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Abstract – This paper presents a trace-driven simulation study of
three classes of retransmission timeout (RTO) estimators in the
context of low-bitrate real-time streaming over the Internet. We
explore the viability of employing retransmission timeouts in
NACK-based real-time streaming applications that support
multiple retransmission attempts per lost packet. In such appli-
cations, real-time RTO estimation plays a major role (i.e., poor
RTO estimation results in a larger number of duplicate packets
and sometimes more frequent underflow events). Our study is
based on trace data collected during a number of real-time
streaming tests conducted between our dialup clients in all 50
states of the U.S. (including 653 major U.S. cities) and our back-
bone video server during a seven-month period. First, we define
a generic performance measure for assessing the quality of hy-
pothetical RTO estimators based on the samples of the round-
trip delay (RTT) recorded in the trace data. Second, using this
performance measure, we evaluate the class of TCP-like estima-
tors, find the most optimal estimator given our performance
measure, and establish power laws that describe the tradeoff
between the optimal number of duplicate packets and the opti-
mal timeout waiting time. Third, we introduce a new class of
RTO estimators based on delay jitter and show that they per-
form significantly better than TCP-like estimators in NACK-
based applications. Finally, we gain a major insight into the
RTT process by establishing which tuning parameters of an
RTO estimator make it optimal given our performance measure
and our experimental data, and give our explanation of the ob-
served phenomena.

I. INTRODUCTION

Many Internet transport protocols rely on retransmission to
recover lost packets. Reliable protocols (such as TCP) utilize
a well-established sender-initiated retransmission scheme that
employs retransmission timeouts (RTO) and duplicate ac-
knowledgements (ACKs)1 to detect lost packets [7]. RTO
estimation in the context of retransmission refers to the prob-
lem of predicting the next value of the round-trip delay (RTT)
based on the previous samples of the RTT. RTO estimation is
usually a more complicated problem than simply predicting
the most likely value of the next RTT. For example, an RTO
estimator that always underestimates the next RTT by 10% is
significantly worse than the one that always overestimates the
next RTT by 10%. Although both estimators are within 10%
of the correct value, the former estimator generates 100%
duplicate packets, while the latter one avoids all duplicate
packets with only 10% unnecessary waiting.

Recall that TCP’s RTO estimation consists of three algo-
rithms. The first algorithm, smoothed RTT estimator (SRTT),

1 Duplicate ACKs are used in TCP’s fast retransmit to infer packet loss and
distinguish the latter from packet reordering. TCP’s triple-ACK mechanism
is more related to estimating the reordering delay than to estimating the RTT,
and consequently, we consider it to be outside the scope of this paper.

is an exponential-weighted moving average (EWMA) of the
past RTT samples [1], [7]:
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where RTTi is the i-th sample of the round-trip delay pro-
duced at time ti and α (set by default to 1/8) is a smoothing
factor that can be varied to give more or less weight to the
history of RTT samples. In the original RFC 793 [17], the
RTO was obtained by multiplying the latest value of the
SRTT by a fixed factor between 1.3 and 2.0. In the late
1980s, Jacobson [7] found that the RFC 793 RTO estimator
produced an excessive amount of duplicate packets when
employed over the Internet and proposed that the second al-
gorithm, smoothed RTT variance estimator (SVAR), be added
to TCP’s retransmission scheme [1], [7]:





≥⋅β+⋅β−
=

=
− 1,)1(

0,2/

1

0

iVARSVAR

iRTT
SVAR

ii
i , (2)

where β (set by default to ¼) is an EWMA smoothing fac-
tor and VARi is the absolute deviation of the i-th RTT sample
from the smoothed average: VARi = |SRTTi–1 – RTTi|. Current
implementations of TCP compute the RTO by multiplying
the smoothed variance by four and adding it to the smoothed
round-trip delay [1]:

RTO(t) = n⋅SRTTi + k⋅SVARi, (3)

where t is the time at which the RTO is computed, n = 1,
k = 4, and i = max i: ti ≤ t.2

The third algorithm involved in retransmission, exponen-
tial timer backoff, refers to Jacobson’s algorithm [7] that ex-
ponentially increases the timeout value each time the same
packet is retransmitted by the sender. Exponential timer
backoff does not increase the accuracy of an RTO estimator,
but rather conceals the negative effects of underestimating the
actual RTT. Since this paper focuses on tuning the accuracy
of RTO estimators, we consider the timer backoff algorithm
to be an orthogonal issue, to which we will not pay much
attention. Furthermore, real-time applications have the ability
to utilize a different technique that conceals RTT underes-
timation, which involves setting a deterministic limit on the
number of retransmission attempts for each lost packet based
on real-time decoding deadlines.

2 Note that the latest IETF RFC [16] on TCP RTO introduced slight changes
to the above algorithm. The changes include a minimum of one second in
(3).
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Unfortunately, thorough tuning of TCP’s retransmission
mechanism has not been attempted in the past (possibly with
the exception of [1]), and the attempts to document the be-
havior of TCP’s RTO estimator over diverse Internet paths
are limited to [15], in which Paxson found that 40% of re-
transmissions in the studied TCP implementations were re-
dundant. Nevertheless, TCP’s retransmission scheme seems
to be automatically accepted by numerous protocols and, in
essence, has remained unquestioned by the Internet com-
munity since its introduction 13 years ago.

Recently, Allman and Paxson [1] conducted a simulation
based on TCP traces to study the performance of hypothetical
TCP-like RTO estimators (3) for several different values of
α, β, and k (n was kept at 1). The authors compared the per-
formance of eight estimators by varying (α, β) and keeping k
fixed at 4, and examined eight additional estimators by run-
ning k through eight integer values and keeping (α, β) fixed
at their default values. The paper further concluded that no
TCP-like RTO estimator could perform significantly better in
future versions of TCP than Jacobson’s de-facto standard [7]
and that even varying parameter n in (3) would not make the
estimator substantially better.

