
Origami:
A High-Performance 
Mergesort Framework
Arif Arman and Dmitri Loguinov
Texas A&M University



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

2



Motivation

» Mergesort is highly appealing in real-world sorting tasks 
for several reasons

• Distribution insensitive

3

MSB Radixsort

Poor unless uniform

Quicksort
Samplesort
Combsort

Certain worst-case 
inputs



Motivation

» Mergesort is highly appealing in real-world sorting tasks 
for several reasons

• Sequential processing of input/output

4

PCIe 5.0



Motivation

» Mergesort is highly appealing in real-world sorting tasks 
for several reasons

• Well-suited for multi-core parallelization

• Yields new optimized kernels for small inputs
5

...

...Tiny 
Sorters



Motivation

» Many mergesort variants have been proposed, however ...

• None examine how to optimize individual phases of the 
sort pipeline

• Majority single threaded or, if parallel, bottlenecks on 
memory bandwidth

• Do not offer a unifying solution simultaneously optimized 
for scalar, SSE, AVX2 and AVX-512 architectures

6



Contribution

» Introduce Origami, a highly optimized, distribution-
insensitive, parallel mergesort framework

» Formalize a four-phase computational model
• Examine how to achieve maximum speed at each phase

» Develop end-to-end sort by efficiently connecting the 
optimized components

» Generalize the algorithms for Scalar, SSE, AVX2 and AVX-512

» Fastest mergesort (1.5-2x speedup) with near perfect scaling
7



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

8



P4. Out-of-cache merge w/ 
partitioning

P3. Out-of-cache merge

Pipeline Overview

9

P1. Tiny sorters

P2. In-cache merge

Unsorted input, broken to L2 
cache size blocks

Sorted C size blocks

...

...

...

...

Sorted N/k size lists

Merge 
tree 

Partition
Merge tree 
from P3

...

...

Final sorted output

Binary 
merge



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

10



Sorting Networks

» In practice, presort every m items with a different algorithm

» Sorting networks have proven to be the fastest option for 
such small sorts

» SIMD (single-instruction multiple-data) allows W (SIMD_WIDTH) 
scalar swaps with a pair of _mm_min, _mm_max intrinsics

11

swap(x, y):

tmp = min(x, y)

y = max(x, y)

x = tmp

Sorting Network for 4 items

0

1

2

3



Tiny Sorters: Outline

12

Store sorted runs of length W

Sort columns Transpose

Load keys

W

W

Matrix-column merge

Sort columns

r
... ...

..

..

Matrix-row merge

Transpose

W

Store sorted run of length rW

Load keys

Prior works

Typically, 
r = # of 

registers R 

Sort every W keys in-register Sort every rW keys in-register

Origami



Matrix-Column Merge (mcmerge)

» Goal: sort matrix in column-major order
• Use merge networks (reduced from sorting networks)

• Group items of matrix in partial columns of r/2 x 1

• Run swaps of corresponding merge network

• With len(keygroup) > 1, replace min/max for a swap with 
MergeNetworkr -- term this cswap

• Drawback: With growing depth of merge network, shuffles become 
costlier for large c

13

6 30

14 33

19 45

28 48

10 46

20 49

29 50

34 53

0 2

1 3

4 6

5 7

Group 
keys 

MergeNetwork8 swaps

(0,4), (1,5), (2,6), (3,7)

(2,4), (3,5)

(1,2), (3,4), (5,6)

r

c



Matrix-Row Merge (mrmerge)

14

34 29 20 10

53 50 49 46

6 14 19 28

30 33 45 48

34 33 45 46

53 50 49 48

6 14 19 10

30 29 20 28

33 34 45 46

48 49 50 53

6 10 14 19

20 28 29 30

(a) reverse 
bottom rows

(b) cswap (c) sort rows

largest(rowj) <= smallest(rowj+1)

1. transpose
2. csort
3. transpose

» Not significantly affected by increasing complexity of merge 
networks -- excellent for large matrix sizes

» However, has non-negligible minimum cost (e.g., two transposes)
• Makes it inefficient for short sequences -- in contrast to mcmerge



