximation:

PðChord is connectedÞ ¼PðX ¼ 0Þ � e� nð1� pÞpr
; ð15Þ

which we verify next in finite-size graphs. Simulation
results of PðX ¼ 0Þin Chord under static node failure are
presented in Table 1. In simulations, each node selects its
node ID according to a uniform hashing function and
connects to its r successors. After p fraction of users are
uniformly randomly chosen and removed, the graph is
checked to see how many usersX are isolated. Notice from
the first three columns in Table 1 that simulation results
with r ¼ d2 log2 ne and p ¼ 2� 1=2 ¼ 0:993 show that as n
increases from 1,000 to 10,000, the discrepancy between
model (15) and simulation results reduces fast. The rest of
the table shows additional examples of model’s accuracy for
several choices ofp and r .

It is interesting to see from (15) that if the length of a
successor listr is independent of n, then the probability that
the system remains connected approaches 0 asn ! 1
(since in this case, e� nð1� pÞpr

! 0). Therefore, r must grow
when n increases in order to ensure the network con-
nectivity under static node failure. Letting r ¼ clog2 n for
Chord ring, where c > 0 is a constant, we obtain that

exp � nð1 � pÞpclog2 n� �
¼ exp �ð 1 � pÞn1þ clog2 p� �

: ð16Þ

It is then easy to notice from (16) that PðX ¼ 0Þ ! 0 if
1 þ clog2 p > 0 and PðX ¼ 0Þ ! 1 if 1 þ clog2 p < 0. This
demonstrates that as system size becomes large, condition
c > � 1=log2 p is both necessary and sufficient for Chord to
stay connected with probability close to 1.

3.2 Discussion
We next relate our results in Theorem 1 to those in [17,
Proposition 3]. Recall that [17] defines isolation as an event of
a user losing all of its neighbors in Fig. 1b. Their results show
that all users have at least one alive neighbor with probability:

PðX ¼ 0Þ � e� nð1� pÞpk
; ð17Þ

where n is the system size,p is the independent node failure
probability, and k is the number of neighbors in each node’s
table. Note that we have obtained an almost identical result
(15) for successor lists in Chord, which is rather surprising
since the dependency among isolation of nodes in Chord is
much more significant than assumed in [17] (e.g., node i
and node i þ 1 in Chord share r � 1 common successors).

In fact, observe that the probability that node i is isolated
due to the failures of its r successors is simply:

� ¼ PðX i ¼ 1Þ ¼ ð1 � pÞpr ; 1 � i � n; ð18Þ

where X i is the Bernoulli variable defined in (6). Note that
given that r ! 1 as n ! 1 , it is readily seen from (18) that
� ! 0 as n ! 1 . Using (18), the approximation in (15) can
be transformed into:

PðX ¼ 0Þ � e� n� � ð 1 � � Þn; ð19Þ

where Taylor expansion e� x ¼ 1 � x holds for small enough
x as n ! 1 . Thus, (19) indicates that

PðX ¼ 0Þ ¼P

 
\n

i¼1

½X i ¼ 0�

!

�
Yn

i¼1

PðX i ¼ 0Þ; ð20Þ

as n ! 1 , which shows that variables X i in Chord behave
as if they are completely independent. Note that when r !
1 asn ! 1 , node isolations become rare events. Then, (20)
can be explained by the Chen-Stein theorem [2], which
proves that the number of occurrences of dependent rare
events X i is approximately a Poisson random variable
under certain conditions (this method will be explicitly
used in the next section when we discuss these conditions).
Therefore, as n ! 1 , Chord asymptotically exhibits the
samestatic resilience using its successor lists composed of
largely dependent users as other P2P networks using
mostly independent peers in their neighbor sets [17].
However, the rate of convergence of PðX ¼ 0Þin (15) and
(17) is different.
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TABLE 1
Comparison of Simulation Results of PðX ¼ 0Þunder Static Node Failure to Model (15) in Chord







lim
E½S�! 0

� u

�
¼

2r

ðr þ 1Þ!
: ð52Þ

Proof. The proof proceeds in two steps. First, for exponen-

tial L with a given E½L� and uniform S in interval

½0; 2E½S��, f in (26) is reduced to

f u ¼
Z 1

0
ð1 � e� �t Þr f SðtÞdt ¼

Z 2E½S�

0

ð1 � e� �t Þr

2E½S�
dt:

