
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2025

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2025Spring 2025

MemoryMemory
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 10, 2025April 10, 2025

2

Chapter 7: RoadmapChapter 7: RoadmapChapter 7: Roadmap

7.1 Requirements
7.2 Partitioning
7.3 Paging
7.4 Segmentation
7.5 Security

Part III
Chapter 7: MemoryChapter 7: Memory
Chapter 8: Virtual RAMChapter 8: Virtual RAM

3

Main memory services of the OS:
•

1) Dynamic allocation/deletion

•

2) Process & data relocation
━

Transparent fragmentation of
process data/code within RAM
and swapping to disk as needed

•

3) Protection
━

No unauthorized access to space
of other processes

•

4) Sharing
━

Ability to map portions of RAM
between different processes

RequirementsRequirementsRequirements

Memory manager,
address virtualization,

hardware

support

4

Chapter 7: RoadmapChapter 7: RoadmapChapter 7: Roadmap

7.1 Requirements
7.2 Partitioning
7.3 Paging
7.4 Segmentation
7.5 Security

5

•

Memory allocation is a complex problem
━

We examine only the most basic approaches
•

Partitioning: type of RAM segmentation into blocks

•

Placement:

actual block allocation algorithms

Memory ManagementMemory ManagementMemory Management

Dynamic PlacementDynamic Placement

ScanningScanning BuddyBuddy

many other allocators
are not covered here

PartitioningPartitioning

StaticStatic DynamicDynamic

Constant-size

blocks

Constant-size

blocks

Variable-size

blocks

Variable-size

blocks

Variable-size

blocks

Variable-size

blocks

OS paging heap

Note: memory heaps have nothing to do with priority queues

6

•

Static

partitioning defines block boundaries a-priori
━

Process may hold any
number of blocks, which may
appear to it as contiguous space

━

Mapping done in hardware
•

Suffers from internal

 fragmentation
•

Blocks may be of constant

 or variable size
━

For simplicity, most kernels
 have constant-size blocks

 called pages
•

Each page must be a power of 2 (usually 4 KB)

OS PartitioningOS PartitioningOS Partitioning

P1P1
P1P1

P2P2

P2P2

time t1

P3P3
P4P4

P3P3

P2P2

time t2

7

•

Tweaking virtual-page tables is slow and a privileged
operation; allocation rounded to nearest page size

•

Idea: add memory management to user space that
can satisfy small buffer requests with less overhead

•

Dynamic

partitioning (heap)
grabs

pages from the OS,

then

splits them into smaller
chunks in user space
━

Much faster, but leads

to
external fragmentation

•

More difficult to manage due to
variable-size blocks

Heap PartitioningHeap PartitioningHeap Partitioning

buf3buf3

buf4buf4

time t2

buf6buf6

buf5buf5

buf2buf2

time t1

buf1buf1

8

•

Memory is typically
allocated from:
━

Stack (local variables)
━

Heap (new/malloc)
━

OS (VirtualAlloc)
•

We are now
concerned with heap
━

OS issues covered
during next class

Heap AllocationHeap AllocationHeap Allocation

•

Scanning
━

Linearly search through RAM
(or list of empty blocks) to find
empty blocks to allocate

•

Search types:
━

First fit: scans from start
━

Best fit: finds the smallest free
block that satisfies the request

━

Next fit: searches from the last
allocation forward

•

E.g., Unix SLOB allocator for
simple (embedded) devices

void f (void) {
int a; // on the stack
// ptr on the stack, buffer on the heap
char *buf = new char [100];
// ptr on the stack, buffer from the kernel
char *OSbuf = VirtualAlloc (...);

}

void f (void) {
int a; // on the stack
// ptr on the stack, buffer on the heap
char *buf = new char [100];
// ptr on the stack, buffer from the kernel
char *OSbuf = VirtualAlloc (...);

}

programprogram

heapheap
OSOS

9

•

Buddy System
━

Organizes OS chunk into blocks that are powers of 2
━

Smallest block has size 2L, largest 2U

•

Request of size R arrives
━

Find a block with size that’s
nearest power of 2

━

If no such block exists, split
 larger free blocks in half

until a block of correct
size is available

•

Example:

U = 20, L = 12
━

First request is R1

= 90K
━

Then requests R2

= 150K, R3

= 200K arrive in that order

Heap AllocationHeap AllocationHeap Allocation

1M1M

512K512K 512K512K

256K256K 256K256K 256K256K 256K256K

128K128K 128K128K
R1

R2 R3

10

•

To free a block, check if the matching buddy is free
━

If so, combine and free the larger block
━

Process repeats until we can’t go further
•

Example:
━

Release order: R2, R1, R3
━

Which nodes are combined?
•

Method drawbacks?
━

Both internal and external
fragmentation, constant splitting & merging

•

How to implement this scheme efficiently?
━

First problem is finding free blocks in U-L time
━

Second problem is merging buddies in U-L time

Heap AllocationHeap AllocationHeap Allocation

1M1M

512K512K 512K512K

256K256K 256K256K 256K256K 256K256K

128K128K 128K128K
R1

R2 R3

11

•

Given R, first determine the size of target block
━

Needs to be the nearest power of 2 above or equal to R
━

Use _BitScanReverse to get the highest bit set in DWORD
•

Free blocks are kept in queues, one for each level
━

Try popping a block from the needed level, if nothing there,
go hunting for a larger block up the tree

Heap AllocationHeap AllocationHeap Allocation

int levels = U – L + 1;
// queue of free blocks
Queue *fb = new Queue [levels];
char* Alloc (int R) {

if (R == 0)
return NULL;

// index of the queue in [0, levels-1]
DWORD qIdx = GetIndex (R);
// search for the nearest empty block
int i = qIdx;
while (i >= 0 && fb[i].size() == 0)

i--;
// anything available?
if (i < 0) return NULL;

int levels = U – L + 1;
// queue of free blocks
Queue *fb = new Queue [levels];
char* Alloc (int R) {

if (R == 0)
return NULL;

// index of the queue in [0, levels-1]
DWORD qIdx = GetIndex (R);
// search for the nearest empty block
int i = qIdx;
while (i >= 0 && fb[i].size() == 0)

i--;
// anything available?
if (i < 0) return NULL;

// if so, split them down
for (; i < qIdx; i++) {

ptr = fb[i].pop();
fb[i+1].push (ptr);
fb[i+1].push (ptr + 2U-(i+1));

}
// pop our block
ptr = fb[qIdx].pop();
return ptr;

}

// if so, split them down
for (; i < qIdx; i++) {

ptr = fb[i].pop();
fb[i+1].push (ptr);
fb[i+1].push (ptr + 2U-(i+1));

}
// pop our block
ptr = fb[qIdx].pop();
return ptr;

}

━

Block with index i has
size 2U-i

12

•

How to free blocks and find who their buddies are?
━

Assume both

ptr to start of block

and its size

are known
•

XOR block ptr with its size
━

This gives a

ptr to buddy block
•

One approach is to scan

 the queue of free blocks,
 if buddy is there, merge

•

However, this requires more
 overhead

than we wanted (i.e., 2U-L+1

worst case)

•

Idea:

store allocation state with the blocks
━

Reserve a shadow buffer at the start of block

Heap AllocationHeap AllocationHeap Allocation

88

44 44

22 22 22 22
0 2 4 6

0 4

13

•

Merge happens only
 when our buddy is free

 and

their size matches ours
•

Example when checking only the free flag is
insufficient?
━

In this tree, 4B when freed will
attempt to merge with 2A since

 starting address of 2A and 4A
 is the same (i.e., 0)

•

To expedite efficient removal
 from queues, block headers

 may be organized into a
doubly linked list instead of using separate queues

Heap AllocationHeap AllocationHeap Allocation

class Header {
int size;
bool free;

}

block given to
application

no man’s land,
0xfdfdfdfd

1616

8A8A 8B8B

4A4A 4B4B 4C4C 4D4D

2A2A 2B2B

14

•

Modern malloc (stdlib, glibc) are variations on buddy
•

Unix slab allocator
━

Do not merge up when expecting new requests of similar
size and maintain

a cache of small blocks

━

Threshold size for merging may be guesstimated from prior
request patterns or hardwired ahead of time

•

Low fragmentation heaps
━

When multiple options are
possible, attempt to optimize

 continuity of space
━

4B might be preferred
over 4D for new splits

•

Per-CPU heaps with better concurrency

AllocationAllocationAllocation

1616

88 88

4A4A 4B4B 4C4C 4D4D

2A2A 2B2B

15

•

Overhead per block
━

Release mode 16 bytes,
debug 64 bytes

•

Stack overflow
━

Too many local variables
for default stack size or
recursion too deep

•

Stack corruption
━

Buffer overflow on local
arrays

•

Heap corruption
━

Block header wiped out or
no man’s land is written to

Practical IssuesPractical IssuesPractical Issues
void buggy (void) {

double a [1e8];
int b [100];
memset (b, 0, 10000);
char *c = new char [100];
memset (c, 0, 10000);

