CSCE 463/612

Networks and Distributed Processing
Fall 2025

Transport Layer IV

Dmitri Loguinov
Texas A&M University

October 21, 2025

Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestionicontrol
3.7 TCP congestion control

TCP: Overview [RFCs: 793, 1122,
1323, 2001, 2018, 2581, 3390, 5681]

Pipelined:

application
Tl writes data

door ______i_______

send buffer

Point-to-point (unicast):
- Client socket connected to

server socket
Reliable, in-order byte stream:

- Packet boundaries are not
visible to the application

application
reads data

] ____f_____ -

receive buffer

L >0 eamen

* Full-duplex data:

- TCP congestion/flow control
set window size

Send & receive buffers

socket

- Bi-directional data flow in
same connection

MSS: maximum segment
size (excluding headers)

Connection-oriented:

- Handshake (exchange of
control msgs) initializes
sender / receiver state
before transfer begins

Flow controlled:

- Sender will not
overwhelm receiver

Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestioRicontrol
3.7 TCP congestion control

TCP Segment Structure

Sequence/ACK numbers
- Count bytes, not segments

- ACKSs piggybacked on
data packets

Flags (U-A-P-R-S-F)

- Urgent data (not used)

- ACK field is valid

- PUSH (reduce latency)

- RST (reset connection)

- SYN (connection request)
- FIN (connection close)

32 bits ,

source port #

dest port #

sequence number

acknowledgement number

hdr | not . .
en |used [V P|RSF receiver window

checksum Urg data pointer

Options (variable length)

application data
(variable length)

Hdr length in DWORDs (4-bit field)
- Normally 20 bytes, but longer if options are present

TCP Seq. #S and ACKs

« Sequence number of

Host B @

the first byte in User (S
segment’s data types
C host ACKs
ACKs: receipt of
* Seq # of next byte Cb’a iﬁhg?s
expected from sender
e Cumulative ACK host ACKS
Q: how receiver ;ecehiptd
handles out-of- %" &20°°
order segments?
A: TCP spec doesn't say, _ : time
up to implementor Simple telnet scenario

TCP Round Trip Time and Timeout

Q: how to set TCP » |dea: dynamically measure
timeout value (RTO)? RTT, average these samples,

- Want it slightly larger then add safety margin
than the next RTT e SampleRTT: measured time

- But the RTT varies from segment transmission
« Too short: premature until ACK receipt
timeout — Ignore retransmissions, why?
- Unnecessary e SampleRTT will vary, want
retransmissions estimated RTT “smoother”
* Too long: slow reaction " - Average several recent
to segment loss measurements, not just current
SampleRTT

- Protocol may stall,
exhibit low performance 7

TCP Round Trip Time and Timeout

EstimatedRTT(n) = (1-a)*EstimatedRTT(n-1) + o*SampleRTT(n) |

« Exponentially weighted moving average (EWMA)
- Influence of past sample decreases exponentially fast
- Typical value: o = 1/8

« Task: derive a non-recursive formula for
EstimatedRTT(n)

- Assume EstimatedRTT(0) = SampleRTT(0)
- Let Y(n) = EstimatedRTT(n) and y(n) = SampleRTT(n)

n—1

Y(n)=(1-a)y(0) +a Z (1 —a)y(n—1)
1=0

Example RTT Estimation:

300 -

250 -

150 -

—e— sampled RTT
—=— estimated RTT

100

10

20

30 40

sample number

50

60

TCP Round Trip Time and Timeout

o Setting the timeout;:

e EstimatedRTT plus a “safety margin”
- Larger variation in EstimatedRTT - larger safety margin

* First estimate how much SampleRTT deviates from
EstimatedRTT (typically, 6 = 1/4):

DevRTT(n) = (1-6)*DevRhRTT(n-1) + g*|SampleRTT(n)-EstimatedRTT(n) | |

Then set retransmission timeout (RTO):

RTO(n) = EstimatedRTT(n) + 4*DevRTT(n) |

10

Example Timeout Estimation:

400 -

350 -

300 - LY
m

y y [R

e [N v R :
= 250 INA ,A = ~
-
x Aﬁ' Wos “‘

200 - —e—sampled RTT

—=— estimated RTT
150 - —a— timeout
100 I I I I I |
0 10 20 30 40 50

sample number

60

11

Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestioRicontrol
3.7 TCP congestion control

12

TCP Reliable Data Transfer

 TCP creates rdt * Retransmissions are
service on top of IP’s triggered by:
unreliable service - Timeout events
- Hybrid of Go-back-N — Duplicate acks
and Selective Repeat « |[nijtially consider simplified
* Pipelined segments TCP sender:
« Cumulative acks - Ignore duplicate acks

- Ignore flow control,

« TCP uses single :
congestion control

retransmission timer

- For the oldest
unACK'ed packet

- Retx only the base

13

NextSegNum = InitialSegNum // random for each transfer
SendBase = InitialSegNum
loop (forever) {

switch(event) {

(a) data received from application above (assuming it fits into window):
create TCP segment with sequence number NextSegNum
if (timer currently not running)

start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

(b) timeout:
retransmit pending segment with smallest sequence
number (i.e., SendBase); restart timer

(c) ACK received, with ACK field value of y TCP Sender
if (y > SendBase) { (H E -)
SendBase =y Simplified

if (there are currently not-yet-acknowledged segments)

restart timer with latest RTO
else cancel timer }

}

} I" end of loop forever */

TCP Seq. #S and ACKs

FTP Example:
e Suppose MSS = 1,000 bytes and the sender has a

large file to transmit (we ignore seq field in ACKs and

ACK field in data pkts)