Among other reliable protocols with non-Jacobson RTO
estimation, Keshav et al. [9] employed sender-based retrans-
mission timeouts equal to twice the SRTT (i.e., the RFC 793
estimator) and Gupta et al. [6] used a NACK-based retrans-
mission scheme, in which receiver timeouts and detection of
lost packets were based on inter-packet arrival delay jitter.

On the contrary, both ACK and NACK-based real-time
streaming applications do not possess a common (i.e., agreed-
upon) retransmission scheme that is shown to perform well
under heterogeneous Internet conditions. In fact, many pro-
posed real-time streaming schemes do not specify the choice
of an RTO estimator [3], [4], [13], do not deal with real-time
decoding deadlines of individual frames, ignore the probabil-
ity of packet reordering [3], [14], [19], and often neglect to
set the limit on the maximum number of retransmission re-
quests (where the limit could be based on the lost packet’s
decoding deadline, some fixed integer number, or both).

Papadopoulos et al. [14] proposed a real-time retrans-
mission scheme in which the receiver used the value of the
SRTT in (1) to decide which packets were eligible for the
first retransmission and employed special packet headers to
support subsequent retransmissions. The benefit of avoiding
timeouts was offset by the inability of the proposed scheme to
overcome NACK loss. Rhee [19] employed a retransmission
scheme in which the sender used three frame durations (in-
stead of an estimate of the RTT) to decide on subsequent re-
transmissions of the same packet. A similar sender-based
retransmission scheme was proposed by Gong et al. [5], with
the exception that the sender used an undisclosed estimate of
the RTT to decide when the same packet was eligible for a
repeated retransmission.

In this paper, we present a generalized (i.e., suitable for
many real-time applications) NACK-based, real-time re-
transmission model for multimedia streaming over the Inter-

net and assess the effectiveness of various RTO estimators in
the context of low-bitrate Internet streaming and our retrans-
mission model. While the primary goal of our study is to de-
velop a better retransmission mechanism for real-time appli-
cations, the methodology and performance measure used to
judge the quality of different RTO estimators are generic
enough to apply to TCP as well. Our characterization of RTO
estimators is based on a reasonably large number of real-time
streaming tests conducted between dialup clients from all 50
states in the U.S. (including 653 major cities) and a backbone
server during a seven-month period.

Furthermore, we argue that a good RTO estimator is the
basis of any retransmission scheme. An application utilizing
an RTO estimator that consistently underestimates the round-
trip delay is bound to generate a large number of duplicate
packets. The effect of duplicate packets ranges from being
simply wasteful to actually causing serious network conges-
tion. Consequently, any real-time application with a wide-
scale deployment in mind, must possess a good RTO estima-
tor (besides a good congestion control scheme, which is out-
side the scope of this paper) that guarantees a low number of
duplicate packets.

On the other hand, overestimation of the RTT defers the
generation of subsequent retransmission requests and leads to
lower throughput performance in TCP and causes an in-
creased number of underflow events (which are generated by
packets arriving after their decoding deadlines) in real-time
applications. In either case, the amount of overestimation can
be measured by the duration of unnecessary waiting for time-
outs (i.e., waiting longer than the hypothetical RTT of the lost
retransmission).

Therefore, the performance (i.e., quality) of an RTO esti-
mator is fully described by two parameters (quantified later in
this paper) – the number of duplicate packets and the amount
of unnecessary timeout waiting. These two parameters cannot
be minimized at the same time, since they represent a basic
trade-off of any RTO estimator (i.e., decreasing one parame-
ter will increase the other). To study the performance of RTO
estimators, we define a weighted sum of these two parameters
and study a multidimensional optimization problem in order
to find the tuning parameters that make an RTO estimator
optimal within its class. The minimization problem is not
straightforward because the function to be minimized is non-
continuous, has unknown (and often non-existent) deriva-
tives, and contains a large number of local minima.

Before we begin, we must point out two limitations of our
study. First, the results presented in this paper were obtained
from a trace-driven simulation, rather than from live experi-
ments with each RTO estimator in the Internet (which would
be unrealistic to conduct given the fact that we analyzed sev-
eral million RTO estimators) or from the application of a
mathematical model of the Internet’s RTT process to our
NACK-based retransmission scheme. Second, we study only
three classes of RTO estimators, and potentially, there could
exist a more optimal estimator that does not belong to the
three studied classes. Nevertheless, we believe that the results
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presented in this paper are novel and play an important role in
building future NACK-based applications.

The paper is organized as follows. Section II describes the
methodology that we used to collect the experimental data.
Section III introduces our performance measure that we used
to judge the quality of hypothetical RTO estimators based on
the trace data. Section IV studies the class of TCP-like RTO
estimators and models their performance. Section V briefly
examines the class of percentile-based RTO estimators and
shows their suboptimality. Section VI discusses our new class
of jitter-based RTO estimators and shows their superior per-
formance in NACK-based retransmission schemes. Section
VII concludes the paper.

II. METHODOLOGY

A. Experiment

Our evaluation study of RTO estimators is based on ex-
perimental data collected during November 1999 – May
2000. We implemented an MPEG-4 real-time streaming cli-
ent-server architecture with simple NACK-based retransmis-
sion and set our goal to collect a large data set documenting
the behavior of the RTT and delay jitter processes along di-
verse Internet paths. For that purpose, we selected three ma-
jor national dialup ISPs (which we call ISPa, ISPb, ISPc), each
with at least five hundred V.90 (i.e., 56 Kbps) dialup numbers
in the U.S., and designed an experiment in which hypotheti-
cal Internet users of all 50 U.S. states dialed a local access
number to reach the Internet and streamed video sequences
from our backbone server. Although the clients were physi-
cally located in our lab in the state of New York, they dialed
long-distance phone numbers and connected to the Internet
through a subset of the ISPs’ 1813 different V.90 access
points located in 1188 U.S. cities.