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

15



» Present works mostly use 
branching comparisons
• bmerge_v0

» Some attempts at branchless 
but still room for improvement

» Origami provides the fastest, 
purely branchless solution

Advancing Pointers

16

bmerge(Item *A, *endA, *B, *endB, *C):

load registers r0, ..., rk-1 from A; A += kW

load registers rk, ..., r2k-1 from B; B += kW

while A != endA and B != endB:

rswaps for MergeNetwork2k

store r0, ..., rk-1 to C; C += kW 

reload r0, ..., rk-1 from A or B

move A or B forward by kW

merge keys left in registers and the
unfinished list

if (A[0] < B[0]):

reload from A; A += kW

else:

reload from B; B += kW



» Solution: bmerge_v3
• Use two pointers: loadFrom, 
opposite

• Update pointers based on flag

• Always use loadFrom for next 
group of keys and end-of-buffer 
checks

» Up to 86% faster than v0

» Removes speculation from control 
flow and makes it distribution 
insensitive

» Additional boost with multiple 
simultaneous merges

Advancing Pointers

17

bmerge_v3(Item *A, *endA, *B, *endB, *C):

load registers r0, ..., rk-1 from A; A += kW

load registers rk, ..., r2k-1 from B; B += kW

loadFrom = A; opposite = B;

while loadFrom != endA and loadFrom != endB:

rswaps for MergeNetwork2k

store r0, ..., rk-1 to C; C += kW 

flag = loadFrom[0] < opposite[0]

tmp = flag ? loadFrom : opposite

opposite = flag ? opposite : loadFrom

loadFrom = tmp

load r0, ..., rk-1 from loadFrom

loadFrom += kW

merge keys left in registers and the
unfinished list



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

18



» P2 finishes when threads are done sorting lists of L2-cache-size C

» In P3
• Threads continue independent merges, but out-of-cache

• Maximum achievable speed is that of memcpy
• Skylake-X i7 CPUs with DDR4-3200 quad channel memory max: 37 GB/s

• Vectorized bmerge_v3 exhausts this with just 3 threads

• One thread may be enough for older CPUs and dual channel memory

» Majority of existing works ignore and continue with binary merges
• A few use desired k-way merges but with limitations

• L3 residing shared merge tree with circular queue internal buffers ...

• L2 residing dedicated tree with fixed buffer, fixed k, and encoding-
decoding keys with insertion sort tie-breaker ...

Independent Merge (P3)

19

...



» Origami comes with L2-cache 
residing k-way merge trees (mtree)

» Each node performs 4-way merge
• Binary merges internally

• Tiny intermediate buffers (64-128 B)

• Root and leaves remain large

» k can be tuned
• Optimal choice depends on number of 
threads running, memory bandwidth, 
and L2 cache size

Merge Tree

20

... ... ... ...

...

4-way node



» Origami P4 avoids bottleneck on memory bandwidth
• Merge must utilize >= k sequences

• k selected optimally by mtree in P3

» Avoid stragglers by creating many small jobs
• Reduce wait time for the fastest thread

• Leader thread performs initial partition

• All threads parallelly partition further

• Add k-way merge jobs to shared queue
• Threads draw their workload in parallel

Cooperative Merge (P4)

21



Agenda

» Introduction

» Pipeline Overview

» Tiny Sorters

» In-cache Merge

» Out-of-cache Merge

» Experiments

22



8-core Intel i7-7820X (Skylake-X)

L2 cache: 1 MB

Clock: 4.7 GHz (fixed)

SIMD Support: SSE, AVX2, AVX-512

Setup

23

32 GB DDR4-3200

Quad-channel

S1

S2

16-core dual socket Intel Xeon E5-2690 

L2 cache: 256 KB

Clock: 3.3 GHz

SIMD Support: SSE, AVX

256 GB DDR3-1333

Quad-channel



Tiny Sorters

24



Chunked-sort (Out-of-cache)

25

SSE: 110%

AVX2: 100%

AVX-512: 53%

Define Checkpoint

Ci = execution of 
phases P1 through Pi



Distribution Insensitivity

26

Scalar

AVX2

SSE

AVX-512

D1: Uniform
D2: All same
D3: Sorted
D4: Reverse sorted
D5: Almost sorted (7th = MAX)
D6: Pareto
D7: Bursts of same keys 
(length from D6, key from D1)
D8: Random shuffle of D7
D9: Fibonacci



Multi-core Speedup

27

Scalar

AVX2

SSE

AVX-512

1 GB



Multi-core Speedup (Xeons)

28

SSE

64 GB



Database Queries (Xeons)

29

TPC-H Q1 TPC-H Q4

IRLbot (8 GB)

» IRLbot query

SELECT dst, COUNT(*) as cnt

FROM A INNER JOIN B ON A.src=B.src

WHERE A.outdeg < 1000000

GROUP BY dst

ORDER BY cnt DESC

» TPC-H queries

» Scaling 
factor: 100

Single-core: 37-60x

All-cores: 30-113x



» Origami offers a highly optimized mergesort framework
• Runs in a fast, constant speed for different data distributions

• Gains a nearly linear speed-up in multi-core environments

» The proposed components are flexible to accommodate future SIMD 
extension sets
• Programmer only needs to write a few arch-specific intrinsics

» Future work will examine
• External memory sorting

• Longer key/value pairs

• Incorporation into existing DBMS

Concluding Remarks

30



Thank You
Arif Arman

arman@tamu.edu

https://arif-arman.github.io