}

void buggy (void) {
double a [1e8];
int b [100];
memset (b, 0, 10000);
char *c = new char [100];
memset (c, 0, 10000);

}

•

Heaps grab large pieces
of memory from the OS
━

Since heaps are in user
mode, they are quicker than
asking the kernel

━

Allocation more efficient for
small pieces (all kernel
blocks rounded off to 4KB)

•

When you run outside the
heap into OS territory,
hard crash on access
violation

16

•

Unless it’s extreme, heap
corruption goes undetected
━

In debug mode, until the next
new/delete operation sniffs
something wrong and throws
an assertion violation

━

In release mode, nothing happens until you crash
•

Example:

threadA corrupts the heap, threadB crashes

━

How to make these situations more suitable for debugging?
•

Can ask the OS for the buffer using VirtualAlloc()
━

If writing outside page boundary, kernel does not tolerate any
funny business, throws access violation immediately

Practical IssuesPractical IssuesPractical Issues
DWORD *val, *shuf; // compiled in x64
main () {

DWORD rnd = 3; // LCG
val = new DWORD [32];
shuf = new DWORD [32];
// generate random shuffle
for (int j=0; j < 32; j++) {

shuf[j] = rnd;
rnd = (rnd * 5 + 11) & 0x1f;

}
}

ThreadB () {
for (int i = 0; i < 32; i++)

printf (“%u\n”, val[shuf[i]]);
}
ThreadA () {

memset (val, 0xff, 32*sizeof(val));
}

DWORD *val, *shuf; // compiled in x64
main () {

DWORD rnd = 3; // LCG
val = new DWORD [32];
shuf = new DWORD [32];
// generate random shuffle
for (int j=0; j < 32; j++) {

shuf[j] = rnd;
rnd = (rnd * 5 + 11) & 0x1f;

}
}

ThreadB () {
for (int i = 0; i < 32; i++)

printf (“%u\n”, val[shuf[i]]);
}
ThreadA () {

memset (val, 0xff, 32*sizeof(val));
}

17

•

Sometimes catching

a crash

obscures

its cause

•

Writing a library that is used by someone else
━

Should you test their pointers for NULL?
━

Should you check if memory is
valid using IsBadReadPtr,
IsBadWritePtr, IsBadCodePtr,
IsBadStringPtr?

Practical IssuesPractical IssuesPractical Issues

// SEH-style handler
__try {

f(x);
}
__except (MyCrashHandler (GetExceptionCode())) {

// catch other exceptions here
}

// SEH-style handler
__try {

f(x);
}
__except (MyCrashHandler (GetExceptionCode())) {

// catch other exceptions here
}

f(x) {
g(x);

}

f(x) {
g(x);

}

g(x) {
h(x);

}

g(x) {
h(x);

}

MyLibraryAPI (char *ptr) {
// how much checking to do
// on validity of ptr?

}

MyLibraryAPI (char *ptr) {
// how much checking to do
// on validity of ptr?

}

18

•

One school of thought is to catch crashes, return
explicit errors that help understand the problem
━

E.g., ReadFile returns error 998 (ERROR_NOACCESS)
•

Another direction is to just crash without any checks
━

If someone is passing
NULL

or invalid handles,

they’re probably

not
checking

for return

 codes; bugs

should be
made

obvious to them

•

Meticulous return-code checking is important
━

Including WaitForSingleObject or ReleaseSemaphore

Practical IssuesPractical IssuesPractical Issues

// homework #1 example
HANDLE pipe = CreateFile (pipename, ...);
while (true) {

WriteFile (pipe, command, ...);
ReadFile (pipe, buf, ...);
// add rooms to queue, check uniqueness

}

// homework #1 example
HANDLE pipe = CreateFile (pipename, ...);
while (true) {

WriteFile (pipe, command, ...);
ReadFile (pipe, buf, ...);
// add rooms to queue, check uniqueness

}

	CSCE 313-200�Introduction to Computer Systems�Spring 2025
	Chapter 7: Roadmap
	Requirements
	Chapter 7: Roadmap
	Memory Management
	OS Partitioning
	Heap Partitioning
	Heap Allocation
	Heap Allocation
	Heap Allocation
	Heap Allocation
	Heap Allocation
	Heap Allocation
	Allocation
	Practical Issues
	Practical Issues
	Practical Issues
	Practical Issues

