
1

CSCE 463/612
 Networks and Distributed Processing

 Fall 2025
 

CSCE 463/612CSCE 463/612
 Networks and Distributed ProcessingNetworks and Distributed Processing

 Fall 2025Fall 2025

Application LayerApplication Layer
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

September 9, 2025September 9, 2025



2

UpdatesUpdatesUpdates

•
 

URLs to try the parser on 
•

 
Quiz next time (entire class), variation on problems 5-33 
at the end of chapter 1
━

 

More questions based on my programming tutorial (pointers, 
bits ops, debugging, Windows datatypes)

•
 

Examine this fragment:
•

 
Some of the issues:
━

 

Inefficient recv
━

 

Buffer overflow when 
page exceeds 10 MB

━

 

Deadlock on errors
━

 

Probably stack overflow if buf declared in a function

#define HUGE 10000000 // 10 MB
char buf [HUGE], *ptr = buf; 
while((bytes = recv (sock, ptr, 100, 0)) != 0) 

ptr += bytes;

*ptr = NULL;
len = ptr – buf;

#define HUGE 10000000 // 10 MB
char buf [HUGE], *ptr = buf; 
while((bytes = recv (sock, ptr, 100, 0)) != 0) 

ptr += bytes;

*ptr = NULL;
len = ptr – buf;

http://x.com/path:900
http://x.com?script:900/
http://x.com?script/
http://x.com:8800?script:/

http://x.com/path:900
http://x.com?script:900/
http://x.com?script/
http://x.com:8800?script:/



3

Robots.txtRobots.txtRobots.txt

•
 

Websites are crawled
 

by many automated programs
━

 

This potentially consumes large volumes of traffic
•

 
Besides bandwidth, concerns arise about protected or 
human-only portions of websites
━

 

Shopping carts, registration pages, posting into forums
•

 
Webmasters need a 
mechanism to indicate 
prohibited request prefixes

 within their sites
━

 

These are given in /robots.txt
•

 
Directives are parsed in order, until first match
━

 

Algorithm has become ambiguous in recent years: Google 
crawlers use the longest-prefix match

User-agent: * 
Disallow: /search 
Disallow: /sdch 
Disallow: /groups 
Disallow: /images 
Disallow: /catalogs 
Allow: /catalogs/about 
Allow: /catalogs/p? 
Disallow: /catalogues 

User-agent: * 
Disallow: /search 
Disallow: /sdch 
Disallow: /groups 
Disallow: /images 
Disallow: /catalogs 
Allow: /catalogs/about 
Allow: /catalogs/p? 
Disallow: /catalogues 



4

•
 

Despite being around since 1994, robots.txt is not a 
standard, but rather a suggestion on politeness
━

 

See http://robotstxt.org
•

 
Extensions to robots.txt (even less official)
━

 

Crawl-delay
 

specifies the # of seconds between visits
━

 

Sitemap
 

points to an XML file that lists all available documents
━

 

Wildcards
 

in directory paths (* and $ = ends with)

•
 

How often should robots.txt be reloaded?
━

 

Original spec doesn’t say; Google uses 1 day by default

Robots.txt 2Robots.txt 2Robots.txt 2

User-agent: * 
Disallow: /*.asp$
Disallow: /sdch/*.php 
Crawl-delay: 64
Sitemap: http://www.google.com/sitemaps_webmasters.xml 

User-agent: * 
Disallow: /*.asp$
Disallow: /sdch/*.php 
Crawl-delay: 64
Sitemap: http://www.google.com/sitemaps_webmasters.xml 



5

Chapter 2: RoadmapChapter 2: RoadmapChapter 2: Roadmap

2.1 Principles of network applications
2.2 Web and HTTP
2.3 FTP 
2.4 Electronic Mail

━

 

SMTP, POP3, IMAP
2.5 DNS
2.6 P2P file sharing
2.7 Socket programming with TCP
2.8 Socket programming with UDP
2.9 Building a Web server

Application (5)Application (5)
Transport (4)Transport (4)
Network (3)Network (3)
Data-link (2)Data-link (2)
Physical (1)Physical (1)



6

Some Network ApplicationsSome Network ApplicationsSome Network Applications

•
 

Real-time video conferencing
•

 
Massively parallel computing

•
 

Phones, tablets
•

 
Internet fridge, TV 

•
 

E-mail
•

 
Remote login

•
 

Web
•

 
Instant messaging

•
 

P2P file sharing
•

 
Multi-user network 
games

•
 

Streaming video
•

 
Internet telephone

•
 

Thermostat
•

 
House alarm 



7

Creating a Network ApplicationCreating a Network ApplicationCreating a Network Application

Programs that
━

 

Usually interact with user
━

 

Communicate over a 
network

━

 

E.g., Web server software 
communicates with browser 
software

No software written for 
devices in network core
━

 

Network core devices do 
not function at app layer

━

 

This design allows for rapid 
application development

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical



8

Chapter 2: RoadmapChapter 2: RoadmapChapter 2: Roadmap

2.1 Principles of network applications
2.2 Web and HTTP
2.3 FTP 
2.4 Electronic Mail

━

 

SMTP, POP3, IMAP
2.5 DNS
2.6 P2P file sharing
2.7 Socket programming with TCP
2.8 Socket programming with UDP
2.9 Building a Web server



9

Communication PrinciplesCommunication PrinciplesCommunication Principles

Server:
━

 

An always-on
 

host
━

 

Permanent IP address or 
hostname

━

 

Server farms for scaling
Clients:

━

 

May be intermittently 
connected

━

 

May have dynamic IP 
addresses and hostnames

━

 

Do not communicate 
directly with each other, 
only talk to servers

•
 

Three architectures
━

 

Client-server
━

 

Peer-to-peer (P2P)
━

 

Hybrid



10

P2P ArchitectureP2P ArchitectureP2P Architecture

•
 

No always-on server
•

 
Arbitrary end systems 
directly communicate

•
 

Peers are intermittently 
connected and change IP 
addresses/hostnames

•
 

Example: Gnutella
━

 

Distributed graph between users over TCP connections
•

 
Highly scalable: assume 6M users with 10 GB of 
shared data and 20 Mbps upstream bandwidth
━

 

60 PB of storage, 120 Tbps bandwidth for free
•

 
Downside –

 
difficult to provide reliable service



11

Hybrid ArchitectureHybrid ArchitectureHybrid Architecture

Napster (1999)
•

 
File transfer P2P, but search is centralized
━

 

Peers register content at central server
━

 

Peers query same central server to locate content
Instant messaging
•

 
Login and chatrooms are centralized
━

 

User registers its IP address with central server
━

 

User contacts server to find IP addresses of friends or 
participate in chatrooms

━

 

But private chat is P2P (e.g., legacy Skype that relayed 
data through other live peers)



12

Process CommunicationProcess CommunicationProcess Communication

•
 

Process:
 

program 
running within a host

•
 

Within same host, two 
processes communicate 
using inter-process 
communication

 (semaphore, mutex, 
pipe, shared memory)

•
 

Processes in different 
hosts communicate by 
exchanging messages

•
 

Client:
 

process that 
initiates communication

 •
 

Server:
 

process that 
waits to be contacted

 

•
 

Client:
 

process that 
initiates communication

•
 

Server:
 

process that 
waits to be contacted

•
 

Applications with P2P 
architecture act as both 
client & server



13

Chapter 2: RoadmapChapter 2: RoadmapChapter 2: Roadmap

2.1 Principles of network applications
2.2 Web and HTTP
2.3 FTP 
2.4 Electronic Mail

━

 

SMTP, POP3, IMAP
2.5 DNS
2.6 P2P file sharing
2.7 Socket programming with TCP
2.8 Socket programming with UDP
2.9 Building a Web server



14

Web and HTTPWeb and HTTPWeb and HTTP

Terminology
•

 
Web page consists of a base HTML-file

 
and possibly 

multiple external objects
━

 

Examples of objects: JPEG image, Java applet, audio file, 
video stream, or flash animation

•
 

Each object is addressable by a URL
 

(Uniform 
Resource Locator) with the HTTP scheme

━

 

Username/password not used anymore
━

 

Fragement specifies portion of HTML for browser to jump to
━

 

Query provides input arguments to scripts

http://[user:pass@]host[:port][/path][?query][#fragment]http://[user:pass@]host[:port][/path][?query][#fragment]



15

HTTP OverviewHTTP OverviewHTTP Overview

•
 

HTTP: HyperText Transfer Protocol
━

 

HTTP 1.0: RFC 1945 (1996)
━

 

HTTP 1.1: RFC 2068 (1997), RFC 2616 (1999)
━

 

HTTP 2: RFC 7540 (2015), binary protocol over TCP
━

 

HTTP 3: RFC 9114 (2022), QUIC over UDP
•

 
Nonpersistent

 
HTTP

━

 

At most one object is sent over a TCP connection
━

 

HTTP/1.0 must use nonpersistent HTTP
•

 
Persistent

 
HTTP

━

 

Multiple objects sent over single TCP connection
━

 

HTTP/1.1 uses persistent connections by default
━

 

Field “Connection: close”
 

overrides this behavior



16

Nonpersistent HTTPNonpersistent HTTPNonpersistent HTTP

Suppose user enters URL 
www.tamu.edu/someDepartment/home.html

1a.
 

Client initiates TCP 
connection to server 
process at www.tamu.edu 
using port 80

2.
 

Client sends HTTP request 
message (containing URL) 
into TCP socket. Message 
indicates object 
/someDepartment/home.html

1b.
 

Server at host 
www.tamu.edu waiting for 
TCP connection on port 
80 accepts connection, 
notifies client

3.
 

Server receives request, 
forms response message 
containing requested 
object, and sends message 
into its socket

time

(contains text, 
references to 10 

jpeg images)



17

Nonpersistent HTTP (Cont.)Nonpersistent HTTP (Cont.)Nonpersistent HTTP (Cont.)

5.
 

Client receives response 
message containing the 
html file, displays html.  
Parsing html file, finds 10 
referenced jpeg objects

6.
 

Steps 1-5 repeated for each 
of 10 jpeg objects

4.
 

Server closes TCP 
connection 



18

Response Time ModelingResponse Time ModelingResponse Time Modeling

•
 

RTT (Round-Trip Time):
━

 

Delay for a small packet 
to travel from client to 
server and back

•
 

Response time:
━

 

One RTT to initiate TCP 
connection

━

 

One RTT for HTTP 
request and first few 
bytes of HTTP response 
to return

━

 

File transmission time
total = 2RTT + file load time

time to 
transmit 
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time



19

Persistent HTTPPersistent HTTPPersistent HTTP

Nonpersistent HTTP issues:
•

 
Requires two RTTs per object

•
 

Workaround: browsers open 
parallel TCP connections to 
fetch referenced objects

•
 

OS must work and allocate 
host resources for each TCP 
connection

Persistent  HTTP
•

 
Server leaves connection 
open after sending response

•
 

Subsequent HTTP messages  
between same client/server 
are sent over connection

Persistent without pipelining:
•

 
Client issues new request only 
when previous response has 
been received

•
 

One RTT for each referenced 
object + its transmission time

Persistent with pipelining:
•

 
Default in HTTP/1.1

•
 

Client sends requests as soon 
as it encounters a referenced 
object

•
 

One RTT for all referenced 
objects + their transmission 
times

HTTP/2 allows out-of-order 
replies, fragmentation of 
objects, and prioritization