What is the

Sender ACK = 1000

window size? ACK = 2000
ACK = 2000
ACK = 2000

ACK =5000

15

TCP ACK Generation [RFC 1122, RFC
2581)

* Receiver mmediately ACKs the base of its window
In all cases except Nagle's algorithm:

- For in-order arrival of packets, send ACKs for every pair of
segments; if second segment of a pair not received in
500ms, ACK the first one alone

W‘ W‘
Seq = delayed W o *) delayed

7000
S

eq = 29 ACK = 2000 W 0 | 500ms
S -~ J
1O =400p0— ACK = 2000 ACK = 1000
ACK = 2000 /

ACK = 5000 o

Fast Retransmit

If sender receives 3

* Time-out period often

relatively long duplicate ACKs for its base,
— Especially in the It assumes this packet was
beginning of transfer (3 lost
seconds in RFC 1122) - Fast Retransmit: resend the
* |dea: infer loss via base segment immediately
duplicate ACKs (i.e., without waiting for RTO)
- Sender often sends * Note that reordering may
many segments back- trigger unnecessary retx
to-back - To combat this problem,
- If a segment is lost, modern routers avoid load-
there will be many balancing packets of same

duplicate ACKs flow along multiple paths

17

Fast Retransmit Algorithm:

(c) event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase = y; dupACK = 0;
if (SendBase = NextSegNum)
restart timer with latest RTO;
else
cancel timer; // last pkt in window

}

else if (y == SendBase) {
dupACK++;
if (dupACK == 3)

{ resend segment with sequence y; restart timer}

} \
a duplicate ACK for fast retransmit
already ACKed segment

18

Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestioRicontrol
3.7 TCP congestion control

19

TCP Flow Control

 Assume packets
received without loss,
but the application
does not call recv()

- How to prevent sender
from overflowing TCP
buffer?

k— RevWindow —f

757
///

7
////
'|l— RevBuffer —I‘*

data from

— Flow control

Sender won’t overflow receiver
buffer by transmitting too
much, too fast

Speed-matching service:
sender rate to suit the
receiving app’s ability to
process incoming data

application
process

20

TCP Flow Control: How It Works

k— RevWindow —f

777 « Receiver advertises
/ . _,applicaﬁﬂn spare room by

Process

data from
IP

including value of
//// ovils 9 :
bk RevBuffer —— CvWwiIn in segments
_ « Sender enforces
e Spare room in buffer seq < ACK + RcvWin
RcvWin = RcvBuffer — .
[LastByteReceivedInOrder - LastByteDelivered] = Guarantees receiver
+ T buffer doesn’t overflow
last ACK-1

went to application

« Combining both constraints (sender, receiver):
seq < min(sndBase+sndWin, ACK+RcvWin)

21

Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestioRicontrol
3.7 TCP congestion control

22

TCP Connection Management

 Purpose of connection
establishment:
- Exchange initial seq #s

- Exchange flow control
info (i.e., RcvWin)

o Step 2: server gets SYN,
replies with SYN+ACK

- Sends server initial seq# Y
and buffer size RcvWin

- No data, ACK val = X+1

- Negotiate options (SACK, * Step 3: client receives

large windows, etc.)
Three way handshake:

« Step 1: client sends
TCP SYN to server

- Specifies initial seq # X
and buffer size RcvWin

- No data, ACK bit=0

SYN+ACK, replies with
ACK segment
- Seq = X+1, ACK val = Y+1

- May contain regular data,
but many servers will break

« Step 4: regular packets
- Seq = X+1, ACK = Y+1

23

TCP Connection Management (Cont.)

originator other side

Closing a connection:

* Closing a socket: closing
closesocket(sock); FiN
Step 1: originator end \oK closing

system sends TCP
FIN control segment
to server

Step 2: other side
receives FIN, replies
with ACK. Connection
In “closing” state, TCP initiates a close

when it has all ACKs
sends FIN for the transmitted data 24

TCP Connection Management (Cont.)

originator other side

Step 3: originator receives !
FIN, replies with ACK ¢osing

- Enters “timed wait” - will
respond with ACK to

received FINs

Step 4: other side receives
ACK: its connection
considered closed

Step 5: after a timeout
(TIME_WAIT state
lasts 240 seconds),
originator’s connection birectional transfer means both

is closed as well sides must agree to close

closing

closed

timed wait

closed ~

25

	CSCE 463/612�Networks and Distributed Processing�Fall 2025
	Chapter 3: Roadmap
	TCP: Overview [RFCs: 793, 1122, 1323, 2001, 2018, 2581, 3390, 5681]
	Chapter 3: Roadmap
	TCP Segment Structure
	TCP Seq. #’S and ACKs
	TCP Round Trip Time and Timeout
	TCP Round Trip Time and Timeout
	Example RTT Estimation:
	TCP Round Trip Time and Timeout
	Example Timeout Estimation:
	Chapter 3: Roadmap
	TCP Reliable Data Transfer
	TCP Sender�(Simplified)
	TCP Seq. #’S and ACKs
	TCP ACK Generation [RFC 1122, RFC 2581]
	Fast Retransmit
	Fast Retransmit Algorithm:
	Chapter 3: Roadmap
	TCP Flow Control
	TCP Flow Control: How It Works
	Chapter 3: Roadmap
	TCP Connection Management
	TCP Connection Management (Cont.)
	TCP Connection Management (Cont.)

