
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005 1107

Graph-Theoretic Analysis of Structured Peer-to-Peer
Systems: Routing Distances and Fault Resilience

Dmitri Loguinov, Member, IEEE, Juan Casas, and Xiaoming Wang, Student Member, IEEE

Abstract—This paper examines graph-theoretic properties of
existing peer-to-peer networks and proposes a new infrastructure
based on optimal-diameter de Bruijn graphs. Since generalized
de Bruijn graphs exhibit very short average distances and high
resilience to node failure, they are well suited for distributed hash
tables (DHTs). Using the example of Chord, CAN, and de Bruijn,
we study the routing performance, graph expansion, clustering
properties, and bisection width of each graph. Having confirmed
that de Bruijn graphs offer the best diameter and highest connec-
tivity among the existing peer-to-peer structures, we offer a very
simple incremental building process that preserves optimal prop-
erties of de Bruijn graphs under uniform user joins/departures.
We call the combined peer-to-peer architecture optimal diameter
routing infrastructure.

Index Terms—De Bruijn graphs, diameter-degree tradeoff,
peer-to-peer networks.

I. INTRODUCTION

OVER the last few years, peer-to-peer networks have
rapidly evolved and have become an important part of

the existing Internet culture. All current peer-to-peer proposals
are built using application-layer overlays, each with a set of
graph-theoretic properties that determine its routing efficiency
and resilience to node failure. Graphs in peer-to-peer networks
range from star-like trees (centralized approaches such as
Napster) to complex -node-connected graphs (such as Chord
[42], CAN [33], and Pastry [37]). The performance of each
peer-to-peer architecture is determined by the properties of
these graphs, which typically possess diameter and

degree at each node (where is the number of peers
in the system). Until recently [13], [20], [30], understanding
whether these bounds were optimal and whether there existed
fixed-degree graphs with diameter was an important
topic of distributed hash table (DHT) research [34], [46].

In the first part of this paper, we examine the problem of ob-
taining a logarithmic routing diameter in fixed-degree peer-to-
peer networks. Our work relies on generalized de Bruijn graphs
[19] of degree and asymptotically optimal diameter .
However, since the diameter itself does not tell the whole story,

Manuscript received November 12, 2004; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor R. Govindan. This work was sup-
ported by the National Science Foundation under Grants CCR-0306246,
ANI-0312461, CNS-0434940, and REU-0353957.

D. Loguinov and X. Wang are with the Department of Computer Sci-
ence, Texas A&M University, College Station, TX 77843 USA (e-mail:
dmitri@cs.tamu.edu; xmwang@cs.tamu.edu).

J. Casas is with the Department of Computer Science, University of
Texas—Pan American, Edinburg, TX 78539 USA (e-mail: jcasas@rgv.rr.com).

Digital Object Identifier 10.1109/TNET.2005.857072

we also study the average distances between all pairs of nodes
since this metric (rather than the diameter) often determines the
responsiveness and capacity1 of a peer-to-peer network. We also
study the optimality of greedy routes constructed by each graph
and compare them to those obtained through BFS.

We next analyze clustering and small-world properties of sev-
eral P2P networks and explain how they relate to graph expan-
sion. We derive that de Bruijn graphs have an order of mag-
nitude smaller clustering coefficients than Chord, which partly
explains the differences in expansion, fault tolerance, and di-
ameter between the two graphs. We then study the resilience
of these networks against node failure, or simply their connec-
tivity. In general, connectivity determines the number and loca-
tion of failures that a graph can tolerate without becoming dis-
connected. We focus on the edge bisection width of each graph
and demonstrate that de Bruijn graphs are several times more
difficult to disconnect than the traditional approaches.

Having confirmed that de Bruijn graphs offer an appealing
framework for P2P systems, we provide an algorithm called
optimal diameter routing infrastructure (ODRI) for building
and load-balancing such graphs incrementally as peer nodes
join/leave the system. We conclude the paper by showing that
under uniform user joins, the diameter of ODRIs peer-to-peer
graph remains asymptotically optimal, and its degree can be
bounded with a proper choice of load-balancing steps.

The paper is organized as follows. Section II discusses the
background. Section III introduces static de Bruijn graphs and
shows their advantages over earlier proposals. Section IV de-
rives the average distance of Chord, CAN, and de Bruijn and
studies their greedy routing. Section V examines clustering/ex-
pansion of each graph, and Section VI investigates their bisec-
tion width. Section VII introduces distributed de Bruijn graphs
and ODRI. Section VIII concludes the paper.

II. BACKGROUND

Many current peer-to-peer networks [33], [37], [42], [47] are
based on DHTs, which provide a decentralized, many-to-one
mapping between user objects and peers. This mapping is ac-
complished by organizing the peers in some virtual coordinate
space and hashing each object to these virtual coordinates.
The information about each object (such as the IP address of
the owner) is kept by the peer to whose coordinates the object
hashes. Their distributed structure, excellent scalability, short
routing distances, and failure resilience make DHTs highly
suitable for P2P networks.

1Capacity is a term used in wireless ad-hoc networks [17] to measure the
maximum throughput of a network under all-to-all communication.

1063-6692/$20.00 © 2005 IEEE

1108 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

A. Peer-To-Peer DHTs

Many current DHTs [37], [39], [47] rely on the concept
of prefix-based routing introduced by Plaxton et al. in [32].
Plaxton’s framework is extended in [47] and [37] to accom-
modate dynamic join/departure of peers and provide necessary
failure-recovery mechanisms. Using an alphabet of size , both
approaches build a -regular graph of diameter and
node degree . Among other methods,
Ratnasamy et al. [33] propose a peer-to-peer architecture called
content-addressable network (CAN) that maps the DHT to a

-dimensional Cartesian space. CAN’s diameter is
and the degree of each node is . Stoica et al. [42] propose a
distributed graph called Chord that uses a ring with diameter
and degree both equal to .

Recent proposals start to address the issue of routing in log-
arithmic time in fixed-degree graphs. For example, Considine
et al. [9] expand on Chord’s ring structure by constructing a di-
graph (directed graph) of fixed degree; however, the proposed
structure needs to estimate the number of active nodes to prop-
erly build the application-layer graph. Among tree-based struc-
tures, Freedman et al. [14] propose a DHT based on distributed
tries and Tran et al. [44] organize peers into a multicast tree of
degree and diameter . Xu et al. [46] study di-
ameter-degree tradeoffs of current DHTs and propose a graph
based on a modified static butterfly. Another peer-to-peer archi-
tecture based on butterfly networks (Viceroy) is shown in [26].

Independently of this work, several recent papers have also
proposed de Bruijn graphs for peer-to-peer networks [13], [20],
[30]. These developments are complementary to our investiga-
tion and provide implementation details and additional anal-
ysis not covered in this paper. For example, Koorde [20] has
a different set of linking/routing rules for incomplete de Bruijn
graphs, D2B [13] extensively studies the binary version of the
graph, and distance halving [30] shifts node labels in the reverse
direction (i.e., left to right).

B. Fault Tolerance of DHTs

Fault tolerance of peer-to-peer networks is an equally im-
portant topic. Liben-Nowell et al. [24] examine error resilience
dynamics of Chord when nodes join/leave the system and de-
rive lower bounds on the rate of neighbor acquisition neces-
sary to maintain a connected graph with high probability. Fiat
et al. [12] build a censorship-resistant network that can tolerate
massive adversarial node failures and random object deletions.
Saia et al. [38] create another highly fault-resilient structure
with state at each node and per-mes-
sage routing overhead. Gummadi et al. [16] find that ring-based
graphs (such as Chord) offer more flexibility with route selec-
tion and provide better performance under random node failure
compared to several other traditional DHTs.

C. Random Graphs

Another direction for building DHTs relies on properties
of random graphs. The main thrust in this area is to build
logarithmic-time routing structures with constant degree.
Pandurangan et al. [31] propose a random DHT graph with a
constant degree and (almost certainly) logarithmic diameter;

however, the paper does not provide an efficient routing al-
gorithm for the proposed structure that can deterministically
explore the low diameter of the graph. Aspnes et al. [1] ex-
amine random graphs of fixed degree and derive upper
and lower bounds on the expected routing distance in such
graphs. Their results show that both bounds are proportional
to . Manku [27] considers random graphs
of degree and asymptotically optimal expected dis-
tance . Law et al. [22] build random expander
graphs based on Hamiltonian cycles with diam-
eter and degree. Manku et al. [29] analyze several
randomized systems (i.e., Randomized Chord, Randomized
Hypercube, and Symphony [28]) and conclude that the usage
of neighbors-of-neighbors (NoNs) in routing decisions reduces
the average distance in the corresponding graph from
to with high probability.

D. Optimal-Diameter Graphs

The problem of designing an optimal-diameter graph of fixed
degree has been extensively studied in the past. In one formula-
tion of this problem, assume a graph of fixed degree and di-
ameter (the maximum distance between any two nodes in the
graph). What is the maximum number of nodes that can be
packed into any such graph? A well-known result is the Moore
bound [7], [8]

(1)

Interestingly, the Moore bound is only achievable for
trivial values of and . In fact, the Moore bound is provably
not achievable for any nontrivial graph [7]. Directed de Bruijn
graphs come close to the Moore bound and can be built with

nodes [19] or even with nodes
[35]; however, in general, it is not known how close we can
approach the upper bound for nontrivial graphs [8]. In the
context of peer-to-peer DHTs, we are concerned with a different
formulation of the problem: given nodes and fixed degree ,
what is the minimum diameter in any graph built on top of these

nodes? The answer follows from (1) as

(2)

Imase and Itoh [19] construct nearly optimal de Bruijn graphs
of diameter , which is at most ; however,
for large , the two diameters become asymptotically equal. In
this paper, we use the same basic algorithms [19] even though
they can be slightly improved [35] at the cost of losing greedy
shortest-path routing.

