

ADAPTIVE SCALABLE INTERNET STREAMING

by

DMITRI LOGUINOV

A dissertation submitted to the Graduate School Faculty in Computer Sci-
ence in partial fulfillment of the requirements for the degree of Doctor of
Philosophy, The City University of New York

2002

ii

© 2002

DMITRI LOGUINOV

All Rights Reserved

iii

This manuscript has been read and accepted for the Graduate Faculty in Computer Sci-
ence in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy

 6/24/2002 (required signature)

Date Chair of Examining Committee

 7/2/2002 (required signature)
Date Executive Officer

 (typed name) Hayder Radha

 (typed name) Mohammed Ali

 (typed name)

 Supervisory Committee

THE CITY UNIVERSITY OF NEW YORK

iv

Abstract

ADAPTIVE SCALABLE INTERNET STREAMING
by

Dmitri Loguinov

Advisor: Professor K. Ravindran

This thesis presents a comprehensive investigation of the performance of real-

time streaming in the best-effort Internet and studies several novel congestion control and
retransmission methods of real-time content delivery over the public Internet. As our ex-
periments show, these new methods provide a significantly better quality-of-service
(QoS) to the end-user than the existing methods.

The first half of this work focuses on constant-bitrate streaming over the existing
Internet in a large-scale performance study and examines both the behavior of network
parameters and the quality of video experienced by the end users. We model select net-
work parameters and gain an insight into what conditions future streaming applications
should expect in the best-effort Internet. Furthermore, we extensively study the perform-
ance of real-time retransmission (in which the lost packets must be recovered before their
decoding deadlines) based on our traces and present new methods of reducing the amount
of duplicate packets generated by the server in response to lost packets.

The second half of this thesis studies congestion-adaptive streaming in the best-
effort Internet. Using scalable MPEG-4 layered coding as the target application, we de-
velop new congestion control methods that are used to rescale the enhancement layer to
match the available bandwidth in the network. We find that traditional ACK-based con-
gestion control used in TCP is not flexible enough to be applied to real-time streaming.
On the other hand, as our work shows, rate-based (or NACK-based) congestion control
typically does not scale to a large number of flows. To overcome this difficulty, we pre-
sent a novel rate-based congestion control scheme that scales well while satisfying all
requirements of a real-time application. To support this scalable congestion control, we
find that the flows must possess the knowledge of the bottleneck bandwidth of an end-to-
end path. Consequently, as part of this work, we present an extensive performance study
of bandwidth estimation methods that can be used in real-time by the client to supple-
ment its rate-based congestion control with the value of the bottleneck capacity.

v

Dedication

To my parents

vi

Acknowledgments

I am sincerely grateful to my advisor Hayder Radha for giving me the privilege
and honor to work with him over the last 4 years. Without Hayder’s constant support, in-
sightful advice, excellent judgment, and, more importantly, his demand for top-quality
research, this thesis would not be possible. Even after knowing him for many years, I am
continuously amazed and humbled by his infinite knowledge and unmatched wisdom.

I would also like to thank Kaliappa Ravindran for introducing me to the subject of
computer networks, giving a necessary direction to my research, providing his continu-
ous encouragement throughout my PhD, and spending countless hours in fruitful discus-
sions.

This work would not be possible without a long-lasting support and infinite pa-
tience of Mahesh Balakrishnan and Barry Singer of Philips Research USA. Since a large
part of my work was experimental, I am further indebted to Philips Research for their ex-
treme generosity in providing the abundant resources needed for completing this PhD. I
also greatly benefited from the interaction with the members of the Internet Video project
at Philips Research. Many thanks to Mihaela van der Schaar, Richard Chen, Qiong Li,
and Bob Cohen.

Furthermore, I would like to thank my friends and fellow students at the City
University of New York for participating in numerous discussions and providing valu-
able feedback on various pieces of this work. I am especially grateful to Avaré Stewart
for being an absolutely awesome friend and colleague, Antonio Lopez-Chavez for main-
taining his firm belief in me and treating me to frequent philosophical discussions over
dinner, and Andrzej Malachowicz for keeping me sane (and reasonably fit) during the
early years of my studies. I also would like to thank Ted Brown for his support over the
years and kindly agreeing to serve on my examination committee.

I am thankful to anonymous IEEE INFOCOM, ACM Computer Communication
Review, and ACM SIGCOMM reviewers for providing their helpful comments on earlier
versions of this work.

Last, but not least, I would like to thank my parents for teaching me the funda-
mentals of Computer Science at an early age. Without their initial guidance and continu-
ous support this work would be simply impossible.

vii

Contents

Abstract iv

Dedication v

Acknowledgments vi
List of Tables xi
List of Figures xii
1 Introduction 1

1.1 Research Problem ..5
1.2 Solution..5
1.3 Contributions ...5
1.4 Dissertation Overview ...7

2 Related Work 10
2.1 Internet Measurement Studies ...10

2.1.1 TCP measurements ...11
2.1.2 ICMP measurements...12
2.1.3 UDP measurements ..13
2.1.4 Internet Traffic Modeling ...15

2.2 Error Control in Transport Protocols ...16
2.2.1 Retransmission schemes for real-time media16
2.2.2 Retransmission in TCP and other protocols18
2.2.3 ITD Video Buffer Model and Efficient Packet Loss Recovery..........18
2.2.4 Forward Error Correction ...19
2.2.5 Error Concealment..19

2.3 Congestion Control ..20
2.3.1 Early approaches to congestion control..20
2.3.2 TCP congestion control ..21
2.3.3 Router-based congestion avoidance ...26
2.3.4 RTP-based congestion control..28
2.3.5 TCP-friendly congestion control ..28
2.3.6 Real-time video streaming protocols ..30

viii

2.4 Bandwidth Measurement ...31
2.4.1 Sender-based packet pair ..31
2.4.2 Receiver-based packet pair ...34
2.4.3 Packet Bunch Mode..35
2.4.4 Pathchar ..36