During the experiment, we used two 10-minute QCIF
(176x144) MPEG-4 sequences coded at ideal (i.e., video)
bitrates of 14 and 25 Kbps (which corresponded to IP bitrates
of 16.0 and 27.4 Kbps respectively). Both sequences were
coded at 5 frames per second (fps), and the size of the former
video sequence was 1.05 MBytes, while the size of the latter
one was 1.87 MBytes.

Furthermore, we divided a 7-day week into 56 three-hour
timeslots (i.e., 8 timeslots per day) and made sure that each of
the 50 states was successfully tested at least once during each
timeslot of the week (by the word “successfully” we mean
that at least one of each state’s dialup numbers was able to
sustain end-to-end streaming for 10 minutes at the target IP
bitrate during the corresponding timeslot).

Our seven-month experiment resulted in transporting (ex-
cluding lost packets) of 85 million packets and 27.1 GBytes
of video data from our backbone server to dialup clients in all
50 states of the U.S. Moreover, the end-to-end paths between
the server and the clients included 5,266 distinct Internet

routers and 1003 dialup access points in 653 major U.S. cities
(see Figure 1).3
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Figure 1. The number of cities per state that participated in the streaming
experiment.

B. RTT Measurement

In order to maintain an RTO estimator, the receiver in a
real-time session must periodically measure the round-trip
delay. In our experiment, the client obtained RTT measure-
ments by utilizing the following two methods. The first
method used packet loss to measure the round-trip delay –
each successfully recovered packet provided a sample of the
RTT (i.e., the RTT was the duration between sending a
NACK and receiving the corresponding retransmission). In
order to avoid the ambiguity of which retransmission of the
same packet actually returned to the client, the header of each
NACK request and each retransmitted packet contained an
extra field specifying the retransmission number of the
packet. Thus, the client was able to pair each retransmitted
packet with the exact time when the corresponding NACK
was sent out.

The second method of measuring the RTT was used by the
client to obtain additional samples of the round-trip delay in
cases when network packet loss was too low. The method
involved periodically sending simulated retransmission re-
quests to the server if packet loss was below a certain thresh-
old. In response to these simulated NACKs, the server in-
cluded the usual overhead4 of fetching the needed packets
from the storage and sending them to the client. During the
experiment, the client activated simulated NACKs, spaced 30
seconds apart, if packet loss was below 1%.

III. PERFORMANCE OF RTO ESTIMATORS

A. Retransmission Model

In real-time streaming, RTO estimation is needed only if
the client supports multiple retransmissions of the same
packet. After studying our traces, we found that 95.7% of all
lost packets, which were recovered before their deadline,
required a single retransmission attempt, 3.8% two attempts,

3 A detailed description of the experiment is available in a separate paper
[10], which discusses both the design of the experiment and the behavior of
observed network parameters (such as packet loss, RTT, delay jitter, packet
reordering, path asymmetry, underflow events, video startup delays, etc.).
4 The server overhead was below 10 ms for all retransmitted packets.
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0.4% three attempts, and 0.1% four attempts. These results
are important for two reasons.

First, 4.3% of all lost packets in our experiment could not
be recovered with a single retransmission attempt. Therefore,
if a real-time application employs a single retransmission per
lost packet, it is bound to suffer 43 underflow events for each
1000 lost packets under similar streaming conditions. Our
experiments with MPEG-4 indicate that there is no “accept-
able” number of underflow events that a user of a real-time
video application can feel completely comfortable with, and
therefore, we believe that each lost packet must be recovered
with as much reasonable persistence as possible.

Second, our trace data show that if a lost packet is suc-
cessfully recovered before its deadline, the recovery is done
in no more than four attempts. The latter observation is used
in our retransmission model (described later in this section) to
limit the number of per-packet retransmission attempts
(which we call Rmax) to four.

Given the fact that a substantial fraction of lost packets in
our experiment required multiple retransmissions, we next
focus on hypothetical RTO estimators that support multiple
retransmission attempts per lost packet and define their per-
formance based on our trace data. Ideally, an RTO estimator
should be able to predict the exact value of the next round-
trip delay. However, in reality, it is quite unlikely that any
RTO estimator would be able to do that. Hence, there will be
times when the estimator will predict smaller, as well as lar-
ger values than the next RTT. To quantify the deviation of the
RTO estimate from the real value of the RTT, we utilize the
following method.

Imagine that we sequentially number all successfully re-
covered packets in the trace (excluding simulated retransmis-
sions) and let RTTrec(i) be the value of the round-trip delay
produced by the i-th successfully recovered packet at time
trec(i) (see Figure 2). The effective RTO for this lost packet
would have been computed at the time of the retransmission
request, i.e., at time treq(i) = trec(i) – RTTrec(i). Therefore, as-
suming that RTO(t) is the value of the retransmission timeout
at time t and assuming that the client uses the latest value of
the RTO for each subsequent retransmission of a particular
lost packet, it makes sense to examine how well the value of
the RTO at the time of the request, RTO(treq(i)), predicts the
real value of the round-trip delay RTTrec(i). Hence, the accu-
racy of an RTO estimator in predicting the RTT of lost pack-
ets based on our trace data can be established by computing
the timeout waiting factor wi for each successfully recovered
packet i in the trace:
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In addition, we should note that although our model does
not use RTT samples produced by simulated retransmissions
in computing wi’s, it uses them in updating the RTO estima-
tor.
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Figure 2. Operation of an RTO estimator given our trace data.