Another important metric related to the routing performance
of a graph is its average distance between any pair of nodes.2

The lower bound on in any -regular graph is given by the
average distance in the corresponding Moore graph and is also
not achievable for nontrivial values of and [40]

(3)

2Note that we include the distance from each node to itself in � while some
of the related work does not.

LOGUINOV et al.: GRAPH-THEORETIC ANALYSIS OF STRUCTURED PEER-TO-PEER SYSTEMS: ROUTING DISTANCES AND FAULT RESILIENCE 1109

With respect to , de Bruijn graphs are again asymptotically
optimal and converge to the bound in (3) for sufficiently large

and [40].

III. DE BRUIJN GRAPHS

A. Motivation

One of the goals of this work is to build a DHT on top of
fixed-degree graphs with provably optimal routing diameter.
Since nontrivial Moore graphs do not exist [7], we use de
Bruijn graphs [19] of diameter and often call them
“optimal” since, among the class of practically useful graphs,
they are optimal. To illustrate the impressive reduction in
diameter compared to the classical DHT structures, assume
one million nodes and degree fixed at . Under
these circumstances, Chord offers a graph with diameter
equal to , while a de Bruijn graph with the
same number of neighbors has a diameter four times smaller:

. Note that the diameter
of the corresponding Moore graph is essentially the same:

. The reduction in the average distance is
not as impressive, but nevertheless significant: hops
in Chord and 4.6 in de Bruijn.

Throughout the paper, we are concerned with the properties
of the underlying graph of each peer-to-peer network. Con-
sequently, we examine the diameter and resilience of these
graphs assuming that the hashing function equally spreads
users along the DHT space and that all graphs are populated
with the maximum number of nodes (this assumption is relaxed
in Section VII). We further assume, for simplicity of notation,
that the total number of nodes is a power of node degree and
omit ceiling functions whenever appropriate.

B. Structure

De Bruijn graphs [6], [19], [23], [40] are nearly optimal,
fixed-degree digraphs of diameter , where is the fixed
degree of each node and is the total number of nodes. Note
that de Bruijn graphs are directed graphs with outgoing and

incoming edges at each node, which also holds for many
current DHTs [37], [42], [47]. Assume that each node is
hashed to a string drawn from some alphabet of size .
The classical directed de Bruijn graph [19] contains
nodes where is the diameter of the graph. Each node in
the graph is a string of length linked to other
nodes , for all possible . For examples
and discussion of routing rules, see [25].

C. Comparison With Existing Graphs

In this section, we briefly examine diameter-degree tradeoffs
of the existing protocols and compare them to those of de Bruijn
graphs. We leave a thorough analysis of numerous recently pro-
posed graphs [15], [22], [26], [28], [44], [46] for future work
and conduct a detailed study of two classical approaches (Chord
[42] and CAN [33]) in Sections IV–VI. This section also shows
results for Pastry and the static butterfly graph (without detailed
analysis). Note that our treatment of the butterfly follows the
traditional definition [23], which is the basis of two recent pro-
posals, Viceroy [26] and Ulysses [46]; however, neither of these

TABLE I
ASYMPTOTIC DEGREE/DIAMETERS OF POPULAR GRAPHS

two graphs exactly implements the classic butterfly. Therefore,
as we discuss below, the individual diameter-degree tradeoffs of
these approaches are slightly different from that in the classic
graph. We further remove all fault-resilient additions of each
structure (such as the predecessor pointer and -element suc-
cessor list in Chord) and only analyze the “raw” performance of
each graph.

As an illustration of fixed-degree tree structures, we also ex-
amine -ary tries as they have been recently proposed for DHTs
[14]. A -ary tree uses prefix-based routing over a tree where
each parent maintains children, one child for each symbol in
the alphabet. Consequently, the maximum degree of any node
in the trie is and the diameter of the graph is
(i.e., the distance to the root and back).

Finally, recall that the traditional butterfly network contains
nodes (where is again the degree of each node)

and has diameter . Notice that can be expressed
in terms of degree using Lambert’s function [23]

(4)

which is asymptotically twice the diameter of de Bruijn graphs.
Even though butterflies are appealing structures, there are non-
trivial difficulties in building them as nodes join and leave the
system. In one example, Viceroy [26] implements a binary but-
terfly with diameter and degree 7 and further requires
estimation of the number of nodes in the system. In another
example, Ulysses [46] adds neighbors to each node and
is no longer a fixed-degree graph. As we show in Section VII,
distributed de Bruijn graphs possess no more conceptual com-
plexity than Chord, achieve optimal diameter in the peer-to-peer
graph, and can be built with a fixed application-layer degree.

Table I shows asymptotic diameter and node degree of de
Bruijn graphs and several existing structures. Even though
Chord allows a generalization to neighbors and
diameter [42], it is most frequently used with the
default value of studied throughout this paper. Also
note that the tree maintains its average degree over all nodes
equal to only 2 (since approximately fraction of the
nodes are leaves); however, the imbalance in the middle of the
tree with nodes of degree creates a rather pessimistic
diameter-degree tradeoff.

We next examine the performance of these graphs in a hypo-
thetical peer-to-peer system of nodes. Table II shows
the diameter of each graph as a function of its degree . Notice
that, for low-degree networks , even the trie offers a
better diameter than the three classical approaches (i.e., CAN,

1110 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

TABLE II
GRAPH DIAMETER FOR N = 10 PEERS

Chord, and Pastry). In fact, the trie routes in half the time com-
pared to the classical Chord (i.e.,) or CAN. Also notice
that de Bruijn graphs with offer a diameter four times
smaller than those in Chord or CAN. Furthermore, de Bruijn
graphs can route between any pair of nodes in 20 hops with
only two neighbors, which is ten times less than that required by
CAN, Chord, or Pastry to achieve the same diameter. Finally, the
traditional butterfly offers a diameter 50%–60% larger than in
de Bruijn graphs, but 30%–60% smaller than in base- Chord.

One interesting observation about CAN points to the fact that
selection of the number of dimensions is an important decision
for a given number of nodes . It is noted in [33] that is likely
to be fixed while changes; however, as Table II shows, many
small values of result in greatly suboptimal diam-
eters. This observation is easy to explain since CAN’s diameter

is a strictly convex function with a unique minimum
located at (epeers per dimension). Keeping in mind
that each dimension must contain an integer number of peers,
the best practical diameter is achieved for . Thus, for

, the optimal number of dimensions is 12 (
neighbors) and the optimal diameter is 19. Additionally, note
that, for , CAN’s degree and diameter are both
equal to that of Chord (this is shown in Table II for and
is noted in [33] and [42]).

Further examining Table II, notice that Pastry offers a good
diameter only for large . In fact, to come within one
hop of the optimal diameter for , Pastry requires at
least 160 neighbors (not shown in the table). Such large routing
tables may sometimes (i.e., over modem links) be impractical
in the real Internet due to the high volume of traffic required to
maintain peer-level connections and repair broken links when
existing neighbors fail.

IV. ROUTING ANALYSIS

De Bruijn graphs have desirable properties for peer-to-peer
networks that stem from their small diameter. However, the di-
ameter of a graph is simply the largest distance between any pair
of nodes, which only provides an upper bound on the number of
hops between any pair of users. A much more balanced metric
is the average distance between any pair of nodes since this is
the performance a user can expect from the peer-to-peer system
when searching for objects.

Define to be the shortest distance (using greedy
routing rules) between nodes and in a given graph. In what
follows below, we first derive the probability mass function of

and then compute its expectation .

Fig. 1. (a) Distribution of shortest paths d(x; y) in Chord for N = 1 024
fitted with a Gaussian model. (b) Shortest path distribution in CAN for N =
10 (d = 1);N = 10 (d = 2);N = 10 (d = 3);N = 10 (d = 4).

A. Chord

Stoica et al. [42] demonstrated in simulation that the average
inter-node distance in Chord is and offered a brief ex-
planation of this fact. They further showed that the distribution
of is bell-shaped, as illustrated in Fig. 1(a). The his-
togram appears to be Gaussian as supported by an almost-per-
fect fit of a Gaussian distribution in the figure. It has been noted
before that certain real-world graphs (such as those describing
webpage linkage structure [4]) exhibit Gaussian distributions of

, but no explanation of why this happens has been of-
fered. Below, we analyze Chord’s distribution of shortest dis-
tances, understand why it appears to be Gaussian, and provide
additional qualitative insight into the structure of the graph using
“small-world” terminology.

Lemma 1: Each node in Chord can reach exactly nodes

at shortest distance .
Proof: Recall that, in Chord, each node with hash

index has neighbors located at indexes
, for . Notice that any

shortest path to a given destination is a sequence of unique
jumps, each of which is a power of two. The uniqueness of
jumps is easy to see since any two jumps of length within the
same shortest path can be replaced with a single (more optimal)
jump of size . Consequently, any path of length is formed
by drawing unique elements from set ,
where is the diameter of the graph as discussed earlier. The
number of possibilities to draw distinct objects from a set of

size is , which immediately leads to the statement of the

lemma.
Using symmetry of nodes in Chord and the result of this

lemma, the probability mass function (PMF) of is given
by a binomial distribution with parameters

(5)

Our simulation results confirm that (5) gives the exact dis-
tribution of shortest path lengths in Chord. The expected value

of a binomial random variable is a well-known
result and equals or simply . This provides an alterna-
tive derivation of the result previously shown in [42].

