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Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestion control
3.7 TCP congestion control




Congestion:

* Informally: “source(s)
sending data too fast for
the network to handle”

 Different from flow control!

* Manifestations:
- Lost packets (buffer overflows)
- Delays (queueing in routers)

* Important networking problem




Causes/Costs of Congestion: Scenario 1
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Causes/Costs of Congestion: Scenario 2

* One router, finite buffers (pkt loss is possible now)
e Sender retransmission of lost packets
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Causes/Costs of Congestion: Scenario 2

« Wecall A . goodputand ),
— Case A: pkts never lost while A, < C/2 (not realistic)

- Case B: pkts are lost when )\ __, is “sufficiently large,” but
timeouts are perfectly accurate (not realistic either)

- Case C: same as B, but timer is not perfect (duplicate
packets are possible) pkt loss started

throughput
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Cost 2: retransmission of lost packets and premature timeouts
increase network load, reduce flow’s awn goodput 6




Causes/Costs of Congestion: Scenario 3

: Cost 3: congestion
* Multihop case causes goodput

- Timeout/retransmit reduction for other flows
- R2 =50 Mbps, R1 =R3 =R4 =100 Mbps

- Flow C-A: sends 90 Mbps
green flow D-B is
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Approaches Towards Congestion Control

Two broad approaches towards congestion control:

End-to-end: Network-assisted:

* No explicit feedback * Routers provide
from network feedback to end

« Congestion inferred systems
by end-systems from - Single bit indicating

_ congestion (DECDit,
TCP/IP ECN)

— Two bits (ATM)

- EXxplicit rate senders
should send at (ATM)

observed loss/delay

- Approach taken by
TCP (relies on loss)

ATM = Asynchronous
Transfer Mode




Case Study: ATM ABR Congestion Control

* For network-assisted RM (resource management)
protocols, the logic can  packets (cells):

be binary: . Sent by sender,
= Path underloaded, iInterspersed with data cells
| t o
S * Bits in RM cell set by
- Path congested, reduce .
switches/routers

rate
— NI bit: no increase In rate

(impending congestion)
— CI bit: reduce rate

* |t can also be ternary
- Increase, decrease,

hold steady duce
. (congestion in progress)
- ATM ABR (Available
Bit Rate) profile * RM cells returned to sender

by receiver, with bits intact
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Case Study: ATM ABR Congestion Control

I RM cells
source D data cells destination

Switch Switch

S 00Ny

« Additional approach is to use a two-byte ER (explicit
rate) field in RM cell

- Congested switch may lower ER value
- Senders obtain the maximum supported rate on their path

 Issues with network-assisted congestion control?
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TCP Congestion Control

» Variety of algorithms developed over the years
- [CP Tahoe (1988), TCP Reno (1990), TCP SACK (1992)
- TCP Vegas (1994), TCP New Reno (1996)
- High-Speed TCP (2002), Scalable TCP (2002)
- FAST TCP (2004), TCP lllinois (2006)

Many others: H-TCP, CUBIC TCP, L-TCP, TCP
Westwood, TCP Veno (Vegas + Reno), TCP Africa

Linux: BIC TCP (2004), CUBIC TCP (2008)

Vista and later: Compound TCP (2005)
- Server 2019 switched to CUBIC

Google: BBR (2016)
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TCP Congestion Control

* End-to-end control (no
network assistance)

« Sender limits transmission:

LastByteSent -
LastByteAcked < CongWin

e CongWin is a function of

perceived network
congestion

* The effective window Is
the minimum of CongWin,

flow-control window
carried in the ACKs, and
sender’s own buffer space

* How does sender

perceive congestion?