3 Performance of Internet Streaming: Statistical Analysis 38
3.1 Introduction..38
3.2 Methodology..41

3.2.1 Setup for the Experiment ..41
3.2.2 Real-time Streaming ...43
3.2.3 Client-Server Architecture..45

3.3 Experiment...46
3.3.1 Overview...46
3.3.2 Packet Loss ...48

3.3.2.1 Overview...48
3.3.2.2 Loss Burst Lengths..50
3.3.2.3 Loss Burst Durations...52
3.3.2.4 Heavy Tails ...53

3.3.3 Underflow Events ...55
3.3.4 Round-trip Delay ..57

3.3.4.1 Overview...57
3.3.4.2 Heavy Tails ...58
3.3.4.3 Variation of the RTT...59

3.3.5 Delay Jitter..61
3.3.6 Packet Reordering...62

3.3.6.1 Overview...62
3.3.6.2 Reordering Delay ..63
3.3.6.3 Reordering Distance..64

3.3.7 Asymmetric Paths...65

4 Real-time Retransmission: Evaluation Model and Performance 68
4.1 Introduction..68
4.2 Background..71
4.3 Methodology..73

4.3.1 Experiment..73
4.3.2 RTT Measurement ..74

4.4 Performance ...75
4.4.1 Retransmission Model ..75
4.4.2 Optimality and Performance...78

4.5 TCP-like Estimators...81
4.5.1 Performance..81
4.5.2 Tuning Parameters ..84
4.5.3 Discussion...86

ix

4.6 Jitter-Based Estimators ..87
4.6.1 Structure and Performance ...87
4.6.2 Tuning Parameters ..89

4.7 High-frequency sampling...90

5 Scalability of Rate-based Congestion Control 95
5.1 Introduction..96
5.2 Background..97
5.3 General I-D Control ...99

5.3.1 Decrease Function ..101
5.3.2 Increase Function..103
5.3.3 Convergence ...103

5.4 Properties of Binomial Algorithms..104
5.4.1 Overview...104
5.4.2 Efficiency..105
5.4.3 Packet Loss ...107

5.5 Packet-loss Scalability of Congestion Control ..108
5.5.1 Overview...108
5.5.2 Simulation...109
5.5.3 Feasibility of Ideal Scalability..110
5.5.4 Ideally-Scalable Congestion Control..111

5.6 Experiments ...113
5.6.1 Choice of Powers Functions ...113
5.6.2 Real-time Bandwidth Estimation..114
5.6.3 Scalability Results ..115

6 Real-time Estimation of the Bottleneck Bandwidth 118
6.1 Introduction..118
6.2 Background..120

6.2.1 Packet Pair Concept..120
6.2.2 Sampling ...121

6.3 Multi-channel Links...123
6.3.1 Introduction ..123
6.3.2 Receiver-Based Packet Pair..124

6.3.2.1 Experimental Verification...125
6.3.3 Extended Receiver-Based Packet Pair..127

6.3.3.1 Experimental Verification...128
6.3.4 ERBPP+..128

6.4 Sampling ..130
6.4.1 Setup of the Experiment ...130
6.4.2 RBPP Samples ..131
6.4.3 ERBPP Samples..133
6.4.4 ERBPP+ Samples ...135

x

6.5 Estimation ..136
6.5.1 Introduction ..136
6.5.2 Selection of k ..138
6.5.3 RBPP...139
6.5.4 ERBPP ..141
6.5.5 ERBPP+..143

7 Conclusion and Future Work 147
7.1 Conclusion ...147

7.1.1 Internet Performance ..147
7.1.2 Real-time Retransmission...148
7.1.3 Scalable Rate-based Congestion Control ...149
7.1.4 Real-time Estimation of the Bottleneck Bandwidth150

7.2 Future Work ...151

Bibliography 153

xi

List of Tables

Table I. Summary of streams statistics. ...44
Table II. Summary of constants in various power laws...90
Table III. Comparison of observed samples of bm with those predicted by the model..128
Table IV. Estimation based on RBPP samples and entire datasets.133
Table V. Estimation based on ERBPP samples and entire datasets.135
Table VI. Estimation based on ERBPP+ samples and entire datasets...........................136

xii

List of Figures

Figure 1. Structure of the dissertation..7
Figure 2. Sender Based Packet Pair. ..32
Figure 3. Receiver-based packet pair (RBPP). ..34
Figure 4. Setup of the experiment..42
Figure 5. Success of streaming attempts during the day..46
Figure 6. The number of cities per state that participated in either D1 or D2.47
Figure 7. Distribution of the number of end-to-end hops. ...48
Figure 8. Average packet loss rates during the day. ..49
Figure 9. Average per-state packet loss rates. ...50
Figure 10. PDF and CDF functions of loss burst lengths in {D1p∪D2p}.51
Figure 11. The CDF function of loss burst durations in {D1p∪D2p}.53
Figure 12. The complimentary CDF of loss burst lengths in {D1p∪D2p} on a log-log scale

fitted with hyperbolic (straight line) and exponential (dotted curve)
distributions. ..54

Figure 13. CDF functions of the amount of time by which retransmitted and data packets
were late for decoding..56

Figure 14. PDF functions of the RTT samples in each of D1p and D2p............................57
Figure 15. Log-log plot of the upper tails of the distribution of the RTT (PDF). The

straight line is fitted to the PDF from D2p..59
Figure 16. Average RTT as a function of the time of day. ..60
Figure 17. Average RTT and average hop count in each of the states in {D1p∪D2p}.61
Figure 18. The meaning of reordering delay Dr. ...63
Figure 19. The PDF of reordering delay Dr in {D1p∪D2p}..64
Figure 20. The PDF of reordering distance dr in {D1p∪D2p}. ...65
Figure 21. Percentage of asymmetric routes in {D1p∪D2p} as a function of the number of

end-to-end hops..66
Figure 22. Underestimation results in duplicate packets (left) and overestimation results

in unnecessary waiting (right)..70
Figure 23. The setup of the modem experiment. ...73
Figure 24. The number of cities per state that participated in the streaming experiment.74
Figure 25. Operation of an RTO estimator given our trace data.76
Figure 26. Comparison between RTO performance vector points (d,w).........................79

xiii

Figure 27. Performance of TCP-like estimators. ...82
Figure 28. Points built by Downhill Simplex and the exhaustive search in the optimal

RTO4 curve...83
Figure 29. Log-log plot of the optimal (Simplex) RTO4 curve..84
Figure 30. RTO4-Simplex and two reduced RTO4 estimators on a log-log scale.85
Figure 31. The jitter-based RTO estimator compared with the RTO4 estimator.88
Figure 32. Reduced jitter-based estimator compared with the optimal RTOJ estimator. 89
Figure 33. The setup of the high-speed experiment...91
Figure 34. Performance of RTO4, RTOJ and RTO4(1,0,0) in the CUNY dataset.92
Figure 35. Performance of RTO4 and RTO4(0.125,0,0) in the CUNY dataset.......................93
Figure 36. Two-flow I-D control system. ..101
Figure 37. Oscillation of the sending rate in the stable state. ..105
Figure 38. Parameter sn (i.e., packet-loss scalability) of AIMD and IIAD in simulation

based on actual packet loss. ...110
Figure 39. Setup of the experiment..114
Figure 40. The PDFs of bandwidth estimates with 2 (left) and 32 (right) AIMD(1,½)

flows over a shared T1 link..115
Figure 41. Packet-loss increase factor sn for the Cisco experiment...............................117
Figure 42. Receiver-Based Packet Pair..121
Figure 43. Computing bandwidth from inter-packet spacing.122
Figure 44. Model of a typical two-channel ISDN link. ...124
Figure 45. Setup of ISDN experiments with a Cisco router (left) and ISDN TA (right).