20

HTTP Request MessageHTTP Request MessageHTTP Request Message

•
 

Two types of HTTP messages: request, response
•

 
HTTP request message:
━

 

1.0 and 1.1 use ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu 
User-agent: Mozilla/4.0
Connection: close 
Accept-language: fr 

Message body (optional)

request line
(GET, POST, 

HEAD commands)

header
lines

Carriage return, 
line feed 

indicates end 
of header



21

Uploading Form InputUploading Form InputUploading Form Input

POST method:
•

 
Web page often includes form input

•
 

Input is uploaded to server in entity body
•

 
Used for large amounts of data
━

 

Data is coded using tuples “field=value”, where + stands 
for space and & for the field separator

POST /map.cgi HTTP/1.0 
User-Agent: HTTPTool/1.0 
Content-Type: application/x-www-form-urlencoded 
Content-Length: 30 

city=College+Station&zip=77843 

POST /map.cgi HTTP/1.0 
User-Agent: HTTPTool/1.0 
Content-Type: application/x-www-form-urlencoded 
Content-Length: 30 

city=College+Station&zip=77843 



22

Uploading Form Input (Cont’d)Uploading Form Input (ContUploading Form Input (Cont’’d)d)

URL method:
•

 
Uses the GET command

•
 

Input is encoded in the URL field of request line
━

 

Append ? to the script path, followed by the URL-coded data
━

 

GET /path/script.cgi?field1=value1&field2=value2 HTTP/1.0
•

 
For the previous example
━

 

GET /map.cgi?city=College+Station&zip=77843 HTTP/1.0

•
 

Google example
━

 

Javascript forces the URL method:
━

 

www.google.com/search?hl=en&source=hp&q=computer+science&

 aq=f&aqi=g10&oq=



23

Method TypesMethod TypesMethod Types

HTTP/1.0
•

 
GET

•
 

POST
•

 
HEAD
━

 

Asks server to leave 
requested object out of 
response

HTTP/1.1
•

 
GET, POST, HEAD

•
 

PUT
━

 

Uploads file to path 
specified in URL field

•
 

DELETE
━

 

Deletes file specified in the 
URL field



24

HTTP Response MessageHTTP Response MessageHTTP Response Message

HTTP/1.1 200 OK 
Connection: close
Date: Thu, 06 Aug 1998 12:00:15 GMT 
Server: Apache/1.3.0 (Unix) 
Last-Modified: Mon, 22 Jun 1998 ... 
Content-Length: 6821 
Content-Type: text/html

Message body (optional)

status line
(protocol

status code
status phrase)

header
lines

data, e.g., 
requested
HTML file



25

HTTP Response Status CodesHTTP Response Status CodesHTTP Response Status Codes

•
 

200 OK
━

 

Request succeeded, requested object later in this message
•

 
301 Moved Permanently
━

 

Requested object moved, new location specified later in this 
message (see field Location:)

•
 

400 Bad Request
━

 

Request message not understood by server
•

 
404 Not Found
━

 

Requested document not found on this server
•

 
505 HTTP Version Not Supported

•
 

Status code is always in the first line of response
━

 

Followed by a nice textual explanation


	CSCE 463/612�Networks and Distributed Processing�Fall 2025
	Updates
	Robots.txt
	Robots.txt 2
	Chapter 2: Roadmap
	Some Network Applications
	Creating a Network Application
	Chapter 2: Roadmap
	Communication Principles
	P2P Architecture
	Hybrid Architecture
	Process Communication
	Chapter 2: Roadmap
	Web and HTTP
	HTTP Overview
	Nonpersistent HTTP
	Nonpersistent HTTP (Cont.)
	Response Time Modeling
	Persistent HTTP
	HTTP Request Message
	Uploading Form Input
	Uploading Form Input (Cont’d)
	Method Types
	HTTP Response Message
	HTTP Response Status Codes