LOGUINOV et al.: GRAPH-THEORETIC ANALYSIS OF STRUCTURED PEER-TO-PEER SYSTEMS: ROUTING DISTANCES AND FAULT RESILIENCE 1111

The reason why the distribution of shortest distances in Chord
appears to be Gaussian is explained by the de Moivre–Laplace
theorem, which states that the binomial distribution in (5)
asymptotically tends to a Gaussian distribution with mean

and variance for sufficiently large .
Even though we have not provided an insight into why certain
Internet graphs exhibit Gaussian distributions of shortest paths,
we found a clear explanation of this phenomenon in Chord.

There is also a simple intuitive link between the bell shape of
the curve in Fig. 1(a) and the expansion properties of the graph.
As the distance from any given node increases, the number of
new neighbors found by the search slowly saturates and starts
declining after half of the nodes have been reached. This means
that many of the newly found nodes link to some of the previ-
ously discovered nodes. This leads to a situation where the new
neighbors “know” many of the old neighbors, which is often
called the small-world property (or clustering) of the graph [4],
[5]. In graph theory, the growth in the number of new neighbors
discovered at a certain distance is related to node expansion of
the graph. Quickly expanding graphs maintain an exponentially
increasing number of new neighbors up to the diameter of the
graph, which means that very few of the new neighbors “know”
the old ones (and hence their clustering coefficients are virtually
zero). We study these phenomena more carefully in Section V,
but currently conjecture that we should expect reasonably high
clustering and low expansion from Chord.

B. CAN

Recall that CAN organizes its nodes into a -dimensional
Cartesian space. We first examine the average distance in this
graph and then show that, for the same degree, CAN’s distri-
bution of routing distances becomes identical to that in Chord.
The next lemma generalizes the result previously shown without
proof in [33].

Lemma 2: The expected distance between any two CAN
nodes is for even and for odd .

Proof: Examine a -dimensional CAN space. The dis-
tance between each source node and each
destination can be decomposed into
random variables

(6)

where is a one-dimensional (1-D) distance norm that de-
pends on whether CAN is toroidal or not. Since we examine
the distribution of all pairs , each coordinate assumes all
possible values and thus is independent of the other coordi-
nates. Hence, all are i.i.d. random variables with some PMF

, which is the distribution of in a 1-D space. Conse-
quently, the probability that a given path from to has length

in a -dimensional CAN is

(7)

Recalling that the mass function of a sum of random variables
is the convolution of their densities, we get

(8)

where * denotes discrete convolution. Unlike Chord, CAN does
not have a single distribution that describes its shortest paths for
all dimensions .

To complete the picture, we next derive distribution .
Assume that the number of peers in each dimension is

. Then the PMF of shortest distances in a 1-D toroidal CAN
of diameter is given by

(9)

The four cases in (9) are very simple. A node can reach
exactly one vertex (itself) in zero hops, two vertices in

hops, and either one or two vertices in hops depending
on the value of . The result in (9) matches simulation results
and produces symmetric curves that progressively become bell-
shaped, as shown in Fig. 1(b).

In order to derive the expected distance in CAN, notice that
and that the average 1-D

distance in the CAN graph is given by

(10)

For odd , 1-D diameter equals and (10)
becomes

(11)

Keeping in mind that diameter of the -dimensional graph
is , the expected distance in CAN is

(12)

For even , 1-D diameter and

(13)

which remains the same regardless of the number of dimensions:
.

Our next lemma shows that, as increases, CAN’s distribu-
tion of shortest paths becomes Gaussian as well.

Lemma 3: For large , CAN’s distribution of shortest dis-
tances is Gaussian.

Proof: The Gaussian shape in Fig. 1(b) follows from the
Central Limit Theorem as the sum of i.i.d. random variables

in (7) tends to a Gaussian distribution. The formal proof
utilizes Berry-Esseen’s theorem [43] and shows that a -fold
convolution of (9) tends to a Gaussian distribution as .
We skip the details for brevity.

We now have sufficient evidence that demonstrates that both
Chord and CAN exhibit Gaussian distributions of shortest dis-
tances. Thus, it is natural to wonder whether the two graphs
are in fact the same structure? Although it is easy to verify that
Chord and CAN are not isomorphic, is it possible that they offer
the same path length distributions to end users? As discussed in
Section III-C, when , CAN’s degree and diameter

1112 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

Fig. 2. (a) Comparison between Chord’s and CAN’s shortest path distributions
for N = 1 024 and d = 5. (b) Distribution of shortest distances in de Bruijn
for N = 1 000 and k = 10 in comparison with model (14).

are both , or those of Chord. We call such CAN “loga-
rithmic” and note that the size of its dimensions is
peers. The next lemma directly follows from (9).

Lemma 4: The distribution of shortest distances in loga-
rithmic CAN is binomial and identical to that in Chord.

The result of this lemma is illustrated in Fig. 2(a) for
, and , which shows a perfect match be-

tween the two graphs (the distributions also match numerically).

C. De Bruijn

In general, the distribution of de Bruijn’s distances is
very complicated and there is no known closed-form expression
for its PMF [40]. Below, we derive a simple formula for

that is exact for all graphs of diameter and is very
close to the real for the rest of the graphs.

Lemma 5: The asymptotic distribution of shortest distances
in de Bruijn graphs is given by

(14)

Proof: Recall the peering rules of de Bruijn graphs. Each
node links to all possible neighbors

. Examine a graph of diameter
and degree . We next derive how many neighbors of any
given vertex are at shortest distance from . Denote by

the set of
all neighbors at (not necessarily shortest) distance from ,
which is produced by shifting vertex left times and filling the
remaining coordinates with arbitrary symbols .
There are obviously such vertices. Consider one vertex

from . Our immediate goal
is to find out how many such vertices do not belong to

(i.e., there is no path from to shorter
than hops).

First, consider an arbitrary vertex
from . Now examine

the number of different possibilities that , which
provides the size of the overlap between sets and . It
is easy to see that, among the free variables and

is always equal to , while the remaining
variables lead to possible pairs such
that .

However, notice that not all source vertices allow such
matching. The necessary condition on for to
be nonempty is , which leaves
variables free and allows an arbitrary choice
for . Therefore, there are vertices in the graph that
allow a match between and . Hence, the expected overlap

between and is the probability of allowing
such overlap times the number of overlapped vertices

(15)

Using similar reasoning and subtracting additional fraction
of nodes that belong to both with for all
, an interested reader can show that can be approx-

imated with high accuracy by3

(16)

Next subtract for all levels from
the maximum number of nodes possible at distance (i.e.,)
and normalize by

(17)

Note that is a special case of the distance from node
to itself, in which case . Keeping the dominating
terms in (17), we get the required expansion in (14).

It immediately follows from the lemma that de Bruijn graphs
expand exponentially and that the majority of nodes are reach-
able at shortest distance from each node . This is demon-
strated in Fig. 2(b) that shows de Bruijn’s for
and (note the log scale of the axis). Intuitively, it is
clear that the average distance in de Bruijn graphs must be very
close to diameter and that the local structure of the graph at
each node looks like a tree (i.e., very few short cycles and low
clustering). We examine the cyclic structure of each graph in
Section V and in the meantime focus on de Bruijn’s average
distance .

Lemma 6: The average distance in de Bruijn graphs is
asymptotically

(18)

Proof: Examine the expected distance between any pair of
nodes

(19)

3To keep the formula exact forD > 3, one must take into account additional
pair-wise overlap between S and S , for all j < m� 1. There is no known
closed-form expression for this overlap.

LOGUINOV et al.: GRAPH-THEORETIC ANALYSIS OF STRUCTURED PEER-TO-PEER SYSTEMS: ROUTING DISTANCES AND FAULT RESILIENCE 1113

TABLE III
AVERAGE GRAPH DISTANCE FOR N = 10

To simplify the expansion, first consider series and
notice that it can be computed by differentiating geometric se-
ries and multiplying it by

(20)

Substituting (20) into (19) yields

(21)

For small , this result improves previously known [6], [18],
[40] lower and upper asymptotic bounds on . For large values
of and , (21) simplifies to become (18). We leave this veri-
fication to the reader.

D. Butterfly

The final graph we examine in this section is the classic but-
terfly. Even though its diameter and average distance are close
to optimal, they are always higher than those in (nontrivial)
de Bruijn graphs. Recall that the average distance in the but-
terfly graph is given by the following [18]

(22)

which, for large and , is 50% larger than the same metric in
de Bruijn graphs.

E. Discussion

The results of this section indicate that de Bruijn graphs offer
not only provably-optimal diameter , but also smaller average
routing times compared to Chord, CAN, and the static butterfly.
As shown in Table III for , the average distance in de
Bruijn graphs is still smaller than half of that in Chord and CAN
for the same number of neighbors and 22% smaller than that in
the butterfly. Also notice that, for large in de Bruijn graphs
converges to the best possible average distance of Moore graphs
shown in the first column of Table III.