..126
Figure 46. Comparison of ERBPP (left) with ERBPP+ (right) in D2............................129
Figure 47. Setup of the experiment..130
Figure 48. PDF of RBPP samples with 2 (left) and 32 AIMD (right) flows.131
Figure 49. Compression and expansion in the OS kernel..132
Figure 50. PDF of ERBPP samples with 2 (left) and 32 AIMD (right) flows...............134
Figure 51. PDF of ERBPP+ samples with 2 (left) and 32 AIMD (right) flows.136
Figure 52. Timeline diagram of RBPP samples in Φ2. The bold curves are median (left)

and inverted average (right) estimates bEST(t,k) for k = 64.138
Figure 53. PDF of RBPP median estimates in Φ2 (left) and Φ32 (right)........................139
Figure 54. PDF of RBPP mode estimates in Φ2 (left) and Φ32 (right)...........................140
Figure 55. PDF of RBPP inverted average estimates in Φ2 (left) and Φ32 (right).141
Figure 56. PDF of ERBPP median estimates in Φ2 (left) and Φ32 (right).142
Figure 57. PDF of ERBPP mode estimates in Φ2 (left) and Φ32 (right).142
Figure 58. PDF of ERBPP inverted average estimates in Φ2 (left) and Φ32 (right).143
Figure 59. PDF of ERBPP+ median estimates in Φ2 (left) and Φ32 (right).144
Figure 60. PDF of ERBPP+ mode estimates in Φ2 (left) and Φ32 (right).145
Figure 61. PDF of ERBPP+ inverted average estimates in Φ2 (left) and Φ32 (right)....146

1

Chapter One

1 Introduction

Real-time streaming over the best-effort Internet is a very interesting and rather
challenging problem. As end-user access to the Internet is becoming faster, the interest
toward real-time streaming and video-on-demand services is steadily rising. Faster end-
to-end streaming rates place a higher burden on congestion control to support a wide
range of bitrates for each individual receiver (which is usually called video-bitrate scal-
ability) and the increase in the number of users subscribing to real-time delivery of mul-
timedia over the Internet creates a demand for congestion control than can scale to a large
number of flows (which is called flow scalability).

The current situation with Internet streaming is far from ideal. Website visitors
are usually given a menu of several available bitrates, which correspond to typical speeds
of end-user access to the Internet. The user must select the bitrate that most closely
matches his or her connection speed and the subsequent streaming is usually performed at
a constant bitrate (CBR), which is based on the user selection. During streaming, true
congestion control is rarely used, and if the user’s available bandwidth is less than the
selection he or she made, video streaming becomes a sequence of short playouts followed
by interruptions, which are used by the receiver to refill its decoder buffer. It is desirable,
however, to scale down (and sometimes scale up) the user-selected bitstream to match the
user’s capabilities in cases when the speed of the access link or the currently available
bandwidth are below (or above) the initially-selected bitrate. Hence, both congestion con-
trol methods that automatically find the bandwidth available to the end user and video
coding schemes that support real-time rescaling of the coded video to match the rates
suggested by congestion control are very important to the future of real-time streaming in
the Internet.

Traditionally, video (or audio) scalability was thought of in terms of separating
the coded video stream into a set of fixed-bitrate video layers. Each layer i was coded at a
certain bitrate ri and relied on the presence of layer i–1 for proper decoding. We call such

2

schemes coarse-granular scalable. Hence, simple congestion control for real-time
streaming that is used in the current Internet involves the subtraction of a single layer
upon congestion and the addition of a single layer when probing for new bandwidth.
Typical scalability includes up to 6 layers [174], [232], but in practice, streams with only
one or two layers are often used. The subtraction and addition of fixed-bitrate layers
represents a type of congestion control known as AIAD (Additive Increase, Additive De-
crease). It has been shown [49] that such congestion control does not converge to fair-
ness, where fairness is defined as the ability of a protocol to reach a fair allocation of a
shared resource within a certain finite time frame. Convergence to fairness is an impor-
tant and desired property of congestion control in the best-effort Internet since the net-
work itself cannot be relied upon to provide any type of fairness quality of service (QoS)
to the end flows. The existing CBR and AIAD congestion control schemes perform well
in the current Internet, because the fraction of Internet traffic that carries real-time mate-
rial is miniscule (less than 5% [52]) and the negative effects of not utilizing proper con-
gestion control are minor. However, if the number of CBR and AIAD flows on the Inter-
net backbone increases to the point where real-time flows create a noticeable competition
between each other, the end users and network service providers will be more likely to
observe the consequences (such as rapidly increasing packet loss) of having a large num-
ber of non-responsive (i.e., CBR) or AIAD flows over shared links. Such increase in the
amount of UDP traffic in the public Internet is expected since faster end-user access and
higher quality of multimedia content are likely to attract a much larger population of
Internet users than today.

Recent advancements in video coding created several methods of compressing
video material into layers that can be easily scaled to almost any desired bitrate [224],
[225], [226], [263]. Typically, the video in such schemes consists of a low-bitrate base
layer coded at a fixed bitrate r0 and a single enhancement layer coded up to some maxi-
mum bitrate Rmax. During transmission, the enhancement layer can be resized to match
any desired rate between 0 and Rmax using a simple operation of discarding a certain per-
centage of each enhancement picture. Consequently, using a low-overhead procedure
during transmission, the sender can scale the video stream to any bitrate between r0 and
r0+Rmax. We refer to this kind of scalable coding as fine-granular scalability (FGS) and
use MPEG-4’s streaming profile as the model of our streaming application. Even though
MPEG-4 FGS [181], [224], [225], [226] is based on embedded DCT, other methods
based on wavelets provide similar functionality [263]. Since a video-scalable compres-
sion methodology already exists, the remaining problem is to find flow-scalable conges-
tion control methods that are suitable for delay-sensitive, rate-based applications (i.e.,
streaming).