Since the exact effect of overestimation and underestima-
tion of the RTT depends on whether the first retransmission
was lost or not (and in some cases on whether subsequent
retransmissions were lost or not), we simplify the problem
and study the performance of RTO estimators assuming the
worst case: values of wi less than 1 always indicate that the
estimator would have tried (if not limited by Rmax) to produce
RTTrec(i) / RTO(trec(i) – RTTrec(i)) = 1/wi duplicate packets
given our trace data (i.e., assuming that all retransmissions
arrived to the client), and values of wi greater than 1 always
indicate that the estimator would have waited longer than
necessary before detecting that a subsequent retransmission
was needed (i.e., assuming that the first retransmission initi-
ated at time treq(i) was actually lost). In Figure 2, given our
assumptions, the RTO estimator would have produced four
(i.e., 1/wi) duplicate packets while recovering packet i.

The negative effects of duplicate packets (i.e., wasted
bandwidth and aggravation of congestion) are understood
fairly well. On the other hand, the exact effect of unnecessary
timeout waiting in real-time applications depends on a par-
ticular video stream (i.e., the decoding delay of each frame),
video coding scheme (i.e., the type of motion compensation,
scalability, and transform used), individual lost packets (i.e.,
which frames they belong to), and the video startup delay.
Nevertheless, we can make a generic observation that RTO
estimators with higher timeout overwaiting factors wi are
bound to suffer a lower probability of recovering a lost packet
and consequently, more frequent underflow events. To keep
our results universal and applicable to any video stream, we
chose not to convert wi’s into the probability of an underflow
event, and instead, we study the tradeoff between a generic
average timeout overwaiting factor w and the percentage of
duplicate packets d:
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where N+ is the number of times the RTO overestimated
the next RTT (i.e., the number of times wi was greater than or
equal to 1) and N is the total number of lost packets. Parame-
ter w is always above 1 and provides an average factor by
which the RTO overestimates the RTT. Parameter d is the
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percentage of duplicate packets (relative to the number of lost
packets) generated by the RTO estimator assuming that all
requested retransmissions successfully arrived to the client.

In addition, we should note that the use of exponential
backoff in (5) instead of Rmax provides similar, but numeri-
cally different results.5 However, in order to properly study
the tradeoff between exponential backoff and Rmax, our model
must take into account retransmission attempts beyond the
first one and study the probability of an underflow event in
that context (i.e., the model must include a video coding
scheme, video sequence, particular lost packets, and an actual
startup delay). We consider such analysis to be beyond the
scope of this paper.

Finally, we should point out that all RTO estimators under
consideration in this paper depend on a vector of tuning pa-
rameters a = (a1, …, an). For example, the class of TCP-like
RTO estimators in (3) can be viewed as a function of four
tuning parameters α, β, k, and n. Therefore, the goal of our
minimization problem is to select such vector a that opti-
mizes the performance of a particular RTO estimator
RTO(a; t). By the word performance throughout this paper,
we mean tuple (d, w) defined in (5).

B. Optimality and Performance

As we mentioned before, the problem of optimally estimat-
ing the RTT is quite different from simply minimizing the
deviation of the predicted value RTO(a; trec(i) – RTTrec(i))
from the observed value RTTrec(i). If that were the case, we
would have to solve a well-defined least-squares minimiza-
tion problem (i.e., the maximum likelihood estimator):
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The main problem with the maximum likelihood estimator
(MLE) lies in the fact that the MLE cannot distinguish be-
tween over and underestimation of the RTT, which allows the
MLE to assign equal cost to estimators that produce a sub-
stantially different number of duplicate packets. Instead, we
introduce two performance functions H(a) and G(a) and use
them to judge the quality of RTO estimators in the following
way. We consider tuning parameter aopt of an RTO estimator
to be optimal within tuning domain S of the estimator
(aopt∈S), if aopt minimizes the corresponding performance
function (i.e., either H or G) within domain S. Furthermore,
later in this section, we will show that given the classes of
RTO estimators studied in this paper and given our experi-
mental data, the two performance measures (i.e., functions)
produce equivalent results.

In the first formulation, we introduce a generic problem of
minimizing an RTO performance vector-function H(a) =
(d(a), w(a)):

5 For exponential backoff, (5) would read ∑
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For the above minimization problem to make sense, we
must define vector comparison operators greater than and
less than. The following are a natural choice:

( ) ( ))()()()(),(),( 212121212211 wwddwwddwdwd <∧≤∨≤∧<⇔< , (8)
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and otherwise we consider tuples (d1, w1) and (d2, w2) to be
equivalent. Figure 3 illustrates the above operators for a given
RTO estimator and provides a graphical mapping between the
performance of an RTO estimator and points on a 2-D plane.
The shaded convex area in Figure 3 is the range of a hypo-
thetical RTO estimator, where the range is produced by vary-
ing tuning parameter a within the estimator’s tuning domain
S (i.e., the convex area consists of points H(a), ∀a∈S). Given
a particular point D = (d, w) in the range of the RTO estima-
tor, points to the left and down from D (e.g., D1) clearly rep-
resent a better estimator; points to the right and up from D
(i.e., D3) represent a worse estimator; and points in the other
two quadrants may or may not be better (i.e., D2 and D4).

D
D 1

D2

D 4

D 3

d

w

M 1d + w = const

M 2d + w = const

D 5

Figure 3. Comparison between RTO performance vector points (d, w).

In order to help us understand which performance points
are most optimal, we define the optimal RTO curve to be such
points in the (d, w) space, produced by the RTO estimator,
that are less than or equal to any other point produced by the
RTO estimator, i.e., all points (dopt, wopt) = H(aopt), aopt∈S,
such that ∀a∈S: (dopt, wopt) ≤ H(a). In Figure 3, the optimal
RTO curve is shown in bold along the left bottom side of the
shaded area. Hence, finding the set of tuning parameters a
that produce the optimal RTO curve for a given RTO estima-
tor is equivalent to solving the minimization problem in (7).