This result has several practical implications. First, de-
termines the expected distance (and sometimes delay) in the
graph and represents a measure of the overhead needed to find
data. Second, the average distance determines the capacity of
a peer-to-peer network, where the capacity is a term widely
used in interconnection and wireless networks to define the

TABLE IV
COMPARISON OF GREEDY AND BFS DISTANCES

throughput available to each node under random communica-
tion patterns within the network. Since each peer must forward
requests for other peers, the expected useful capacity of a node
is determined by the inverse of (i.e., for each useful request
a node makes, it must forward on average other requests).

Assuming fixed transmission bandwidth and discounting in-
terference effects, the average capacity of wireless ad-hoc
networks is due to spatial restrictions on connec-
tivity [17], while both Chord and logarithmic CAN maintain an
average capacity of . Compared to wireless
networks, this is a much better bound; however, it is still sev-
eral times lower than that in de Bruijn graphs. Even assuming a
worst-case average distance in de Bruijn graphs, their
average capacity with neighbors is superior to Chord’s
for all

(23)

In fact, the ratio of these two capacities grows infinitely large
(albeit very slowly) for large . Compared to the static butterfly,
de Bruijn graphs offer 50% more capacity in asymptotics and at
least 22% more capacity in graphs of practical size examined in
this work.

In the current Internet, each search request typically carries
a small amount of information and it is not clear at this point
whether future peer-to-peer systems will be utilized to the point
of their ultimate capacity. Nevertheless, we believe that it is
desirable to design the underlying structure of the application-
layer graph to be able to carry as many concurrent requests as
possible. Thus, we must conclude that de Bruijn graphs offer
clear benefits in terms of expected capacity and routing dis-
tances over the existing approaches.

F. Greedy Routing

One issue left to examine is the ability of each graph to find
the actual shortest paths using its greedy rules. We use simula-
tions for this study and compare the quality of the paths built in
deterministic approaches de Bruijn and Chord with that in non-
deterministic techniques Pastry and Randomized Chord [29].
The last two methods are used to illustrate a common property
of random P2P graphs—the default routing algorithms often
find paths much longer than the actual shortest routes. Table IV
shows a comparison between the four methods in graphs of 1000
(de Bruijn) and 1024 (Chord, Pastry, and Randomized Chord)
nodes and degree at each peer (note that, for nonde-
terministic methods, all metrics are averaged over 100 runs).
Observe that de Bruijn’s and Chord’s greedy routing is optimal
(the same holds for CAN), while that of Pastry and Randomized

1114 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

TABLE V
COMPARISON OF NONGREEDY AND BFS DISTANCES

Chord can be substantially improved. Also notice that Random-
ized Chord exhibits larger average greedy diameter than Chord
(i.e., 11.26), but smaller average distance (i.e., 4.83).

Recent work [29] has shown that the addition of NoN routing
can significantly improve the asymptotic performance of many
randomized methods such as Randomized Hypercube, Random-
ized Chord, and Symphony. We examine this hypothesis in sim-
ulation for Randomized Chord and the same set of parameters
as in Table IV. Recall that NoN routing involves not only the
neighbors of each node, but also all nodes at distance two. For
de Bruijn, this is equivalent to increasing node degree to and
leads to the reduction of the diameter by a factor of two (if
is odd, the corresponding ceiling function must be applied to

). Since not all path lengths are divisible by two, the av-
erage distance typically does not enjoy the same improvement
(see below).

The results of NoN simulations are shown in Table V. As
expected, the diameter of both deterministic graphs is reduced
to and their average distance became correspondingly
smaller. On the other hand, Pastry and Randomized Chord are
able to use NoN routing to reduce their greedy by a factor
of 2.24 and 2.17, respectively. In fact, their performance be-
comes almost identical, although it is still 18% worse than that
of de Bruijn graphs.

One question comes to mind—can the performance of NoN-
Pastry be improved by constructing a 100-regular version of the
graph instead of using NoN routing over a 10-regular network?
The answer is positive—using 100 neighbors , Pastry
can route in two hops to any peer in a 2500-node graph, which
is already a substantial improvement over the values shown in
Table V. It thus becomes unclear whether given a family of

-regular graphs (such as Pastry or base- Chord), NoN-
greedy routing in can be more optimal than simple greedy
routing in . We leave this analysis for future work.

Next, we investigate clustering and then resilience features of
de Bruijn graphs before addressing their practical use in peer-to-
peer networks.

V. CLUSTERING AND EXPANSION

Following significant research effort to model the structure of
the current Internet, it was discovered that many of the existing
topology generators did not accurately match the “small-world”
(clustering) properties of the Internet graph [4], [5]. Clustering
is a very interesting concept that is found in many natural phe-
nomena and that determines how tightly neighbors of any given
node link to each other. In what follows, we examine clustering
in Chord, CAN, and de Bruijn graphs, study graph-theoretic se-
mantics behind the clustering coefficient, and show why met-

rics related to clustering are important concepts for peer-to-peer
systems.

Given graph , node , and its neighborhood
, clustering coefficient is defined

as the ratio of the number of links that are entirely con-
tained in to the maximum possible number of such links (if
the graph is undirected, each link in) is counted twice)

(24)

Graph clustering is the average of for all vertices
with degree at least 2. The two questions we study below are:

what exactly does clustering mean and how does it affect the
properties desirable in peer-to-peer networks?

A. Clustering Coefficients

We first present the values of clustering coefficients of all
three graphs and then explain the meaning of our results.

Lemma 7: Chord’s clustering coefficient is .
Proof: In Chord, all nodes are symmetric (modulo) in

terms of their connectivity rules. Without loss of generality, con-
sider node and its neighbors . Examine
any two nodes and , from this list.
It is easy to notice that and are neighbors of each other if
and only if is a power of two. Hence, we must have

for some integer . This can only occur
when , or . This means that all neigh-
bors of are sequentially chain-linked to one another (note that
the links are uni-directional from smaller nodes to larger ones).
Hence, clustering in Chord is

(25)

This completes the proof.
Lemma 8: De Bruijn’s clustering coefficient is

for and for .
Proof: De Bruijn graphs are also fairly simple to ana-

lyze. Below, we show that there are exactly nodes
with nonzero clustering coefficients, while the remaining

nodes have . Examine the con-
ditions necessary to achieve nonzero clustering for a given
node . For any two of ’s neighbors

and , the necessary condi-
tion for nonzero clustering is either links to or links to .
Due to symmetric neighboring rules, it is sufficient to analyze
the case of linking to .

First, notice that and
for some symbols and

from . Note that the value of does not affect whether and
can be neighbors of each other. When there is a directed link

from to , we have for some ,
or, in other words, . This
can only occur when , which means that
there are exactly nodes with this property (since only
two out of coordinates are free variables). Ensuring that

, and , there are vertices that
have nonzero clustering. If allows clustering, then must
be equal to , but is a free variable that determines how

LOGUINOV et al.: GRAPH-THEORETIC ANALYSIS OF STRUCTURED PEER-TO-PEER SYSTEMS: ROUTING DISTANCES AND FAULT RESILIENCE 1115

many pairs are neighbors of each other. Again, making
sure that , we are left with choices for . Hence,
clustering is and the average
graph clustering is given by

(26)

A special case of is handled similarly (except that de-
gree-1 nodes must be excluded from the summation) and leads
to . We skip the proof
for brevity.

Simulation results confirm that (25) and (26) are exact. Next
notice that de Bruijn’s decays to zero much quicker than
Chord’s confirming our earlier conjecture based on the distribu-
tion of shortest paths in Section IV.

The derivation of for CAN is much simpler as one can
easily notice that none of the nodes in any neighborhood link to
each other. Hence, CAN’s is zero. This is somewhat coun-
terintuitive since CAN’s number of new neighbors becomes sat-
urated at just as in Chord, and therefore its clustering prop-
erties should be similar to Chord’s. We next examine the reasons
behind this phenomenon and generalize clustering to become a
global metric.

B. Cycles

There are two ways to better understand what clustering
means and assess its importance for peer-to-peer networks. The
first insight is based on cycles. Given a -regular undirected
graph , it is easy to notice that the number of 3-cycles per
node determines the clustering coefficient of the graph. Recall
that an -cycle is a path that starts and ends in the same node
and contains exactly edges4. Hence, any 3-cycle must involve
two direct neighbors of node , which results in clustering.

Since one goal in peer-to-peer networks is to reach as many
nodes as possible within a certain number of hops, cycles that
lead back to the original node where the request started are not
very helpful. Another goal of peer-to-peer networks is to pro-
vide a fault-resilient environment where a simultaneous collapse
of several nodes does not separate the graph into disjoint compo-
nents. Short cycles mean that paths from any node through dif-
ferent neighbors leading to any destination must overlap with
each other. This is not desirable since multiple parallel paths to

may be compromised when nodes in the neighborhood fail.
This is shown in Fig. 3(a) where failure of node 1 leaves with
no path leading outside of its neighborhood. In fact, when node
1 fails, nodes 2 and 3 are also disconnected from the rest of the
graph since all of their outgoing (as well incoming) edges are
locally clustered.

Now we come back to the issue of why CAN has zero clus-
tering, but identical shortest-path properties to those found in
Chord. The absence of 3-cycles in CAN is explained by the fact
that it has no odd cycles whatsoever, but it does have plenty of
even cycles. In fact, the number of 4-cycles in CAN is roughly
the same as in undirected Chord with the same number of neigh-
bors. Consequently, local properties captured by the clustering

4Usually, these paths are required to be edge and/or node disjoint, but this
always holds for 3-cycles.