The majority of the existing congestion control methods have been developed for
ACK-based (or window-based) flow control. In such protocols, the receiver acknowl-
edges each received packet and the sender relies on the arrival of ACKs to decide when
and how many new packets to transmit. Consequently, the instantaneous and even aver-
age sending rates of a window-based protocol arbitrarily fluctuate based on the network
conditions and entirely depend on the arrival pattern of ACKs. Since the ACKs can be

3

delayed, compressed, or lost along the path from the receiver to the sender, the sending
rate of an ACK-based protocol is not known in advance (even on short time scales) and is
heavily dependent on the conditions of the network. Therefore, this kind of flow control
presents a certain level of difficulty when used by an inherently rate-based application
such as video streaming. In real-time streaming, assuming a fixed-bitrate video layer, the
sending rate for that layer must be maintained at a certain pre-defined rate (which usually
equals the rate at which the video layer has been coded or is being coded in real-time).
This rate is called the target streaming rate of the layer. Any deviation from the target
streaming rate potentially delays video frames and makes them arrive after their decoding
deadlines. Late frames result in underflow events in the decoder buffer and force the
video display to freeze for a certain amount of time. In real-time streaming, underflow
events are one of the most important network-related pathologies that affect the quality-
of-service that the end user receives from the video application and should be avoided at
all costs.

Given a fixed-bitrate layer and an ACK-based application, it is possible to over-
come a certain level of rate fluctuation due to delayed ACKs by introducing a larger
startup buffering delay at the beginning of a streaming session. However, in FGS stream-
ing, there exists an additional difficulty in using window-based flow control. In FGS, the
decisions about how each enhancement layer picture is rescaled (by discarding a certain
percentage of the coded frame) are made based on the future streaming rate r and the
maximum bitrate Rmax at which the enhancement layer has been pre-coded. If the applica-
tion knows that it will sustain an average streaming rate r for a certain period of time
(where r is typically given by congestion control and changes over time), the protocol
will take fraction (r–b0)/Rmax of each enhancement-layer frame and send it to the receiver
(recall that b0 is the rate of the base layer). However, if during this period of time the
sending rate drops below r due to delay variation between the arrival of positive ACKs,
the receiver will run into underflow events in the enhancement layer, which are undesir-
able as well.

Both of these difficulties (underflow events in the base layer and problems arising
from inaccurate rescaling of the FGS layer) possibly can be overcome with larger startup
delays at the receiver and a pessimistic choice of future sending rates r (i.e., by rescaling
the FGS layer to lower rates than the expected average throughput). However, these
work-arounds eventually result in reduced quality of the video stream and unpleasant
startup delays. The exact penalty of using ACK-based flow control in video streaming
has not been quantified or studied in the past since the majority of video experts auto-
matically assume some form of a rate-based transport protocol that carries their coded
bitstream over the network. This also explains why current Internet streaming applica-
tions [174], [232] implement rate-based flow control.

4

The suitability of rate-based (or NACK-based1) end-to-end congestion control for
the best-effort Internet has been questioned from the early days of the Internet2. Typi-
cally, end-to-end rate-based congestion control is labeled as being simply “difficult” or
“unstable,” and the network community has not paid much attention to NACK-based pro-
tocols since NETBLT [56]. However, the exact amount of “difficulty” in scaling rate-
based congestion control has not been thoroughly studied in previous work. In NACK-
based congestion control, the sender relies on the receiver to compute the next sending
rate r and feed it back to the sender in special control messages. The absence of feedback
in NACK-based protocols indicates that no change in the streaming rate is needed at this
time, resulting in periods of congestion-indifferent CBR streaming between the times of
receiving the feedback. Consequently, during periods of heavy congestion or persistent
packet loss along the path from the receiver to the sender, NACK-based congestion con-
trol becomes an “open-loop” control system, which is generally very unstable. Hence,
when the network is driven into congestion by aggregating a large number of NACK-
based flows, this “open-loop” operation of NACK-based congestion control contributes
to a substantial packet loss increase along the links shared by these flows. The second
reason for the increase in packet loss (studied in this work) is more aggressive probing
for new bandwidth and increased overshoot of the bottleneck bandwidth when many rate-
based flows are multiplexed over a single bottleneck.

Despite the lack of QoS support in the Internet, real-time streams should be able
to achieve fairness when sharing bottleneck links with TCP connections. Currently, there
is evidence that this goal can be achieved with the emerging “TCP-friendly” congestion
control protocols (e.g., [13], [14], [86], [196], [198], [239]). However, there is other evi-
dence [157] that suggests that these congestion control methods scale poorly when em-
ployed in rate-based protocols and that only ACK-based congestion control can be fully
TCP-friendly. Consequently, there is a need for a thorough analysis of the existing and
emerging congestion control methods in rate-based applications, as well as a need for
new methods that can scale to a large number of users involved in real-time streaming in
the future Internet.

In this work, we shed new light on the performance of NACK-based congestion
control and study its suitability for a large-scale deployment in the best-effort Internet.
Our work develops a suite of new protocols for real-time streaming, which include both
scalable congestion control and efficient real-time retransmission specifically tailored for
rate-based applications. Since we argue that the Internet will remain best-effort for quite
some time, the focus of this thesis is strictly on non-QoS IP networks (i.e., the current
Internet).

1 In this work, we use terms “rate-based” and “NACK-based” interchangeably when referring to conges-
tion control. Even though the former term usually refers to the type of flow control and the latter one refers
to the type of retransmission, in real-time streaming, these terms often mean the same thing.
2 Rate-based congestion control on the data-link layer has been successfully adopted in ATM ER (Explicit
Rate). However, these solutions do not work on the transport layer where the network cannot feed back
explicit rates computed in the routers.

5

1.1 Research Problem

The goal of this thesis is to “design congestion-controlled, bandwidth scalable,
real-time multimedia streaming protocols for the best-effort Internet.” In order to make
this goal manageable, we identified a number of subproblems that naturally lead to the
solution of the main problem:

• carry out an extensive performance study of constant-bitrate video streaming in
the existing Internet and apply the learned lessons to the design of our streaming
protocols;

• investigate error control methods based on retransmission and analyze their per-
formance in real-time streaming applications over the current Internet;

• analyze the scalability of rate-based congestion control in real-time applications
and design new methods that can scale to a large number of users;

• study the performance of real-time end-to-end bandwidth estimation methods and
their applicability to multimedia streaming and congestion control.