Alternatively, we can formulate the problem of finding a
better RTO estimator as that of minimizing a weighted sum
of the percentage of duplicate packets d and the average
overwaiting factor w. The problem in the new formulation
appears easier to solve since it involves the minimization of a
scalar function instead of a vector function. In addition, our
reformulation allows us to decide on the exact relationship
between equivalent points (i.e., in cases when neither (8) nor
(9) holds) by assigning proper weight to one of the parame-
ters in the (d, w) tuple.

Hence, we define a weighted RTO performance function
G(a) as following:
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where M is a weight, which assigns desired importance to
duplicate packets d (large M) or overwaiting factor w (small
M). In practice, we cannot identify a value of weight M that is
globally suitable for all real-time applications; however, we
can now unambiguously establish a relationship between
equivalent points in the (d, w) space for any given weight M.
Specifically, for each weight M and for any constant C > 0,
there exists a performance equivalence line Md + w = C,
along which all points (d, w) are equal given the performance
function in (10); points below the line are better (i.e., they
belong to lines with smaller C); and points above the line are
worse. In Figure 3, two parallel lines are drawn for M1 = 1
and different values of C. Given weight M1 = 1, point D2 is
now equal (not just equivalent) to D, point D1 is still better,
point D3 is still worse, while point D4 is now also worse.

In addition, not only is point D1 better than D given per-
formance function G(a) and weight M1, but D1 is also the
most optimal point of the RTO estimator in Figure 3 for
weight M1 (i.e., D1 is the solution to the minimization prob-
lem in (10) for weight M1). In other words, to graphically
minimize function G(a) for any weight M, one needs to slide
the performance equivalence line Md + w as far left and down
as possible, while maintaining contact with the range of the
RTO estimator (in Figure 3, this procedure was performed for
weight M1, which resulted in finding point D1). Notice how at
the same time point D1 lies on the optimal RTO curve defined
using the performance measure in (7).

We can further generalize this observation by saying that if
the optimal RTO curve is given by a convex continuous func-
tion similar to the one in Figure 3, all points that optimize the
weighted performance function G(a) will lie on the optimal
RTO curve (and vice versa).

Consequently, using intuition, we can attempt to build the
entire optimal RTO curve out of points Dopt(M) = (dopt(M),
wopt(M)), where dopt(M) and wopt(M) are the result of minimiz-
ing G(a) for a particular weight M. For example, from Figure
3, we can conclude that the optimal point Dopt(M1) is given by
D1 and the optimal point Dopt(M2) is given by D5. Hence, by
varying M in Dopt(M) between zero (flat performance equiva-
lence line) and infinity (vertical performance equivalence
line) we can produce (ideally) any point along the optimal
RTO curve.

Now we are ready to plot the values of vector function
H(a) for different values of the tuning parameter a = (a1, …,
an) in different RTO estimators, as well as identify the opti-
mal points and understand which values of parameter a give
us the best performance. Throughout the rest of the paper, in
order to conserve space, we show the results derived from
streaming traces through ISPa using stream S1 (129,656 RTT
samples). The streaming data collected through the other two
ISPs produce similar results.

IV. TCP-LIKE ESTIMATORS

A. Performance

We start our analysis of RTO estimators with a generalized
TCP-like RTO estimator, which is given in (3) and which we
call RTO4. In RTO4, tuning parameter a consists of four vari-
ables: a = (α, β, k, n). Recall that aTCP = (0.125, 0.25, 4, 1)
corresponds to Jacobson’s RTO [7] and a793 = (0.125, 0, 0, 2)
corresponds to the RFC 793 RTO [17].

In order to properly understand which parameters in (3)
contribute to the improvements in the performance of the
TCP-like estimator, we define two reduced RTO estimators
depending on which tuning parameters (α, β, k, n) are al-
lowed to vary. In the first reduced estimator, which we call
RTO2, we use only (α, β) to tune its performance, i.e., a = (α,
β), while keeping n and k at their default values of 1 and 4
respectively. In the second reduced estimator, which we call
RTO3, we additionally allow k to vary, i.e., a = (α, β, k),
while keeping n equal to 1.

Figure 4 shows the optimal RTO4 curve and range of val-
ues H(a) produced by both reduced estimators. The ranges of
RTO2 (900 points) and RTO3 (29,000 points) were obtained
by conducting a uniform exhaustive search of the correspond-
ing tuning domain S, and the optimal RTO4 curve was ob-
tained by extracting the minimum values of H(a) after a simi-
lar exhaustive search through more than 1 million points. In
addition, Figure 4 shows the performance of Jacobson’s RTO
estimator, H(aTCP) = (12.63%, 4.12), by a square and the per-
formance of the RFC 793 RTO estimator, H(a793) = (15.34%,
2.84), by a diamond. Clearly, Jacobson’s and the RFC 793
RTO estimators are equivalent, since neither one is located
below and to the left of the other.

The performance of RTO estimators in Figure 4 certainly
gets better with the increase in the number of tuning vari-
ables. For a given average overwaiting factor w = 4.12 (pro-
duced by Jacobson’s RTO), RTO2 and RTO3 both achieve
optimality in the same point and offer only a slight improve-
ment in the number of duplicate packets – 11.15% compared
to 12.63%. RTO4, however, offers a more substantial im-
provement, achieving d = 7.84% and keeping the same aver-
age overwaiting factor w = 4.12.
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Figure 4. Performance of TCP-like estimators in ISPa.