Fig. 3. (a) High clustering leads to weak connections outside a neighborhood.
(b) A more generic definition of clustering.

coefficient do not necessarily mean much for graphs like CAN
where only “friends of friends” have common acquaintances,
while direct friends of node never know each other. This is il-
lustrated in Fig. 3(b), where clustering coefficient is zero,
but nodes 2, 3, and 4 all link to the same “friend of a friend”
node 5.

The concept of -cycles applies to directed graphs as well;
however, it does not directly produce the clustering coefficient
because of a stricter nature of directed cycles. These difficulties
lead us to generalize the framework of clustering using expan-
sion analysis below.

C. Graph Expansion

Again examine Fig. 3(b), which shows how undirected 4-cy-
cles contribute to a graph’s global clustering properties. Global
clustering is a concept of “friends knowing each other” gener-
alized to “friends knowing each others’ friends.” Although the
previous discussion of cycles allows one to account for these
cases, we seek a more generic and useful definition of clustering
that goes beyond -cycles and has a simple closed-form
analytical expression for all three graphs.

We next study graph expansion, which determines how
quickly the graph finds “unknown” nodes. Consider a graph

and select some of its nodes into set .
Define the set of all edges between and the rest of the graph

to be . Set
is called the edge boundary of . Edge expansion is

defined as the ratio of the size of to the size of

(27)

It is easy to see the relationship of to clustering. Select
to be the neighborhood of some node . Therefore,
and the number of edges contained within is , generi-
cally assuming a -regular graph. Then the clustering coefficient
of is given by

(28)

Edge expansion determines the strength of the graph in the
presence of edge failure. Clearly, a larger clustering coefficient
in a -regular graph implies smaller , as seen in (28), and
generally leads to weaker graphs.

1116 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

Definition 1: Graph edge expansion (sometimes called the
isoperimetric number of the graph) is the minimum of
for all nonempty sets .

Notice that, by examining , we no longer focus on local
clustering, but rather on global properties of the graph and its
resilience to edge failure over all possible sets . Edge expan-
sion tells us how many edges link outside any set ; however,
it does not tell us if the outgoing edges link to the same node
multiple times. For example, in Fig. 3(b), there are eight edges
leaving neighborhood , but they link to only four unique
nodes, which indicates a good amount of path overlap. Edge ex-
pansion tells us the size of the edge cut between and the
rest of the graph, which is a useful analysis tool for studying
a graph’s resilience when edges are expected to fail (i.e., eight
edges in the cut are better than four). In peer-to-peer systems,
node failure is much more common than edge failure, in which
case regardless of how many edges cross the cut, the strength
of the neighborhood is determined by the number of nodes on
the other side of . Hence, from the resilience perspective of
peer-to-peer networks, it makes more sense to examine node ex-
pansion of the graph as we define below.

Definition 2: Consider a graph and some subset
of nodes . Define the node boundary of to be

. Node expansion of
the graph is given by

(29)

Metrics and are related to edge and node bisection
widths, respectively, of the graph, the determination of which
is generally an NP-complete problem. Furthermore, even after
many years of research, the exact expression of these metrics for
de Bruijn graphs remains unknown. Below, we limit our anal-
ysis to sets that are neighborhoods of a given node (i.e., balls
centered at the node) and study graph expansion that explains
how well each ball is connected to the rest of the graph. Note
that these balls do not necessarily represent the weakest sets

of each graph and do not, in general, achieve the minimum
bound in (29). Derivation of better bounds on is the topic
of on-going research.

Recall that ball of radius centered at node con-
tains all nodes reachable from in no more than hops. In other
words, . It is easy to notice that the
boundary of a ball is simply
and that our derivations in Section IV can be applied to study ex-
pansion (and global clustering) of each graph. Both logarithmic
CAN and Chord have the same expansion properties since their
distributions of are identical. Hence, from now on, we
only consider Chord.

Lemma 9: Chord’s ball expansion is asymptotically
.

Proof: Using our prior result in (5), the size of each ball
of radius in Chord is given by

(30)

The number of nodes in boundary is and

the resulting ball expansion of the graph is given by

(31)

From observing prior plots of the distribution of , it
is clear that Chord has a low expansion value since the
number of nodes in saturates at . Omitting
cases when is even and no single ball contains exactly half the
nodes, we briefly consider the odd values of as they allow us
to approach the worst-case bound on . For odd
reaches its minimum when ball radius is . Keeping
in mind that the size of this ball is and using
Stirling’s approximation in (31), we have

(32)

which leads to the statement of the lemma.
This function slowly decays from 0.45 for to

for . Contrast this result with that for de Bruijn graphs
(see below), which maintain constant connectivity for
all ball sizes and all values of .

Lemma 10: De Bruijn’s ball expansion is no less than
.

Proof: De Bruijn graphs are also easy to analyze given
their expansion model in (14)–(17). From (14), write the size
of each ball of radius as (assuming large and neglecting
insignificant terms) and notice that the largest ball smaller than
the entire graph contains only a small fraction of all nodes

(33)

Further estimating edge boundary using (14),
we obtain

(34)

which completes the proof.
De Bruijn graphs expand so quickly that they actually ap-

proach the maximum possible bound on and keep all
balls connected to the rest of the graph through at least

external nodes. In fact, this not only explains
the low diameter of de Bruijn graphs, but also leads to two im-
portant results. First, clustering in de Bruijn graphs is minimal
at both local and global levels since exponential neighborhood
expansion is preserved for all balls smaller than the graph itself.
Second, path overlap in the graph is virtually nonexistent due to
little global clustering. This means that shortest parallel paths
toward any given destination are expected to be node-disjoint
with high probability.

In the next section, we study fault resilience of these graphs
and then proceed to dynamic construction of peer-to-peer
networks.

LOGUINOV et al.: GRAPH-THEORETIC ANALYSIS OF STRUCTURED PEER-TO-PEER SYSTEMS: ROUTING DISTANCES AND FAULT RESILIENCE 1117

VI. RESILIENCE

A. Generic Methods

Classical failure analysis in peer-to-peer networks (e.g., [24],
[42]) focused on analyzing the probability that a given node

becomes disconnected under a -percent node failure. This
amounts to computing the probability that all neighbors of
fail simultaneously and leads to small individual failure prob-
abilities for most practical networks. Also note that results
derived using this method hold for any -regular graph, regard-
less of its internal structure. Clearly, this analysis is insufficient
to distinguish between all -regular graphs since some of them
may contain “weak” parts that can partition the graph into sev-
eral disjoint components while no single node is completely dis-
connected from its component.

Another approach often used in classical fault resilience anal-
ysis is to examine -node-connectivity of the graph in question.
Given our graph structures, we show below that this metric does
not lead to any significant insight either.

Definition 3: A -regular graph is -node-connected if there
are node-disjoint paths between any pair of nodes.

This implies that a -node-connected graph can tolerate the
failure of any nodes without becoming disconnected and
that the diameter of the graph after any nodes have failed
is at most . Both CAN and Chord are -node-connected5,
while de Bruijn graphs are not due to several “weak” nodes
with self-loops. This classical form of de Bruijn graphs has
been shown to be -node connected [41]; however, we
seek to achieve maximum fault tolerance, which leads us to
removing the loops and linking these “weak” nodes to each
other. Consider node , with a self-loop. A
chain-linked de Bruijn graph has directed links

, for all and . Recent devel-
opment in consecutive- graphs [10] also studied chain-linked
de Bruijn graphs and proved that they are -node connected.

What we know so far from classical peer-to-peer network
analysis and maximum fault-tolerance metrics is that all three
graphs are similar in their resilience. Hence, we seek additional
methods that can distinguish between the fault tolerance offered
by each graph. One such metric is bisection width [23], which is
defined as the smallest number of (possibly directed) edges be-
tween any two equal-size partitions of the graph. Graph bisec-
tion width determines the difficulty of splitting the graph into
giant components by failing individual edges. We next examine
this metric in all three graphs.

B. Bisection Width

Note that, besides determining resilience, bisection width of
a graph often provides tight upper bounds on the achievable ca-
pacity of the graph. Assume that each node sends messages to
random destinations at a certain fixed rate. This communica-
tion pattern generates messages per time unit. Each message
is replicated times (on average) and each edge is expected
to carry messages per time unit. Note,
however, that this analysis assumes that the combined load is

5This can be shown for CAN by generating all possible orders of traversing
d-dimensional paths between any pair of nodes. Chord’s connectivity is easily
derived from the well-known properties of hypercubes.

Fig. 4. Partitioning of Chord into two smaller Chord graphs.

equally distributed between all edges. There may be bottlenecks
in which the load is significantly higher than the average, and the
resulting throughput capacity of the graph may be lower than the
mean value.

Recall that approximately half of all communication in the
graph is expected to cross the bisection cut. Thus, if this part
of the graph is narrow, it will lead to congestion and inability
of the graph to carry its expected load. One example of graphs
with unacceptably small bisection width are trees, which are
susceptible to both easy disconnects and severe congestion near
the root.

Lemma 11: Chord’s bisection width is .
Proof: The proof is similar to that for hypercubes [23].

We first show that each edge in Chord is contained in
shortest paths, which establishes (using graph-embedding argu-
ments [23]) a lower bound on the bisection width. We then con-
struct a particular partition of into two subgraphs that achieves
this lower bound.