1.2 Solution

First, we study the performance of real-time streaming in the Internet from the
angle of an average home user in a large-scale Internet experiment and obtain a number
of novel results about video and network performance perceived by current Internet users
of video streaming applications.

Second, we extensively study the performance of real-time retransmission in the
current Internet, define a new performance measure for assessing the quality of retrans-
mission timeout (RTO) estimators, and propose a novel RTO estimator that achieves bet-
ter performance than the existing methods when used in rate-based applications over a
wide range of Internet paths.

Third, we develop a class of non-linear increase-decrease congestion control
methods, which scale much better than the existing methods when used in rate-based pro-
tocols. We also find that these methods require the knowledge of the bottleneck capacity
of an end-to-end link and subsequently, develop new bandwidth measurement and esti-
mation methods that can be used in real-time to supply our congestion control with the
value of the bottleneck capacity.

1.3 Contributions

This work makes the following contributions:

6

• A better understanding of NACK-based congestion control and its scaling behav-
ior. We thoroughly study the existing methods and their scalability properties
when used in a NACK-based congestion control protocol. First we define scal-
ability measure sn, which is the rate of packet-loss increase as a function of the
number of flows n. Second, using a steady-state analysis and a continuous fluid
approximation, we derive the shape of function sn and its scaling properties.
Third, we show that among the existing TCP-friendly methods, AIMD (Additive
Increase, Multiplicative Decrease) scales best.

• A class of novel NACK-based congestion control methods that can scale to a
large number of flows. These methods are a novel extension of the existing non-
linear increase-decrease methods previously proposed in the literature [13]. Our
theoretical results show that the new class of congestion control methods can
scale to any number of flows, and our experimental results show that they do in
fact possess much better scaling properties than any of the existing NACK-based
protocols when used in a best-effort Internet environment.

• New real-time bandwidth sampling and estimation algorithms. We propose a
novel concept of using bandwidth sampling methods in real-time (i.e., while the
application is running). In addition, we develop new sampling methods that do
not require any out-of-band traffic and only use application packets in the band-
width sampling phase. Furthermore, we design and study the performance of sev-
eral novel bandwidth estimation methods (which extract estimates from the col-
lected samples in real time) and make the analysis results available as part of this
work. We further propose a novel concept of using bandwidth estimation in con-
gestion control and show how these real-time bandwidth estimates can be used as
part of our new congestion control methods and how they increase the scalability
and robustness of a streaming protocol. Once combined with existing fine-
granular scalable video compression [225], bandwidth estimation and congestion
control become the core of our streaming architecture, which is another contribu-
tion of this thesis.

• A new performance measure of the quality of retransmission timeout (RTO) esti-
mators and a new method of estimating the RTO based on delay jitter. First, we
define a new performance measure of the quality of RTO estimators based on
traces of data packets. This measure captures the inherent tradeoff of any RTO es-
timator between the number of duplicate packets and the amount of unnecessary
waiting. Second, we conduct a large performance study of the existing RTO esti-
mation methods in the current Internet. Third, we develop a new estimation
method that performs significantly better than the existing methods over a wide
variety of paths.

• An extensive collection of real-time data traces and empirical distributions docu-
menting network parameters and observations made during a large number of
real-time Internet experiments. These experiments were conducted over a variety
of Internet paths that span numerous autonomous systems (AS) and access ISPs.
The experimental data also include Internet performance sampled by multiple

7

video streams over paths with various end-user access technologies (i.e., analog
modem, ISDN, DSL, and T1). This collection captures the quality of real-time
streaming that an average end-user experiences in the current Internet, as well as
the behavior of numerous network parameters along diverse end-to-end paths.

• A real-time streaming architecture as well as a real-life Internet streaming appli-
cation based on MPEG-4 FGS (Fine-Granular Scalable) coding. Our design of
the real-time streaming architecture includes both the server and the client and
utilizes all findings of this thesis. Our application is capable of robust and conges-
tion-controlled streaming of video over the existing Internet, supporting a wide
variety of bitrates through scaling of the enhancement (i.e., FGS) layer to the
available bandwidth. Our client and server software has been thoroughly tested
over the Internet and has been found to be both reliable and scalable.

1.4 Dissertation Overview

The structure of the rest of the dissertation is shown in Figure 1 (chapters are
marked with numbers and inter-chapter relationships are shown as arrows).

Scalability of Rate-
based Congestion
Control

Real-time Estimation of
the Bottleneck Bandwidth

Real-time Retransmission:
Evaluation Model and
Performance

Performance of
Internet Streaming:
Statistical Analysis

4

5 6

3

Related Work 2

Conclusion and Future Work 7

PART I

PART II

Trace-drive simulation

Scalability

Figure 1. Structure of the dissertation.

8

Chapter 2 presents an overview of the background material and some of the re-
lated work. In Chapter 3, we analyze the results of a seven-month real-time streaming
experiment, which was conducted between a number of unicast dialup clients, connecting
to the Internet through access points in more than 600 major U.S. cities, and a backbone
video server. During the experiment, the clients streamed low-bitrate MPEG-4 video se-
quences from the server over paths with more than 5,000 distinct Internet routers. We
describe the methodology of the experiment, the architecture of our NACK-based stream-
ing application, study end-to-end dynamics of 16 thousand ten-minute sessions (85 mil-
lion packets), and analyze the behavior of the following network parameters: packet loss,
round-trip delay, one-way delay jitter, packet reordering, and path asymmetry. We also
study the impact of these parameters on the quality of real-time streaming.

Chapter 4 presents a trace-driven simulation study of two classes of retransmis-
sion timeout (RTO) estimators in the context of real-time streaming over the Internet. We
explore the viability of employing retransmission timeouts in NACK-based (i.e., rate-
based) streaming applications to support multiple retransmission attempts per lost packet.
The first part of our simulation is based on trace data collected during a number of real-
time streaming tests between dialup clients in all 50 states in the U.S. and a backbone
video server. The second part of the study is based on streaming tests over DSL and
ISDN access links. First, we define a generic performance measure for assessing the ac-
curacy of hypothetical RTO estimators based on the samples of the round-trip delay
(RTT) recorded in the trace data. Second, using this performance measure, we evaluate
the class of TCP-like estimators and find the optimal estimator given our performance
measure. Third, we introduce a new class of estimators based on delay jitter and show
that they significantly outperform TCP-like estimators in NACK-based applications with
low-frequency RTT sampling. Finally, we show that high-frequency sampling of the RTT
completely changes the situation and makes the class of TCP-like estimators as accurate
as the class of delay-jitter estimators.

Chapter 5 studies non-linear increase-decrease congestion control methods and
their performance in real-time streaming. In this chapter, we first develop a new scalabil-
ity measure of congestion control and use it to compare the performance of the existing
methods. We show that among the existing methods, AIMD (Additive Increase, Multipli-
cative Decrease) is the best solution for the currently best-effort Internet and that in order
to provide better scalability than that of AIMD, the application must know the bottleneck
capacity of the end-to-end path. We also define “ideal scalability” of congestion control
and show that it is possible not only in theory, but also in practice; however, we find that
ideal scalability also requires the knowledge of the bottleneck capacity of an end-to-end
path. Finally, we develop a new method of using estimates of the bottleneck bandwidth in
congestion control to achieve ideal scalability and conclude the chapter by studying the
performance of the existing and proposed schemes both in simulation and over an ex-
perimental network of Cisco routers.

Chapter 6 defines a new problem of estimating the bottleneck bandwidth in real-
time using end-to-end measurements applied to application traffic and proposes a novel
use of such estimates in congestion control. We start with two basic packet-pair band-

9

width sampling methods and show how they can be applied in real-time to the application
traffic. We show how these two methods fail over multi-channel links and develop a new
sampling method that remains robust over such links. We then examine the performance
of the three methods in a number of tests conducted using an MPEG-4 congestion-
controlled streaming application over a Cisco network under a variety of conditions (in-
cluding high link utilization scenarios). In addition, we study three estimation techniques,
which can be applied in real-time to the collected samples, and show their performance in
the same Cisco network with each of the sampling methods. We find that two of the sam-
pling methods combined with the best estimator maintain very accurate estimates for the
majority of the corresponding session in a variety of scenarios and could in fact be used
by the application for congestion control or other purposes.

Chapter 7 concludes the dissertation and discusses some of the future work.

10

Chapter Two

2 Related Work

In this chapter, we review the related work in four main categories – measurement
studies of Internet performance (section 2.1), error control in Internet transport protocols
(section 2.2), Internet congestion control (section 2.3), and end-to-end bandwidth estima-
tion (section 2.4). The background material in each of these four sections is related to our
studies in the subsequent four chapters of this thesis.

2.1 Internet Measurement Studies

In this section we overview a small fraction of the vast amount of research that
characterizes the performance of the Internet using end-to-end measurements. The major-
ity of this research falls into three categories. The first category consists of TCP-based
end-to-end studies of both the Internet and various flow parameters. Most of the work in
this area is based on either sending bulk (i.e., FTP-like) transfers across the Internet or
monitoring end-to-end user TCP traffic at various backbone gateways in order to derive
the characteristics of the paths along which the user traffic has traveled. The second cate-
gory consists of ICMP-based ping or traceroute characterization studies of the Inter-
net. The work in this area analyzed packet loss and round-trip delays as perceived by
ICMP packets sent to certain destinations in the Internet. The third category deals with
streaming video or audio over the Internet, but usually provides a minimal coverage of
Internet paths. The primary goal of these experiments was to show that a particular
streaming feature worked and had a certain performance when used over the Internet,
rather than to study the Internet itself under real-time streaming conditions. Such features
as congestion control, bandwidth adaptivity, retransmission, error resilience, etc., are of-

11

ten the main focus of the research in this category. At the end of this chapter, we also dis-
cuss work that models Internet traffic based on traces of real connections.

2.1.1 TCP measurements

Paxson’s Ph.D. work [209] and a series of papers [203], [204], [205], [208], is
probably the most well-known wide-scale measurement of the Internet. Paxson studied
the Internet for two purposes – to investigate the routing behavior and routing patholo-
gies in the Internet using traceroute packets and to study the end-to-end behavior of the
Internet sampled by TCP traffic. We mention the TCP-based part of his thesis in this sec-
tion and defer the discussion of the ICMP-based study until the next section.

Paxson’s end-to-end TCP experiment included 25 Internet sites in December
1994 and 31 sites in November-December 1995. The geographic spread-out of these sites
was impressive and, besides the U.S., included such countries as Australia, South Korea,
The Netherlands, U.K., Germany, Canada, and Norway. The experiment consisted of ran-
domly pairing any two sites and sending a 100-KByte file from one site to the other using
TCP. A packet trace tool (Unix tcpdump) was used to capture packet headers at both the
receiver and the sender. The first part of Paxson’s end-to-end analysis focused on the
behavior of the participating TCP implementations and their reaction to packet loss, high
RTT, and out-of-order packet delivery. The second part of the work analyzed the network
conditions present during the transfers, where Paxson studied packet reordering, duplica-
tion, loss, delay, the bottleneck bandwidth, and the available bandwidth along various
Internet paths. The study analyzed 21,295 end-to-end TCP transfers (over 2 GBytes of
data), where each transfer consisted of 100-400 packets (over 5 million packets).

In 1992, Mogul [178] studied a large number of TCP connections passing through
a busy Internet gateway. A special Unix kernel daemon was installed in the gateway to
record into a disk file the headers of arriving TCP packets. The main focus of the work
was the detection of compressed ACKs in TCP connections. In addition, the study meas-
ured the frequency of packet loss and out-of-order delivery of packets. During several
hours of its operation, the kernel daemon collected roughly 4.1 million packets, which
mainly carried email, FTP, and news (NNTP) traffic.

In 1991, Caceres et al. [40] performed a similar trace-based analysis of TCP con-
versations passing through three gateways to two campus networks. UDP, TCP, and IP
headers were collected at the gateways and later analyzed with a number of off-line pro-
grams to characterize the individual connections. The study presented distributions of the
number of transmitted bytes per connection, durations of connections, the number of
transferred packets, packet sizes, and packet inter-arrival times. It was observed that 80
percent of all wide-area traffic belonged to TCP traffic. Of all UDP packets, 63 percent
belonged to DNS (Domain Name System), 15 percent to Route, and 10 percent to NTP
(Network Time Protocol). The study was based on approximately 13 million packets col-
lected during the period of three days.

12

2.1.2 ICMP measurements

Paxson in [209] and [206] conducted thorough end-to-end traceroute measure-
ments of over 900 Internet paths between 37 geographically distributed sites. The study
consisted of periodic traceroute executions between random pairs of sites. Each
traceroute execution involved a synchronized examination of the path between the two
sites in both directions in order to capture possible path asymmetries. The study found
that traceroute had traversed 751 distinct routers in 1994 and 1095 distinct routers in
1995 (for a total of 1,531 distinct routers). In terms of Autonomous Systems (AS), the
study sampled 85 unique ASes. The main goal of this routing study was to examine rout-
ing pathologies, end-to-end routing instability, and routing asymmetry. The issues ad-
dressed in the work included the presence of unresponsive and rate-limiting routers, rout-
ing loops, erroneous routing, various unreachability pathologies, temporary outages, rout-
ing prevalence and persistence, frequency of route changes, and size and prevalence of
routing asymmetry.

In 1993, Bolot [22] analyzed end-to-end packet loss and delay as perceived by a
flow of fixed-size echo packets sent by the sender at regular intervals. The study included
one site in Europe and two sites in the United States. Bolot analyzed round-trip delays,
packet compression effects, and packet loss. The packet loss analysis included the study
of loss gaps (i.e., lengths of loss bursts) and both unconditional and conditional probabili-
ties of packet loss. Using Lindley’s recurrence equations and a simple queuing model of
Internet routers, the paper was able to estimate the amount of Internet cross-traffic from
the observed inter-packet delays.

In 1993, Claffy et al. [53] analyzed end-to-end delays for a series of ICMP echo
request packets sent from the San Diego Supercomputing Center to four sites (one in
Europe, one in Japan, and two in the U.S.). The hosts maintained clock synchronization
via NTP in order to measure one-way delays. The main focus of the work was to show
that the one-way delay often did not equal half of the round-trip delay along the studied
Internet paths. The work concluded that both routing asymmetry and different queuing
delays in each direction were responsible for the difference in the one-way delays.

In 1994, Mukherjee [182] studied several Internet paths using ICMP echo re-
quests. He found that the round-trip delay was a shifted and scaled gamma distribution
and developed a method of estimating the parameters of the distribution based on the
sampled RTT. The work also established a correlation between packet loss and the
round-trip delay along some of the studied Internet paths.

In 1996, Acharya et al. [1] measured the Internet round-trip delay by sending
ICMP echo packets from four hosts to 44 popular commercial and educational web serv-
ers. Each path was studied over a period of 48 hours by sending ping messages once per
second to the corresponding web site. The work computed numerous statistical parame-
ters (such as the mean, variance, standard deviation, mode, etc.) of the RTT and studied
their behavior over time on different timescales. The distribution of the RTT was ob-
served to be asymmetric around the mode and resembled that of a gamma distribution.
The paper observed long tails in the RTT distribution, but did not provide an analytical

13

model of the RTT. In addition, the study arrived at the conclusion that the RTT exhibited
large spatial (i.e., from path to path) and temporal (i.e., over time) variation, the mode
dominated the RTT distribution (i.e., most RTT samples lied in the close proximity to the
mode), RTT distributions changed slowly over time (the average period before a substan-
tial change in the RTT was computed to be 50 minutes), spikes in RTT samples were iso-
lated, jitter in RTT samples was small, and the minimum RTT occurred quite frequently
during the majority of connections.

In 1999, Savage et al. [245] used traceroute to examine various Internet paths
for the purpose of finding paths with potentially better end-to-end conditions than the de-
fault paths computed by the routing protocol. New hypothetical paths were constructed
for each pair of hosts A and B in the given set of hosts by traversing a path from A to all
possible hosts C and then traversing the path from C to B, as long as both paths existed
and were different from the default path from A to B. Some of Paxson’s routing data from
1995 was used in addition to the new data collected in 1999. The results showed that cer-
tain hypothetical paths would have had better end-to-end characteristics, if they had been
employed by the routing protocols.

2.1.3 UDP measurements

Yajnik et al. [282], [283] studied the Internet by sending equally-spaced unicast
and MBone (multicast backbone) UDP audio packets. The experiment covered 128 hours
in November-December 1997 and June 1998. One sender and five Internet receivers par-
ticipated in the experiments, in which each receiver measured packet loss and recorded
the results for further analysis. Using collected traces of lost packets, the work modeled
packet loss as a random variable, analyzed its stationarity and autocorrelation properties,
and established a cross-correlation between the lengths of good runs (i.e., the bursts of
successfully received packets) and loss runs (i.e., the bursts of lost packets).

Borella at el. [29] measured packet loss rates between three Internet sites over a
one-month period in April 1997. The data was collected by constructing all possible pairs
out of the available sites and employing a UDP echo server at one site and an audio
transmitted at the other site. During each three-minute connection executed once per
hour, the sender transmitted low-bitrate audio traffic to the UDP echo server. Both the
server and the client recorded packet loss events so that loss patterns in both directions
along the path could be later analyzed. The client sent equally-spaced UDP packets at
approximately 21 kb/s to the server, and the server echoed each received packet to the
client. The study found that the average packet loss varied between 0.36% and 3.54%
depending on the path, and the mean loss burst length was 6.9 packets. The paper mod-
eled the upper tails of the distribution of the loss burst lengths as a heavy-tailed (i.e.,
Pareto) distribution and found that shape parameter α varied from path to path. In addi-
tion, the paper examined conditional and unconditional packet loss probabilities, as well
as the asymmetry of packet loss along each Internet path. The conditional loss probability
was found to be much higher than the unconditional probability, and the actual probabili-
ties were consistent with those reported in Paxson’s study [205], [209]. The observed

14

asymmetry of packet loss along each path was attributed to path asymmetries rather than
to varying network load in each direction.

In a 1998 paper, Bolot et al. [26] conducted several streaming tests over the Inter-
net to measure the performance of the proposed AIMD (Additive Increase, Multiplicative
Decrease) rate control scheme. The scheme was based on RTP (Real-time Transport Pro-
tocol) receiver reports. The main focus of the work was to record the changes in the send-
ing rate and show that the sender matched its transmission rate to the available band-
width. The Internet experiment was a video conferencing session over the MBone, in
which the sender responded to packet loss by adjusting its sending rate according to the
proposed AIMD scheme.