Furthermore, Figure 4 shows that the optimal RTO4 curve
(built by the exhaustive search) is convex and fairly continu-
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ous until approximately 20% duplicate packets. Conse-
quently, we can build the optimal RTO4 curve using our re-
formulated problem with scalar weighted performance func-
tion G(a) and compare the results with those in Figure 4. A
scalar function such as G(a) allows us to use various numeri-
cal multidimensional minimization methods, which usually
do not work with vector functions. In addition, we find that
numerical optimization methods produce points along the
optimal RTO curve with more accuracy than the exhaustive
search (given a reasonable amount of time) and with fewer
computations of functions d(a) and w(a) (i.e., faster).

To verify that optimizing the weighted performance func-
tion G(a) does in fact allow us to produce the optimal RTO4

curve, we focused on the following minimization problem for
a given value of weight M:

( ))()(min)(min aaa
aa

wdMG
SS

+⋅=
∈∈

(11)

The fact that function G(a) has unknown (and non-
existent) partial derivatives ∂G(a)/∂ak suggests that we are
limited to numerical optimization methods that do not use
derivatives. After applying the Downhill Simplex Method in
Multidimensions (due to Nelder and Mead [12]) and quad-
ratically convergent Powell’s method [2], we found that the
former method performed significantly better and arrived at
(local) minima in fewer iterations. To improve the found min-
ima, we discovered that restarting the Simplex method ten
times per weight M produced very good results.

Figure 5 shows the points built by the Downhill Simplex
method for the RTO4 estimator (each point corresponds to a
different weight M) and the corresponding optimal RTO4

curve derived from the exhaustive search. As the figure
shows, points built by Downhill Simplex are no worse (and
often slightly better) than those found in the exhaustive
search. In addition, we should note that for the rest of the
paper, we will focus on the performance of RTO estimators
within a reasonable range of duplicate packets, which we
considered to be between 0 and 10 percent.
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Figure 5. Points built by Downhill Simplex and the exhaustive search in the
optimal RTO4 curve.

Close examination of Figure 5 reveals that both optimal
curves remind us of a power function in the form of

wopt = C(dopt)
–p, p > 0. (12)

To investigate this observation further, we replotted the
points of the Downhill Simplex curve in Figure 6 on a log-log

scale and fitted a straight line to the points. A straight line
provides an excellent fit (with correlation 0.9994) and allows
us to model the optimal RTO curve as a power function (12)
with C = 1.022 and p = 0.55.
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Figure 6. Log-log plot of the optimal (Simplex) RTO4 curve.

Knowing that the relationship between w and d in the op-
timal RTO4 curve is a power function, we can now analyti-
cally compute optimal points (dopt, wopt) that minimize func-
tion G(a) for a given weight M. Rewriting (10) using the
power law in (12), taking the first derivative, and equating it
to zero we get:

( ) 0
)( 1 =−=+

∂
∂=

∂
∂ −−− p
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CpdMCdMd
dd

G a
. (13)

Solving (13) for dopt and using power law (12) one more
time, we get the optimal values of both the number of dupli-
cate packets dopt and the average overwaiting factor wopt as a
function of weight M:
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B. Tuning Parameters

While analyzing RTO2, we noticed that for each given β,
larger values of α produced fewer duplicate packets, as well
as that for each fixed value of α, smaller values of β similarly
produced fewer duplicate packets. To further study this phe-
nomenon, we computed the correlation between RTO2 esti-
mates and the corresponding future round-trip delays for dif-
ferent values of (α, β). Surprisingly, the highest correlation
was achieved at the point where α was 1.0 and β was very
close to zero (β = 0.044). This result gave us an idea that an
RTO estimator with (α, β) fixed at (1, 0) should provide a
reasonably high correlation with the future RTT, as well as
that it was possible to achieve the values of the optimal RTO4

curve by just varying parameters n and k in RTO4.
To investigate our hypothesis, we constructed a reduced

estimator, which we call RTO4(1,0) and which is produced by
RTO4 at input points (1, 0, k, n). We performed an exhaustive
search of the reduced tuning domain (i.e., (k, n)) and plotted
the range (d, w) of the new reduced estimator in Figure 7
(lightly shaded area). As the figure shows, the optimal sim-
plex RTO4 curve (shown as squares in Figure 7) touches the
range of RTO4(1,0), which means that the reduced estimator
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can achieve the points along the optimal RTO4 curve while
keeping α and β constant. The implication of this fact is that
it is no longer necessary to maintain a smoothed RTT average
to achieve optimality, because α = 1.0 means that the SRTT
always equals the last RTT sample.
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Figure 7. RTO4-Simplex and two reduced RTO4 estimators on a log-log scale.

The next logical step was to question the need for SVAR in
the RTO4 estimator (3) since SVAR turns out to be a constant
when β = 0 and most likely can be eliminated without harm.
In the same Figure 7, we plot an additional curve, called
RTO4(1,0,0), which corresponds to the points produced by
RTO4 at input points (1, 0, 0, n) for different values of n. As
the figure shows, all values of the RTO4(1,0,0) estimator lie
next to the optimal curve as opposed to many sub-optimal
points produced by the RTO4(1,0) estimator. The optimality of
the RTO4(1,0,0) estimator is maintained up to approximately
d = 15%, at which time it becomes suboptimal. A straight line
fitted to the RTO4(1,0,0) curve in Figure 7 produces a power
function (12) with C = 1.07 and p = 0.5456.

Further investigation discovered that there is a perfectly
linear dependency between the optimal value of nopt in
RTO4(1,0,0) and the optimal value of the average overwaiting
factor wopt:

nopt = mwopt + b, (15)

where m = 0.86 and b = –0.13. Since we already know the
power law between wopt and dopt in (12), we can easily derive
the relationship between nopt and dopt in RTO4(1,0,0):

nopt = mC(dopt)
–p + b. (16)

Consequently, (16) can be used to adapt the optimal
RTO4(1,0,0) estimator to each application’s needs (possibly in
real-time). For example, if an application specifies that the
maximum number of duplicate packets it is willing to tolerate
is dopt = 2%, using (12), the optimal overwaiting factor wopt is
9.12 (the corresponding weight M is 248) and using (16), the
optimal RTO estimator is given by RTO4(1,0,0) with nopt = 7.31.