Our first goal is to show that each edge is contained in ex-
actly shortest paths. Assume an edge of “length”
(i.e.,). Next, observe that each path from a node

to all destinations in the graph can be coded with a string
, where if an edge of length is used

in the path and 0 otherwise. Notice that a path
contains an edge of length if and only if . Thus, there
are exactly such paths originating from . It then
follows that the total number of paths with an edge of size
(i.e., over all nodes) is . Since the load on every edge of
size in Chord is symmetric, all edges of length share this
load equally. Finally, recalling that there are exactly edges
of size in , each of them has shortest
paths passing through it. This directly leads to a lower bound

[23].
For the second half of the proof, is easy to see that each Chord

graph of diameter can be split into two Chord graphs
, each of diameter , with exactly edges

between the smaller versions of the graph. This is illustrated in
Fig. 4, where all odd nodes are in graph and all even nodes
are in graph .

Note that Chord’s is double the bisection width of
binary hypercubes since Chord uses directed links while hyper-
cubes are undirected.

Lemma 12: Assuming the size of each dimension is even,
CAN’s bisection width is .

Proof: CAN is optimally split in half when all edges
crossing two parallel -dimensional planes are failed.
Since the size of each dimension in CAN is , each

-dimensional planes contains peers. This leads

1118 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

to the bisection width of . Note that an alternative
derivation can be found in [3].

Applying this result to logarithmic CAN ,
notice that its bisection width is . Furthermore, if we view
undirected links of logarithmic CAN as being composed of two
directed edges, its bisection width matches that of Chord. Also
note that CAN achieves its maximum when
and that all sub-logarithmic values of result in
“weaker” graphs. This is another way of showing that CAN with
small fixed values of may not be competitive to Chord in prac-
tical settings.

The bisection width of the butterfly is [23], where
is given by Lambert’s function in (4). Asymptotically,

this bisection becomes , although for small
it is slightly better. Finally, the exact value of of de
Bruijn graphs is unknown and the best available upper and lower
bounds differ by a factor of four [36]

(35)

Using the lower bound in (35), the bisection width of de
Bruijn graphs for is larger than that in Chord or
CAN by a factor of (which is 2.2 for)
and is generally no worse than that in the butterfly. It is further
conjectured that the actual bisection width of de Bruijn graphs
is at least 40% higher than the pessimistic lower bound used in
the above comparison [11].

In summary, larger values of bisection width in de Bruijn
graphs point toward higher resilience against graph partitioning
and lower congestion in the bisection cut in addition to their op-
timal routing established earlier.

VII. OPTIMAL DIAMETER ROUTING INFRASTRUCTURE

We have accumulated sufficient evidence that shows that de
Bruijn graphs possess both short routing distances and high fault
tolerance. In this section, we discuss ODRI, which builds de
Bruijn graphs incrementally and preserves their nice properties
at the application layer. Fortunately, de Bruijn graphs are very
simple to build incrementally and many of the details (some of
which we skip) are similar to those in recent proposals D2B
[13] and distance halving [30]. We also feel that the algorithmic
structure of ODRI is much simpler than that of other recently
proposed fixed-degree graphs [26], [46].

Let be the maximum possible number of nodes in the
system (note that must be a power of node degree).
Organize the space of all possible nodes between
into a virtual de Bruijn graph and notice that each node in this
structure is a base- integer and that its neighboring rules
can be expressed as

(36)

since a shift left by one digit is equivalent to multiplication of
by .

In ODRI, each existing peer holds a consecutive stretch of
the number space, which can be denoted by , for some

. To join the network, a node routes to the
area of the circle where its hash index is located and asks the
previous owner of the zone to split it in half. Notice that building

the routing table for a newly joined node requires only
message complexity as it can be copied from the previous owner
of the zone. Notification of existing neighbors has another
message overhead. Further notice that unlike Koorde [20], each
existing zone is split in half, which leads to significantly better
bounds on the size of the smallest zone [45].

Peer-to-peer linking rules are also straightforward. Consider
node that owns zone . Each of the integer values in

corresponds to the virtual de Bruijn graph of size .
Hence, to preserve de Bruijn linkage at the application layer,

must connect to all peers holding the other end of each edge
originating in . This means that there is an application-
layer edge if and only if there is an edge in the vir-
tual de Bruijn graph such that and , where
and are the corresponding zones held by and . Again ob-
serve that these rules are different from those in Koorde, which
explains the difference in the application-layer diameter of these
graphs (see below).

We next present several useful results about ODRI. We first
address the issue of whether the application-layer graph main-
tains fixed degree and optimal diameter under the condition of
equal-size zones. We then extend this analysis to random zones
created by a uniform hashing function.

A. Equal-Size Zones

Lemma 13: If all zones have the same fixed size, ODRI main-
tains the application-layer degree equal to .

Proof: Denote by the fixed size of each
zone after nodes have joined (this condition further implies
that is divisible by and there exists a peer whose left
boundary is). Consider an arbitrary node with zone

and notice that links to every peer whose
zone falls between and . Since this
stretch spans de Bruijn vertices from the virtual graph,
there are exactly different peers in this stretch. Using similar
reasoning, it is easy to show that the in-degree of each node is
always (for more details, see Lemma 15 below).

Given the assumptions of the previous lemma, notice that the
application-layer graph in ODRI is a scaled-down version of the
virtual de Bruijn graph. Thus, the diameter of the peer-to-peer
graph under these conditions remains optimal as we show in the
next lemma.

Lemma 14: If all zones have the same fixed size, ODRI
builds an -node application-layer de Bruijn graph with diam-
eter .

Proof: Assume that and , where
and are the diameters of the virtual and application-

layer graphs, respectively. Then, the size of each zone is
, and each node holds enough consecutive de

Bruijn vertices to arbitrarily select the last digits of the vertex
from which it starts jumping toward any destination. Since the
last digits of the source can be selected to always match the
first digits of the destination before any routing starts, the
longest path in the virtual de Bruijn graph must match the re-
maining digits. This clearly requires no more
than hops and provides the necessary bound on the
application-layer diameter.

LOGUINOV et al.: GRAPH-THEORETIC ANALYSIS OF STRUCTURED PEER-TO-PEER SYSTEMS: ROUTING DISTANCES AND FAULT RESILIENCE 1119

B. Random Zones

Achieving constant-size zones using distributed join and leave
processes is a nontrivial but well-studied problem [2], [30].
Equal zone sizes are desirable as they maintain a fixed out-de-
gree at the application layer and provide better balancing of user
objects between the peers. Assuming uniform random hashing,
it can be shown [30] that after a sequence of random joins, the
maximum zone held by a peer is larger than average by a factor
of with high probability (note that the same bound
applies to the maximum out-degree of each peer). While the
existence of large zones has no direct effect on the diameter, the
ability of a graph to avoid generating small zones is of paramount
importance to distributed de Bruijn graphs. Fortunately, under
center-splits, it can be shown [45] that the smallest zone size
does not deviate “too much” from the ideal average size and the
diameter of ODRI remains asymptotically optimal.

While the lower bound on the peer out-degree is simply 1, the
following lower bound on the application-layer in-degree is less
obvious.

Lemma 15: Under a uniform hashing function, ODRI’s
in-degree at each peer is no less than with high probability.

Proof: Select any vertex , in the vir-
tual graph and examine the set of de Bruijn vertices

, all linking to . Sort in ascending order and
notice that the distance between each pair of adjacent nodes
in this list is exactly . From this fact, it follows that
with high probability all vertices must belong to different
peers since the largest zone held by a peer is no more than

[30].
Our next result shows that the imbalance in zone sizes has

little impact on the asymptotic diameter of the peer-to-peer
graph.

Lemma 16: Under a uniform hashing function, ODRI con-
structs a peer-level graph of diameter with
high probability.

Proof: Assume the notation in the Proof of Lemma 14 and
notice that the size of the smallest zone is

with high probability [45]. Thus, in the
worst case, the smallest node can always match at least

last digits of the source
to those in the index of the destination before routing is started.
Following the reasoning in Lemma 14, the diameter of this
graph is . Finally,
recalling that is , we have that the diameter of the
ODRI graph is no more than .

This lemma further implies that the average distance in the
application-layer graph is asymptotically optimal. Also note
that, by allowing worst-case out-degree6 in the peer
graph, ODRI improves Koorde’s diameter from
to .

C. Balancing Zones and Proximity

To overcome imbalance in zone sizes in a highly dynamic en-
vironment, ODRI implements a variation of the “power of two
choices” algorithm [2], [13], [30] during peer joins and depar-
tures. To join an existing ODRI network, a node performs a
biased walk of length through the graph starting in a random

6This is not a major issue since Koorde’s in-degree is similarly�(logN) and
thus neither graph (in its unbalanced form) is truly “fixed degree.”

TABLE VI
ODRI’s DYNAMIC ROUTING PERFORMANCE (N = 30 000; k = 8)

location and searching for the largest node to split. During the
walk, the peer samples neighbors of each visited node , as-
suming that their size is known to through some keep-alive
mechanism. The walk is biased toward large-zone neighbors
since they are more likely to “know” other large nodes. Addi-
tional use of random walks includes load-balancing of objects
(i.e., the node with the largest current load is split in half) and
proximity-aware graph construction (i.e., the new node joins
wherever its neighbors are closest to itself in some physical
sense). During departure, node does the same biased walk
looking for the smallest (or least loaded) node to take over its
zone .

Some of the details of this framework are presented in [45],
while others are still under investigation. It is worthwhile to note
that as long as , the largest zone and largest
out-degree exceed their ideal values by a fixed factor with high
probability [45]. Thus, ODRI achieves both a fixed application-
layer degree and asymptotically optimal diameter.

Table VI shows ODRI’s simulation results in a system with
users, , and (the

results are taken from a single run and represent those observed
in a typical ODRI graph). The ideal (i.e., static) diameter for this
case is five hops and the ideal average distance is 4.81. As the
table shows, ODRI’s zone balancing algorithm greatly improves
the average distance and brings it close to its ideal value with
just a single-hop walk.

VIII. CONCLUSION

In this paper, we studied the diameter-degree tradeoff ques-
tion of DHT research and conducted an extensive graph-
theoretic comparison of several existing methods in terms
of their routing performance and fault resilience. We then
proposed a distributed architecture based on de Bruijn graphs
and demonstrated that it offered an optimal diameter for a
given fixed degree, -node connectivity, large bisection width,
and good node expansion. Combining these findings with
incremental construction of ODRI, we conclude that de Bruijn
graphs are viable structures for peer-to-peer networks.

ACKNOWLEDGMENT

The authors are grateful to J. Byers and the anonymous re-
viewers for providing excellent suggestions and comments.

REFERENCES

[1] J. Aspnes, Z. Diamadi, and G. Shah, “Fault-tolerant routing in peer-to-
peer systems,” in Proc. ACM PODC, Jul. 2002, pp. 223–232.

[2] Y. Azar, A. Broder, A. Karlin, and E. Upfal, “Balanced allocations,”
SIAM J. Comput., vol. 29, no. 1, pp. 180–200, Feb. 2000.

[3] M. C. Azizoglu and O. Egecioglu, “The isoperimetric number and the
bisection width of generalized cylinders,” in Proc. 9th Quadrennial Int.
Conf. Graph Theory, Combinatorics, Algorithms, and Applications, Spe-
cial Issue on Electronic Notes in Discrete Mathematics, 2002.

1120 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

[4] A.-L. Barabasi, R. Albert, and H. Jeong, “Scale-free characteristics of
random networks: The topology of the world wide web,” Physica A, vol.
281, pp. 69–77, 2000.

[5] T. Bu and D. Towsley, “On distinguishing between internet power law
topology generators,” Proc. IEEE INFOCOM, pp. 638–647, 2002.

[6] C. Baransel, W. Doboseiwicz, and P. Gburzynski, “Routing in multi-hop
packet switching networks: Gbps challenge,” IEEE Netw. Mag., vol. 9,
no. 3, pp. 38–61, 1995.

[7] W. G. Bridges and S. Toueg, “On the impossibility of directed moore
graphs,” J. Combinator. Theory, ser. B29, no. 3, pp. 339–341, 1980.

[8] F. Chung, “Diameters of communication networks,” AMS Proc. Symp.
Applied Mathematics, Mathematics of Information Processing., pp.
1–18, 1984.

[9] J. Considine and T. A. Florio, “Scalable peer-to-peer indexing with
constant state,” Boston Univ., Boston, MA, Tech. Rep. 2002-026, Aug.
2002.

[10] D.-Z. Du, D. F. Hsu, H. Q. Ngo, and G. W. Peck, “On connectivity of
consecutive-d digraphs,” Discrete Mathematics, vol. 257, no. 2–3, pp.
371–384, 2002.

[11] R. Feldmann, B. Monien, P. Mysliwietz, and S. Tschoke, “A better upper
bound on the bisection width of de bruijn networks,” in Proc. Symp.
Theoretic. Aspects Comput. Sci. (STACS), 1997, pp. 511–522.

[12] A. Fiat and J. Saia, “Censorship resistant peer-to-peer content address-
able networks,” in Proc. Symp. Discrete Algorithms, 2002, pp. 94–103.

[13] P. Fraigniaud and P. Gauron, “An overview of the content-addressable
network D2B,” in Proc. ACM PODC, Jul. 2003, p. 151.

[14] M. J. Freedman and R. Vingralek, “Efficient peer-to-peer lookup based
on a distributed trie,” Proc. IPTPS, pp. 66–75, Mar. 2002.

[15] P. Ganesan, Q. Sun, and H. Garcia-Molina, “YAPPERS: A peer-to-peer
lookup service over arbitrary topology,” Proc. IEEE INFOCOM, pp.
1250–1260, 2003.

[16] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica, “The impact of DHT routing geometry on resilience and
proximity,” in Proc. ACM SIGCOMM, Aug. 2003, pp. 381–394.

[17] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 48, no. 2, pp. 388–404, Mar. 2000.

[18] M. G. Hluchyj and M. J. Karol, “Shufflenet: An application of general-
ized perfect shuffles to multihop lightwave networks,” Proc. IEEE IN-
FOCOM, pp. 379–390, 1988.

[19] M. Imase and M. Itoh, “Design to minimize diameter on building-block
network,” IEEE Trans. Computers, vol. C-30, no. 6, pp. 439–442, 1981.

[20] F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal hash
table,” Proc. IPTPS, pp. 98–107, Feb. 2003.

[21] A. Kumar, S. Merugu, J. Xu, and X. Yu, “Ulysses: A robust, low-diam-
eter, low-latency peer-to-peer network,” Proc. IEEE ICNP, pp. 258–267,
2003.

[22] C. Law and K.-Y. Siu, “Distributed construction of random expander
graphs,” Proc. IEEE INFOCOM, pp. 2133–2143, 2003.

[23] F. T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. New York: Academic/Morgan Kaufmann,
1991.

[24] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the evo-
lution of peer-to-peer networks,” in Proc. ACM PODC, Jul. 2002, pp.
233–242.

[25] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, “Graph-theoretic anal-
ysis of structured peer-to-peer systems: Routing distances and fault re-
silience,” in Proc. ACM SIGCOMM, Aug. 2003, pp. 395–406.

[26] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and dy-
namic emulation of the butterfly,” in Proc. ACM PODC, Jul. 2002, pp.
183–192.

[27] G. S. Manku, “Routing networks for distributed hash tables,” in Proc.
ACM PODC, Jul. 2003, pp. 133–142.

[28] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed
hashing in a small world,” Proc. USENIX Symp. Internet Technologies
and Systems (USITS), 2003.

[29] G. S. Manku, M. Naor, and U. Weider, “Know thy neighbor’s neighbor:
The power of lookahead in randomized P2P networks,” in Proc. ACM
STOC, Jun. 2004, pp. 54–63.

[30] M. Naor and U. Wieder, “Novel architectures for P2P applications:
The continuous-discrete approach,” in Proc. ACM SPAA, Jun. 2003, pp.
50–59.

[31] G. Pandurangan, P. Raghavan, and E. Upfal, “Building low-diameter
P2P networks,” in Proc. IEEE FOCS, 2001, pp. 492–499.

[32] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies
of replicated objects in a distributed environment,” in Proc. ACM SPAA,
Jun. 1997, pp. 311–320.

[33] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proc. ACM SIGCOMM, Aug.
2001, pp. 161–172.

[34] S. Ratnasamy, S. Shenker, and I. Stoica, “Routing algorithms for DHTs:
Some open questions,” Proc. IPTPS, pp. 45–52, 2002.

[35] S. M. Reddy, J. G. Kuhl, S. H. Hosseini, and H. Lee, “On digraph with
minimum diameter and maximum connectivity,” in Proc. Allerton Conf.
Communications, Control and Computers, 1982, pp. 1018–1026.

[36] J. Rolim, P. Tvrdik, J. Trdlicka, and I. Vrto, “Bisecting de Bruijn and
Kautz graphs,” Discrete Appl. Math., vol. 85, no. 1, pp. 87–97, Jun. 1998.

[37] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” in Proc.
IFIP/ACM Int. Conf. Distributed Systems Platforms, 2001, pp. 329–350.

[38] J. Saia, A. Fiat, S. Gribble, A. R. Karlin, and S. Saroiu, “Dynamically
fault-tolerant content addressable networks,” Proc. IPTPS, Mar. 2002.

[39] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “HyperCuP—Hy-
percubes, ontologies, and efficient search on P2P networks,” in Proc.
Workshop on Agents and P2P Computing, 2002.

[40] K. N. Sivarajan and R. Ramaswami, “Lightwave networks based on de
Bruijn graphs,” IEEE/ACM Trans. Netw., vol. 2, no. 1, pp. 70–79, Jan.
1994.

[41] M. A. Sridhar and C. S. Raghavendra, “Fault-tolerant networks based
on the de Bruijn graph,” IEEE Trans. Computers, vol. 40, no. 10, pp.
1167–1174, Oct. 1991.

[42] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in Proc. ACM SIGCOMM, Aug. 2001, pp. 149–160.

[43] D. W. Stroock, Probability Theory, an Analytic View. Cambridge,
U.K.: Cambridge Univ. Press, 2000.

[44] D. A. Tran, K. A. Hua, and T. T. Do, “ZIGZAG: An efficient peer-to-peer
scheme for media streaming,” Proc. IEEE INFOCOM, pp. 1283–1292,
2003.

[45] X. Wang, Y. Zhang, X. Li, and D. Loguinov, “On zone-balancing of
peer-to-peer networks: Analysis of random node join,” in Proc. ACM
SIGMETRICS, Jun. 2004, pp. 211–222.

[46] J. Xu, A. Kumar, and X. Yu, “On the fundamental tradeoffs between
routing table size and network diameter in peer-to-peer networks,” IEEE
J. Sel. Areas Commun., vol. 22, no. 1, pp. 151–163, Jan. 2004.

[47] B. Y. Zhao, J. D. Kubiatowicz, and A. Joseph, “Tapestry: An Infrastruc-
ture for Fault-Tolerant Wide-Area Location and Routing,”, Univ. Cal-
fornia Berkeley Tech. Rep., Apr. 2001.

Dmitri Loguinov (S’99–M’03) received the B.S. de-
gree (with honors) in computer science from Moscow
State University, Moscow, Russia, in 1995 and the
Ph.D. degree in computer science from the City Uni-
versity of New York, New York, in 2002.

Since 2002, he has been an Assistant Professor of
computer science with Texas A&M University, Col-
lege Station. His research interests include peer-to-
peer networks, video streaming, congestion control,
Internet measurement, and modeling.

Juan Casas is currently working toward the B.S.
degree in computer science at the University of
Texas—Pan American, Edinburg, TX.

In the summer of 2004, he participated in the
National Science Foundation REU research program
at Texas A&M University. His research interests in-
clude distributed processing and computer networks.

Xiaoming Wang (S’04) received the B.S. degree in
computer science and the M.S. degree in electronic
engineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 1999 and
2002, respectively. He is currently working toward
the Ph.D. degree at Texas A&M University, College
Station.

During 2002–2003, he worked for Samsung
Advanced Institute of Technology, South Korea.
His research interests include peer-to-peer systems,
probabilistic analysis of computer networks, and

topology modeling.

	toc
	Graph-Theoretic Analysis of Structured Peer-to-Peer Systems: Rou
	Dmitri Loguinov, Member, IEEE, Juan Casas, and Xiaoming Wang, St
	I. I NTRODUCTION
	II. B ACKGROUND
	A. Peer-To-Peer DHTs
	B. Fault Tolerance of DHTs
	C. Random Graphs
	D. Optimal-Diameter Graphs

	III. D e B RUIJN G RAPHS
	A. Motivation
	B. Structure
	C. Comparison With Existing Graphs

	TABLE I A SYMPTOTIC D EGREE /D IAMETERS OF P OPULAR G RAPHS
	TABLE II G RAPH D IAMETER FOR $N = 10^{6}$ P EERS
	IV. R OUTING A NALYSIS

	Fig.€1. (a) Distribution of shortest paths $d(x,y)$ in Chord for
	A. Chord
	Lemma 1: Each node in Chord can reach exactly $(\matrix{D \cr i}
	Proof: Recall that, in Chord, each node x with hash index $H_{

	B. CAN
	Lemma 2: The expected distance between any two CAN nodes is $D/2
	Proof: Examine a d -dimensional CAN space. The distance betwee

	Lemma 3: For large d, CAN's distribution of shortest distances
	Proof: The Gaussian shape in Fig.€1(b) follows from the Central

	Fig.€2. (a) Comparison between Chord's and CAN's shortest path d
	Lemma 4: The distribution of shortest distances in logarithmic C
	C. De Bruijn
	Lemma 5: The asymptotic distribution of shortest distances in de
	Proof: Recall the peering rules of de Bruijn graphs. Each node $

	Lemma 6: The average distance in de Bruijn graphs is asymptotica
	Proof: Examine the expected distance between any pair of nodes $

	TABLE III A VERAGE G RAPH D ISTANCE FOR $N = 10^{6}$
	D. Butterfly
	E. Discussion

	TABLE IV C OMPARISON OF G REEDY AND BFS D ISTANCES
	F. Greedy Routing

	TABLE V C OMPARISON OF N ONGREEDY AND BFS D ISTANCES
	V. C LUSTERING AND E XPANSION
	A. Clustering Coefficients
	Lemma 7: Chord's clustering coefficient is $1/\log_2 N$.
	Proof: In Chord, all nodes are symmetric (modulo N) in terms

	Lemma 8: De Bruijn's clustering coefficient is $(k - 1)/N$ for $
	Proof: De Bruijn graphs are also fairly simple to analyze. Below

	B. Cycles

	Fig.€3. (a) High clustering leads to weak connections outside a
	C. Graph Expansion
	Definition 1: Graph edge expansion (sometimes called the isoperi
	Definition 2: Consider a graph $G = (V,E)$ and some subset of no
	Lemma 9: Chord's ball expansion $h_B (G)$ is asymptotically $\Th
	Proof: Using our prior result in (5), the size of each ball of r

	Lemma 10: De Bruijn's ball expansion $h_B (G)$ is no less than $
	Proof: De Bruijn graphs are also easy to analyze given their exp

	VI. R ESILIENCE
	A. Generic Methods
	Definition 3: A k -regular graph is k -node-connected if the

	B. Bisection Width

	Fig.€4. Partitioning of Chord into two smaller Chord graphs.
	Lemma 11: Chord's bisection width $bw(G)$ is N .
	Proof: The proof is similar to that for hypercubes [23] . We f

	Lemma 12: Assuming the size of each dimension is even, CAN's bis
	Proof: CAN is optimally split in half when all edges crossing tw

	VII. O ptimal D iameter R outing I nfrastructure
	A. Equal-Size Zones
	Lemma 13: If all zones have the same fixed size, ODRI maintains
	Proof: Denote by $M = N_{\max}/N$ the fixed size of each zone af

	Lemma 14: If all zones have the same fixed size, ODRI builds an
	Proof: Assume that $N_{\max} = k^{D_{\max}}$ and $N = k^D$, wher

	B. Random Zones
	Lemma 15: Under a uniform hashing function, ODRI's in-degree at
	Proof: Select any vertex $v, v \in [0,N_{\max} - 1]$, in the vir

	Lemma 16: Under a uniform hashing function, ODRI constructs a pe
	Proof: Assume the notation in the Proof of Lemma 14 and notice t

	C. Balancing Zones and Proximity

	TABLE VI ODRI's D YNAMIC R OUTING P ERFORMANCE $(N=30\ 000,\ k=8
	VIII. C ONCLUSION
	J. Aspnes, Z. Diamadi, and G. Shah, Fault-tolerant routing in pe
	Y. Azar, A. Broder, A. Karlin, and E. Upfal, Balanced allocation
	M. C. Azizoglu and O. Egecioglu, The isoperimetric number and th
	A.-L. Barabasi, R. Albert, and H. Jeong, Scale-free characterist
	T. Bu and D. Towsley, On distinguishing between internet power l
	C. Baransel, W. Doboseiwicz, and P. Gburzynski, Routing in multi
	W. G. Bridges and S. Toueg, On the impossibility of directed moo
	F. Chung, Diameters of communication networks, AMS Proc. Symp. A
	J. Considine and T. A. Florio, Scalable peer-to-peer indexing wi
	D.-Z. Du, D. F. Hsu, H. Q. Ngo, and G. W. Peck, On connectivity
	R. Feldmann, B. Monien, P. Mysliwietz, and S. Tschoke, A better
	A. Fiat and J. Saia, Censorship resistant peer-to-peer content a
	P. Fraigniaud and P. Gauron, An overview of the content-addressa
	M. J. Freedman and R. Vingralek, Efficient peer-to-peer lookup b
	P. Ganesan, Q. Sun, and H. Garcia-Molina, YAPPERS: A peer-to-pee
	K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenk
	P. Gupta and P. R. Kumar, The capacity of wireless networks, IEE
	M. G. Hluchyj and M. J. Karol, Shufflenet: An application of gen
	M. Imase and M. Itoh, Design to minimize diameter on building-bl
	F. Kaashoek and D. R. Karger, Koorde: A simple degree-optimal ha
	A. Kumar, S. Merugu, J. Xu, and X. Yu, Ulysses: A robust, low-di
	C. Law and K.-Y. Siu, Distributed construction of random expande
	F. T. Leighton, Introduction to Parallel Algorithms and Architec
	D. Liben-Nowell, H. Balakrishnan, and D. Karger, Analysis of the
	D. Loguinov, A. Kumar, V. Rai, and S. Ganesh, Graph-theoretic an
	D. Malkhi, M. Naor, and D. Ratajczak, Viceroy: A scalable and dy
	G. S. Manku, Routing networks for distributed hash tables, in Pr
	G. S. Manku, M. Bawa, and P. Raghavan, Symphony: Distributed has
	G. S. Manku, M. Naor, and U. Weider, Know thy neighbor's neighbo
	M. Naor and U. Wieder, Novel architectures for P2P applications:
	G. Pandurangan, P. Raghavan, and E. Upfal, Building low-diameter
	C. G. Plaxton, R. Rajaraman, and A. W. Richa, Accessing nearby c
	S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A
	S. Ratnasamy, S. Shenker, and I. Stoica, Routing algorithms for
	S. M. Reddy, J. G. Kuhl, S. H. Hosseini, and H. Lee, On digraph
	J. Rolim, P. Tvrdik, J. Trdlicka, and I. Vrto, Bisecting de Brui
	A. Rowstron and P. Druschel, Pastry: Scalable, decentralized obj
	J. Saia, A. Fiat, S. Gribble, A. R. Karlin, and S. Saroiu, Dynam
	M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, HyperCuP Hyper
	K. N. Sivarajan and R. Ramaswami, Lightwave networks based on de
	M. A. Sridhar and C. S. Raghavendra, Fault-tolerant networks bas
	I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakris
	D. W. Stroock, Probability Theory, an Analytic View . Cambridge,
	D. A. Tran, K. A. Hua, and T. T. Do, ZIGZAG: An efficient peer-t
	X. Wang, Y. Zhang, X. Li, and D. Loguinov, On zone-balancing of
	J. Xu, A. Kumar, and X. Yu, On the fundamental tradeoffs between
	B. Y. Zhao, J. D. Kubiatowicz, and A. Joseph, Tapestry: An Infra