Recalling � ¼ E½L�=E½S�, the above yields

f u ¼
�
2

Z 1� e� 2=�

0

xr

ð1 � xÞ
dx

¼
� ð1 � e� 2=� Þrþ 1

2ðr þ 1Þ 2F1ðr þ 1; 1;r þ 2; 1� e� 2=� Þ;

where 2F1ða; b; c; zÞis a hypergeometric function, which

is always 1 for z ¼ 0. Note that as E½S� ! 0 (i.e., � ! 1

since E½L� is fixed), z ¼ 1 � e� 2=� ! 0. This immediately

follows that

lim
E½S�! 0

f u ¼
� ð1 � e� 2=� Þrþ 1

2ðr þ 1Þ
¼

2r

ðr þ 1Þ� r ; ð53Þ

where the last step is obtained using Taylor expansion.
Next, recall from (38) that isolation probability � for

any distribution of S can be expressed as the product off
and E½D� as � ! 1 , where D is the random variable
denoting the number of stabilization intervals with a
lifetime L.

To obtain E½D� for uniform S, we first derive DðtÞ
conditioning on user v’s lifetime L ¼ t. As E½S� ! 0
(which implies that DðtÞ ! 1 ), it is clear from the strong
law of large numbers that

DðtÞE½S� ! t: ð54Þ

Invoking (53) and integrating DðtÞ using PDF f L ðtÞ of

user lifetimes L leads to

E½S�E½D� ¼
Z 1

0
E½S�DðtÞf L ðtÞdt ! E½L�; ð55Þ

as E½S� ! 0. The above can be easily transformed into

lim
E½S�! 0

E½D�
�

¼ 1; ð56Þ

for any distribution of S. Combining (38) and (55), we

immediately obtain isolation probability � u for uniform S:

� u

�f u
! 1; E½S� ! 0: ð57Þ

It is then ready to see that the ratio of � u to � shown in
(28) for exponential S converges to

� u

�
!

f u

f
; � ! 1 ; ð58Þ

where f is given in (27) and � ! 1 is met under given

assumptions in this theorem. Using Sterling’s formula

for � ! 1 and fixed r , f in (27) can be reduced to

lim
� !1

f ¼ r !
er

� r 1 �
r

� þ r

� � � þ rþ 1=2

¼
r !
� r ; ð59Þ

where the last step is obtained based on Taylor
expansion for fixed r . Finally, substituting (53) and (59)
into (58) directly leads to (52). tu

Simulation results of � u for uniform Sare shown in Table 4.
Notice from this table that the ratio � u=� indeed approaches
that given by our model (52) as E½S� becomes small. Since
� u � � for all r , the above result demonstrates that using
uniform Sis a better strategy than using exponential Sand the
amount of improvement becomes more significant when r
increases, e.g.,� u=� ¼ 7:055� 10� 4 for r ¼ 8 and � u=� ¼
6:578� 10� 7 for r ¼ 12.

5.2 Constant Stabilization Delays
Next, following the derivations of � u=� in Theorem 4, we
easily obtain isolation probability � c for constant S.

Theorem 5. For fixedr and E½L� and constantS, the ratio of
isolation probability� c to � approaches:

lim
E½S�! 0

� c

�
¼

1
r !

: ð60Þ

Proof. Following the derivations in the proof for Theorem 4,
we readily obtain

f c ¼ ð1 � e� 1=� Þr ! � � r ; � ! 1 ; ð61Þ

and

� c

�
!

f c

f
; � ! 1 ; ð62Þ

where f for exponential S is given in (59) and � ! 1 is
satisfied under given assumptions. Substituting (59) and
(61) into (62) immediately leads to (60). tu

Table 5 presents simulation results on � c when stabiliza-
tion intervals are constant. Note that ratio � c=� obtained
from simulations is very close to that predicted by model
(60) even for � ¼ 60 and that it converges to (60) as �
increases further. Model (60) indicates that simply stabiliz-
ing successors at constant intervals can reduce isolation
probability � c by a factor of r ! compared to � as E½S� ! 0.
To show the exact improvement over exponential S, we
have � c=� ¼ 2:480� 10� 5 for r ¼ 8 and 2:088� 10� 9 for
r ¼ 12. In addition, it is easy to notice from (51) and (59) that
� c � � u and the ratio � c=� u approaches ðr þ 1Þ=2r � 1 as
E½S� ! 0. This ratio is 0.035 for r ¼ 8 and 0.003 for r ¼ 12.
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TABLE 4
Convergence of Simulation Results to Model � u=� ¼ :0127from

(52) for E½L� ¼ 0:5 Hours, r ¼ 6, and � ¼ E½L�=E½S�


