
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

Memory Memory IIIIII
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 24, 2024April 24, 2024

2

•

Tested Rabin-Karp performance on enwiki-all.txt
━

FILE_FLAG_NO_BUFFERING, B = 2 MB, 50 slots
━

8-core Skylake-X server w/RAID @ 4 GB/s

Homework #3Homework #3Homework #3

AA

BB

CC

12.512.5

22.122.1

40.940.9

2.4 GB/s2.4 GB/s

1.4 GB/s1.4 GB/s

0.7 GB/s0.7 GB/s

318,798,734318,798,734

319,017,279319,017,279

319,017,279319,017,279

66 MB/s66 MB/s

49 MB/s49 MB/s

TimeTime SpeedSpeed FoundFound SpeedSpeed

RefRef 7.507.50 4.0 GB/s4.0 GB/s 319,017,279319,017,279 125 MB/s125 MB/s

keywords-B keywords-D

3,374,677,7353,374,677,735

FoundFound

3,374,677,7353,374,677,735

3,374,677,7353,374,677,735

3

Chapter 7: RoadmapChapter 7: RoadmapChapter 7: Roadmap

7.1 Requirements
7.2 Partitioning
7.3 Paging
7.4 Segmentation
7.5 Security

4

•

Paging allows the OS to allocate non-contiguous
chunks of space to application requests
━

Hardware finds the page in RAM by transparently
 mapping from logical to physical addresses

•

Logical address consists of two parts
━

Page number
━

Offset within that page
•

Example: 32 bit address, 4 KB pages

PagingPagingPaging

P1P1
P1P1

P2P2

P2P2

RAM

0x330x33 0x5670x567

12 bits20 bits

offsetlogical page
number

char *ptr = 0x335670x33567=

5

•

Conversion of page numbers is done using the TLB
(Translation Lookaside Buffer):

•

Each process owns a page table controlled

by OS

PagingPagingPaging

0x330x33 0x5670x567
offsetlogical page

number

char *ptr =

physical page
number

TLB

0x453
0x621

P1P1
P1P1

P2P2

P2P2

offset in physical page

6

•

Example: write 5000 bytes to array ptr[]

•

Ptr + i = 0x33567-0x33FFF
━

i = 0-2712 (2713 iterations)
━

Physical address range
 0x453567-0x453FFF

•

Ptr + i = 0x34000-0x348EE
━

i = 2713-4999 (2287 iterations)
━

Physical address range 0x621000-0x6218EE

PagingPagingPaging

0x330x33 0x5670x567
offsetlogical page

number

TLB

0x453
0x621

offset in page
char *ptr = 0x33567;

for (int i = 0; i < 5000; i++)
ptr [i] = i;

char *ptr = 0x33567;

for (int i = 0; i < 5000; i++)
ptr [i] = i;

7

•

To avoid doubling RAM latency on random access,
TLB is kept in dedicated cache memory
━

CPU performs a

lookup before sending address to RAM
•

Within a given page, no control of address validity
━

However, if a process goes far enough to hit next page, the
TLB must have an entry for that page with correct permissions

━

If not, a page fault is thrown and the process is killed
•

These

concept allow

allocation of pages beyond

physical RAM, swapping to disk, loading to new addr
•

Example: computer

with 8 GB of RAM

━

Process requests 7 GB, but all other resident software and
kernel occupy 2.5 GB

PagingPagingPaging

8

•

Whatever pages aren’t being used are swapped to disk
━

Special pagefile

provides space for this operation
━

Usually, pagefile.sys is twice the size of RAM
•

Memory classification
━

Non-pageable memory:

special types of pages that cannot be
swapped to disk (e.g., parts of OS, locked pages, AWE
segments, large-page allocations)

━

Commit set:

all pageable memory of the process (i.e.,
allocated in the page file)

━

Working

set: touched (accessed) pages in RAM
━

Private working set:

a subset of the working set (e.g., heap-
 allocated) that is not shared with other processes

•

The

last three can be seen in Task Manager

PagingPagingPaging

9

•

Access to page outside working set causes a page fault
•

Types of page faults
━

Hard:

requires the page to be read from disk
━

Soft:

can be resolved with remapping (e.g., pages exists in
working set of another process or first-time access)

━

Violation:

access outside virtual space of this process or using
incompatible permissions (e.g., writing to read-only page)

•

Hard/soft faults are handled transparently by OS
•

Example: allocate 1 GB of committed memory

•

Commit size, working set size, and private set size?