- Loss event = timeout
or 3 duplicate acks

« TCP sender reduces

rate (CongWin) after
loss event

* Three mechanisms:
- Slow start

- Conservative after
timeouts

- AIMD (congestion
avoidance)
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TCP Slow Start

 When connection begins, CongWin = 1 MSS
- Example: MSS = 500 bytes and RTT = 200 msec
- Q: initial rate?
- A: 20 Kbits/s

* Available bandwidth may be much larger than
MSS/RTT

- Desirable to quickly ramp up to a “respectable” rate

« Solution: Slow Start (SS)

- When a connection begins, it increases rate exponentially
fast until first loss or receiver window is reached

- Term “slow” is used to distinguish this algorithm from
earlier TCPs which directly jumped to some huge rate
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TCP Slow Start (More)

* Let W be congestion window In
pkts and B = CongWin be the

same in bytes (B = MSS * W)
« Slow start
- Double CongWin every RTT
* Done by incrementing CongWin
for every ACK received:
- W = W+1 per ACK
(or B= B + MSS)

« Summary: initial rate is slow but
ramps up exponentially fast

———
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oNe segment

%’

ur segments

time
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loss detected via triple dup ACK

Congestion Avoidance previous timeout

TCP Series 2 Reno

« TCP Tahoe loss
(timeout or triple dup
ACK):

- Threshold = CongWin/2
- CongWin is setto 1 MSS
- Slow start until threshold

Threshpld

Threshold

TCP Series 1 Tahoe

window W in pkts

rFr Tt +r 1> 1 ©° 17 [ 7T
01 2 3 4 5 6 7 8 9 10111213 14 15

is reached; then move to RTT round
linear probing Fast R Phil N
ast Recover llosophy:
« TCP Reno loss: y 21
- Timeout: same as Tahoe Three dup ACKs indicate
- 3 dup ACKSs: CongWin is that network is capable of

cut in half (method called delivering subsequent segments

fast recover
very) Timeout before 3-dup ACK is

more alarming 16




TCP Reno AIMD (Additive Increase,
Multiplicative Decrease)

Additive increase: increase Multiplicative decrease: cut
CongWin by 1 MSS every CongWin in half after fast
RTT in the absence of loss retransmit (3-dup ACKs)
events: probing Peaks are different: # of

flows or RTT changes

congestion window

24 Kbytes A 3-dup ACK (loss)

/

L

16 Kbytes -

8 Kbytes -

» time 17



TCP Reno Equations

* To better understand TCP, we next examine its AIMD
equations (congestion avoidance)

« General form (loss detected through 3-dup ACK):

W =«
* Reasoning

4

\

W + % per ACK
W/2 per l0ss

- For each window of size W, we get exactly W
acknowledgments in one RTT (assuming no loss!)

- This increases window size by roughly 1 packet per RTT
* Performing action on packet arrival rather than once

per RTT is less costly
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TCP Reno Equations _— {W+ L per ACK

W/2 per l0ss

 What is the equation in terms of B = MSS* W ?

p

B+ M55 per ACK

B/2 per |0ss

B =«

\

« Equivalently, TCP increases B by MSS per RTT
« What is the rate of TCP given that its window size is

B (or W)?
« Since TCP sends a full window of pkts per RTT, its
Ideal rate can be written as:

B B MSS x W
r — Y — S
RTT+ L/R RITT RTT
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TCP Reno Sender Congestion Control

Event State TCP Sender Action Commentary
ACK receipt Slow Start | CongWin += MSS, Results in a doubling of
for previously | (SS) If (CongWin >= ssthresh) { CongWin every RTT
unacked data Set state to “Congestion
Avoidance”

}
ACK receipt Congestion | CongWin += MSS?/ CongWin Additive increase, resulting
for previously | Avoidance in increase of CongWin by
unacked data | (CA) 1 MSS every RTT
Loss event SS or CA ssthresh = max(CongWin/2, MSS) Fast recovery,
detected by CongWin = ssthresh implementing multiplicative
triple duplicate Set state to “Congestion Avoidance” decrease
ACK
Timeout SS or CA ssthresh = max(CongWin/2, MSS) Enter slow start

CongWin = MSS

Set state to “Slow Start”
Duplicate SS or CA Increment duplicate ACK count for CongWin and Threshold
ACK segment being acked not changed
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TCP Reno Congestion Control

Congestion/>

¢ Summary:
Timeout
W=1 Timeout
W=1

*//////
Slow start ﬂ'
threshold
New ACK or triple
W=W+1 dup ACK

avoidanc@

New ACK
W=W+1/W

Triple dup ACK

W = W/2
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