V. PERCENTILE-BASED ESTIMATORS

In this section, we analyze our second class of RTO esti-
mators. One can argue that the percentile-based RTO estima-
tor, which we call RTOP, could be a powerful tool in predict-
ing the future value of the round-trip delay based on the dis-
tribution density function of the previous RTT samples. Sup-
pose at any time during a session, the history of RTT samples

contains s latest samples of the RTT. Consequently, we de-
fine a percentile-based RTO estimator to be

RTOP (t) = n⋅{RTTi, …, RTTmax(i–s+1,0)}α, (17)

where i = max i: ti ≤ t and {r1, …, rn}α is the α-percentile
of set {r1, …, rn}. After conducting a similar Downhill Sim-
plex optimization search of the corresponding tuning domain,
we found that although there were three tuning variables in
parameter a = (α, n, s), the optimal performance was always
achieved in cases when s was equal to 1 (due to space limita-
tions, we skip a detailed analysis of the optimal RTOP curve).
Since history {RTTi, …, RTTmax(i–s+1,0)} in the optimal case
contained only one sample, the value of α did not affect the
performance of the optimal RTOP estimator, which turned out
to be equivalent to RTO4(1,0,0). In the previous section, we
showed the latter estimator to be almost optimal within the
class of TCP-like estimators and derived formulas to convert
the amount of duplicate packets dopt to parameter nopt. Our
final conclusion on RTOP is that the extra overhead of main-
taining a history of RTT samples is not warranted in the con-
text of RTO estimation in NACK-based applications.

VI. JITTER-BASED ESTIMATORS

A. Structure and Performance

Our last class of RTO estimators, which we call RTOJ, is
derived from RTO4(1,0,0) by adding to it a smoothed variance
of the inter-packet arrival delay (quantified later in this sec-
tion). As we will show below, RTOJ allows us to reduce the
number of duplicate packets compared to RTO4 by more than
67%.

This is the point when we must discuss a strong conceptual
difference between TCP’s and NACK-based retransmission
schemes. The difference lies in the fact that the distance be-
tween RTT samples in real-time applications is large and
varies quite randomly during a session (in our experiment, the
average distance between consecutive RTT samples was 15.7
seconds), while TCP consistently obtains RTT samples on a
per-packet basis.

There are two implications arising from this difference.
First, the above analysis of TCP-like RTO estimators should
not be taken to literally mean that in actual TCP implementa-
tions, the performance of the examined estimators will be
similar to what is shown in the figures (in fact, we expect it to
be quite different). We can only report the performance of
these schemes in NACK-based applications, and further study
of the RTT process in real TCP implementations is required
before one can reach similar conclusions about TCP’s RTO.

Second, the receiver in a real-time protocol usually has ac-
cess to a large number of delay jitter samples between the
times when it measures the RTT. It would only be logical to
utilize tens or hundreds of delay jitter samples between re-
transmissions to fine-tune RTO estimation. This fine-tuning
is receiver-oriented and is not available to TCP senders
(which they probably do not need since TCP senders obtain a
substantial amount of RTT samples through their ACK-based
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operation). In fact, TCP’s ability to derive an RTT sample
from (almost) each ACK gave it an advantage that may now
be available to NACK-based protocols in the form of delay
jitter.

Before we describe our computation of delay jitter, we
must introduce the notion of a packet burst. In practice, many
real-time streaming servers are implemented to transmit their
data in bursts of packets [11], [18] instead of sending one
packet every so many milliseconds. Although the latter is
considered to be an ideal way of sending video traffic by
many researchers (e.g., [4]), in practice, there are limitations
that do not allow us to follow this ideal model. Furthermore,
bursty packet transmission reduces the overhead of frequent
switching between processes, handles varying packet sizes
better, and allows more simultaneous streams per server.

In our server, we implemented bursty streaming with the
burst duration Db (i.e., the distance between the first packets
in successive bursts) varying between 340 and 500 ms de-
pending on the target bitrate (for comparison, RealAudio
servers use Db = 1800 ms [11]). Each packet in our real-time
application carried a burst identifier, which allowed the re-
ceiver to distinguish packets from different bursts. After ana-
lyzing the traces, we found that inter-burst delay jitter had
more correlation with the future RTT than inter-packet delay
jitter (we speculate that the reason for this was that more
cross traffic was able to queue between the bursts of packets
than between individual packets).

To be more specific, suppose for each burst j, the last
packet of the burst arrived to the client at time tlast(j), and the
first packet of the burst arrived at time tfirst(j). Consequently,
the inter-burst delay for burst j is defined as:

∆j = tfirst(j) – tlast(k), j ≥ 1 (18)

where burst k is the last burst received before burst j
(unless there is packet loss, k = j – 1). For each burst, using
EWMA formulas similar to those in TCP, we compute
smoothed inter-burst delay S∆j and smoothed inter-burst de-
lay variance SVAR∆j:
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where α1 and β1 are exponential weights, and VAR∆j is the
absolute deviation of ∆j from its smoothed version S∆j–1. In
our experience, S∆j is usually proportional to the burst dura-
tion Db and thus, cannot be used the same way in real-time
applications with different burst durations. On the other hand,
smoothed variance SVAR∆j is fairly independent of the burst
duration and reflects the variation in the amount of cross traf-
fic in router queues along the path from the server to the cli-
ent.