PagingPagingPaging

char *buf = (char *) VirtualAlloc (NULL, 1 << 30, MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);char *buf = (char *) VirtualAlloc (NULL, 1 << 30, MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);

10

•

Examine Task Manager:

•

Commit size is 1 GB as expected, but none of that
memory has been allocated in physical RAM yet
━

OS doesn’t know which pages we’ll need and in what order
━

Conserves physical RAM as much as possible
•

Write something into each page:

PagingPagingPaging

memset (buf, 0x55, 1 << 30);memset (buf, 0x55, 1 << 30);

paged pool contains kernel objects
(e.g., handles)

suitable for paging

both working sets change 260K soft page faults

11

•

Suppose we intend to dynamically expand the region of
allocated memory
━

But don’t want to copy
data over to the new
area each time

━

Similar to HeapReAlloc
•

Would like to ask the kernel to map
the continuation of the previous
buffer to some additional physical pages:

Working with BuffersWorking with BuffersWorking with Buffers

// allocation of initial 128 KB succeeds
int size = 1 << 17;
char *buf = (char *) VirtualAlloc (NULL, size, MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);
// attempt to add 16 MB to this buffer may fail
char *result = (char *) VirtualAlloc (buf + size, 1 << 24,

MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);

// allocation of initial 128 KB succeeds
int size = 1 << 17;
char *buf = (char *) VirtualAlloc (NULL, size, MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);
// attempt to add 16 MB to this buffer may fail
char *result = (char *) VirtualAlloc (buf + size, 1 << 24,

MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);

128 KB128 KB
16 MB
extra

16 MB
extra

1 GB
extra

1 GB
extra

128 KB128 KB
16 MB
extra

16 MB
extra

128 KB128 KB

12

heap1

heap2

virtual space

•

The problem is that the virtual space beyond buf + size
might have already been assigned
━

Allocation in this case fails
•

Idea: reserve

a huge amount

 of virtual space so that the heap
 can’t use it

•

Reserved memory is not mapped to
pagefile until

explicitly committed

━

Reservation simply makes sure this address
space is not used in other allocation requests

━

In

Server 2016,

max reservation is 128

TB

Working with BuffersWorking with BuffersWorking with Buffers

128 KB128 KB

reserve 1 TBreserve 1 TB

13

•

Can now commit memory in our reserved space

•

Memory may be decommitted as needed

Working with BuffersWorking with BuffersWorking with Buffers

heap1

heap2

// reserve 1 TB
char *bufMain = (char *) VirtualAlloc (NULL, (uint64) 1<<40,

MEM_RESERVE, PAGE_READWRITE);
// allocate 128 KB
int size0 = 1 << 17;
char *buf0 = (char *) VirtualAlloc (bufMain, size0,

MEM_COMMIT, PAGE_READWRITE);
// now add 16 MB to this buffer
int size1 = 1 << 24;
char *buf1 = (char *) VirtualAlloc (buf0 + size0, size1,

MEM_COMMIT, PAGE_READWRITE);
// now add 1 GB
int size2 = 1 << 30;
char *buf2 = (char *) VirtualAlloc (buf1 + size1, size2,

MEM_COMMIT, PAGE_READWRITE);

// reserve 1 TB
char *bufMain = (char *) VirtualAlloc (NULL, (uint64) 1<<40,

MEM_RESERVE, PAGE_READWRITE);
// allocate 128 KB
int size0 = 1 << 17;
char *buf0 = (char *) VirtualAlloc (bufMain, size0,

MEM_COMMIT, PAGE_READWRITE);
// now add 16 MB to this buffer
int size1 = 1 << 24;
char *buf1 = (char *) VirtualAlloc (buf0 + size0, size1,

MEM_COMMIT, PAGE_READWRITE);
// now add 1 GB
int size2 = 1 << 30;
char *buf2 = (char *) VirtualAlloc (buf1 + size1, size2,

MEM_COMMIT, PAGE_READWRITE);

128 KB128 KB
16 MB16 MB

1 GB1 GB

// decommit 4KB from the middle of committed space
char *result = (char*) VirtualFree (buf1, 1 << 12, MEM_DECOMMIT);
// decommit 4KB from the middle of committed space
char *result = (char*) VirtualFree (buf1, 1 << 12, MEM_DECOMMIT);

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Homework #3
	Chapter 7: Roadmap
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Paging
	Working with Buffers
	Working with Buffers
	Working with Buffers