Given our definition of delay variation in (20), suppose
that Tj is the time when our trace produced the j-th sample of
inter-burst delay ∆j (ideally, Tj equals tfirst(j)) and ti is the time
when our trace recorded the i-th RTT sample (including
simulated retransmissions), then the effective jitter-based
RTO at time t is:

RTOJ (t) = n⋅RTTi + m⋅SVAR∆j, (21)

where i = max i: ti ≤ t and j = max j: Tj ≤ t. Figure 8 shows
the performance of the RTOJ estimator (triangles) along the
optimal RTO curve built using the Downhill Simplex
method. Given a particular value of the average overwaiting
factor w, RTOJ offers a 45-60% improvement over RTO4

(squares in the figure) in terms of duplicate packets.
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Figure 8. Jitter-based RTO estimators compared with the RTO4 estimator.

Furthermore, we should mention that an even better esti-
mator, which we call RTOJD, can be created by incorporating
the duration between the time of the last RTT sample (i.e., ti)
and the time at which the RTO is being estimated (i.e., t) into
the RTOJ estimator:

RTOJD (t) = (n + k⋅(t – ti))⋅RTTi + m⋅SVAR∆j, (22)

where i = max i: ti ≤ t, j = max j: Tj ≤ t, and time units for t
and ti are seconds. Within a reasonable range of d (below 10
percent), RTOJD reduces the number of duplicate packets in
RTO4 by up to 67% as shown in Figure 8 (circles). Recall that
for an average overwaiting factor w = 4.12, Jacobson’s RTO
estimator produced 12.63% duplicate packets and RTO4

achieved 7.84%. Remarkably, RTOJ and RTOJD are now able
to improve this value to 3.25% and 2.64% respectively.

B. Tuning Parameters

The RTOJ estimator contains four tuning variables a = (α1,
β1, m, n), just like the RTO4 estimator. This time, however,
the performance of the estimator does not strongly depend on
α1. Several values in the proximity of α1 = 0.5 give optimal
performance. For β1, the optimal performance is achieved at
β1 = 0.125, which allows us to compute SVAR∆j using integer
arithmetics. Just as in the RTO4 estimator, (α1, β1) can be
fixed at their optimal values and the optimal RTOJ curve is
entirely built using n and m.

To further reduce the number of free variables in jitter-
based estimators, we examined the relationship between nopt
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and mopt in the optimal RTOJ curve shown in Figure 8. Al-
though the relationship is somewhat random, there is an ob-
vious linear trend, which fitted with a straight line (with cor-
relation ρ = 0.88) establishes that function

mopt = 4.2792⋅nopt – 2.6646 (23)

describes the optimal parameters n and m reasonably well.
We observed a similar linear trend in RTOJD with slightly
different parameters. Furthermore, we noticed that many op-
timal points in RTOJD were reached when k was equal to 0.5.
Consequently, we created two reduced estimators by always
keeping m as a function of n shown in (23) and k equal to 0.5.
We called the two reduced estimators RTOJ427 and RTOJD427

respectively (427 comes from the constant in front of nopt in
(23)) and compared their performance (by running n through
a range of values) to that of RTOJ and RTOJD in Figure 9. As
the figure shows, both reduced estimators reach the cor-
responding optimal RTO curves with high accuracy.

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

duplicate packets d (percent)

o
ve

rw
ai

ti
n

g
fa

ct
o

r
w

RTOJ-427 RTOJD-427 RTOJ-simplex RTOJD-simplex

Figure 9. Both reduced jitter-based estimators compared with optimal RTOJ

and RTOJD estimators.

Similar power laws (12) and (16) hold for the optimal
RTOJ and RTOJD curves, as well as for the optimal RTOJ427

and RTOJD427 curves. TABLE I summarizes the values of con-
stants in both power laws.

TABLE I
SUMMARY OF CONSTANTS IN VARIOUS POWER LAWS

Part I. Power law for optimal RTO curves: wopt = C(dopt)–p.
RTO estimator C p correlation ρρρρ

RTO4 1.02 0.5500 0.9994
RTO4(1,0,0) 1.07 0.5456 0.9991
RTOJ 0.50 0.6158 0.9997
RTOJD 0.51 0.5815 0.9992
RTOJ427 0.53 0.6098 0.9991
RTOJD427 0.51 0.5878 0.9980

Part II. Power law for optimal parameter n: nopt = C1(dopt)–p + C2.

Reduced RTO estimator C1 C2 p
RTO4(1,0,0) 0.88 –0.13 0.5456
RTOJ427 0.20 0.31 0.6098
RTOJD427 0.20 0.27 0.5878

Using the same example from section IV, for dopt = 2%, we
find that wopt is 5.75 in RTOJ427 and 5.07 in RTOJD427 (com-
pared to 9.12 in RTO4). Given parameters in the second half
of TABLE I, the values of nopt in the reduced jitter-based esti-
mators are 2.47 and 2.32 respectively (compared to 7.31 in

RTO4(1,0,0)), and the values of mopt using (23) are 7.91 and
7.30 respectively. As we can see, the superior performance of
the 427 estimators over RTO4 and RTO4(1,0,0) is achieved by
placing lower weight on RTT samples and deriving more
information about the network from the more frequent delay
jitter samples.

VII. CONCLUSION

Our study of several classes of RTO estimators in NACK-
based applications indicate the following:
• the default TCP estimator is a poor choice for NACK-

based applications and it can be substantially improved;
• the latest RTT sample has the most relevance to the value

of the future round-trip delay due to the large spacing be-
tween RTT samples in NACK-based applications;

• frequent delay jitter samples prove to be very helpful in
fine-tuning NACK-based RTO estimation and can be used
as a good predictor of the changes in the future RTTs;

• the average overwaiting time in many studied optimal
RTO estimators is approximately proportional to the in-
verse of the square root of the percentage of duplicate
packets.
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