In 1998, Li et al. [147] collected numerous samples of the RTT from packets ex-
changed by a public NTP (Network Time Protocol) server and modeled the round-trip
delay as a long-range dependent (LRD) process. The work showed that exponential mod-
els did not fit the data well and that their distribution tails decayed too quickly. The work
examined the M/M/1 model of network queues and concluded that hyperexponential dis-
tribution of the RTT describing the M/M/1 queues also provided a poor fit to the real
data. Instead, the work used LRD (self-similar) modeling and estimated the Hurst pa-
rameter to vary from path to path between 0.78 and 0.86. In later work, Li et al. [145],
[146], [148] examined the same NTP data and new round-trip delay samples derived
from experiments based on ICMP ping. The work built upon the fractional Brownian
motion process and wavelet-based analysis to conclude that certain data traces could be
characterized as incremental time series of a self-similar process. Furthermore, while
some data traces were better modeled as multifractal, traces with weak long-range de-
pendence were found to be fractional Gaussian noise.

In 1999, Tan et al. [263] conducted several experiments by streaming real-time
video over the Internet for the purpose of testing the proposed 3D subband video coding
scheme. The work tested two properties of the proposed video coding – scalability of
video compression and packet loss resilience. The third motivation for the experiment
was to verify that the TCP-friendly, equation-based congestion control implemented by
the authors was in fact friendly to other TCP flows. The experiment involved one site in
Hong Kong and two sites in North America. First, the work studied packet loss experi-
enced by the video flows in order to show that a video stream equipped with congestion
control suffered less packet loss than the same stream without congestion control. Sec-
ond, the work showed that the TCP-friendly congestion control achieved approximately
an equal share of bandwidth with a concurrently running TCP flow. Finally, the work
showed that in the presence of packet loss, the error-resilient features of the proposed
compression method performed well.

Other video streaming tests, such as [45], have been conducted over the Internet.
However, they were usually confined to a single Internet path and measured the perform-
ance of the proposed protocol or scheme, rather than the performance of the Internet.

15

2.1.4 Internet Traffic Modeling

In 1993, Leland et al. [143] examined several traces of Ethernet LAN packets and
discovered strong fractal behavior in the packet arrival and byte arrival processes. The
work found that Ethernet LAN traffic was statistically self-similar and the Hurst parame-
ter of the traces was a good indicator of the degree of burstiness (variance) of traffic
(higher Hurst parameters corresponded to burstier traffic). The paper discussed inappli-
cability of the Poisson model to LAN traffic, pointing out that a finite-variance Poisson
process with a fast (i.e., exponentially) decaying autocorrelation function was unable to
capture the degree of burstiness and long-term correlation present in real LAN traffic.
Finally, the work observed that the degree of burstiness (the degree of self-similarity)
intensified with the increase in the number of sources, which also contradicted the
Poisson model that predicted smoother traffic with a larger number of sources.

In 1994, Paxson [204] modeled several parameters of TELNET, FTP, NNTP, and
SMTP connections based on Internet trace data. While the majority of random variables
were found to be best modeled by a log-normal distribution, some exhibited heavy tails
and were better modeled by a Pareto distribution. In a related work [214], Paxson studied
packet arrival and connection arrival processes for TELNET and FTP sessions. The work
found that the Poisson model was adequate only for describing the arrival of user ses-
sions, but individual packet inter-arrivals were better modeled by a self-similar process.
Using Whittle’s estimator [143] and Beran’s goodness-of-fit test [18], Paxson discovered
that some traffic traces were consistent with the fractional Gaussian noise, while others,
still exhibiting strong self-similarity, failed the test.

In 1995, Willinger et al. [279] introduced a method of generating self-similar traf-
fic by using an aggregation of renewal reward processes, each of which modeled an
ON/OFF traffic source. The duration between the ON and OFF periods for each source
was modeled by an independent identically distributed random variable with a hyperbolic
tail distribution (i.e., a heavy-tailed, Pareto-like distribution). The aggregate traffic was
shown to be asymptotically fractional Gaussian noise and thus self-similar. Following the
derivation of the model, the authors examined two Ethernet traces and presented a physi-
cal explanation of self-similarity discovered in their previous work [143]. They parti-
tioned the data according to source-destination pairs and modeled ON/OFF periods of
each source as a heavy-tailed distribution. Using Q-Q plots and a Hill estimator, the study
showed that many sources exhibited the Noah Effect (heavy tailed distribution) with
shape parameter α between 1.0 and 2.0, which the paper argued was the source of self-
similarity in the aggregate traffic.

In 1996, Crovella et al. [60] found the presence of self-similarity in the traces of
WWW traffic and established that Hurst parameter H of the traffic was between 0.76 and
0.83; however, the ON/OFF periods of user requests failed to clearly demonstrate a
heavy-tailed distribution. Among other related work, Grossglauser et al. [93] introduced
a modulated fluid traffic model in which the correlation function was asymptotically self-
similar with a given Hurst parameter H and modeled the behavior of a single finite server
queue fed with such fluid input process. In [207], Paxson presented a fast, approximate

16

method of generating fractional Gaussian noise based on fast Fourier transforms and pro-
vided a method of dramatically improving the speed of Whittle’s estimator of the Hurst
parameter. Recently, Ribeiro et al. [242] used multiplicative superstructures on top of the
Haar wavelet transform to generate long-range dependent (LRD) traffic and showed that
the results matched real self-similar data very well. Another recent work, Feldman et al.
[71], showed that actual WAN traffic exhibited more complex behavior than that of self-
similar (monofractal) processes and suggested a wavelet-based time-scale analysis tech-
nique to model the underlying multifractal nature of WAN traffic.

Self-similarity has been also noticed in VBR video traces. Garrett et al. [89]
found that the tail behavior of the marginal bandwidth distribution of a VBR source could
be accurately described using heavy-tailed distributions and that the autocorrelation func-
tion of a VBR video sequence decayed hyperexponentially (i.e., indicating an LRD proc-
ess). The paper combined the findings into a new model of VBR traffic and used self-
similar synthesis to generate LRD video traffic. Huang et al. [105] synthesized VBR
video traffic by using an asymptotically self-similar process (fractional autoregressive
integrated moving average (F-ARIMA)) that modeled the marginal distribution of em-
pirical data and long-range, as well as short-range, dependencies in the original autocor-
relation function.

2.2 Error Control in Transport Protocols

We start this section by discussing the work related to retransmission-based lost
packet recovery and finish with FEC (forward-error correction)-based error recovery and
error-concealment methods.

2.2.1 Retransmission schemes for real-time media

In 1996, Dempsey et al. [63] developed a retransmission-based buffer model for
packet voice streaming. The model was based on the paradigm that the voice data con-
sisted of silence and talk-spurt segments and involved a receiver buffering delay to sup-
port retransmission. The proposed protocol relied in NACK-based flow control; however,
the paper did not deal with the loss of NACKs or the estimation of retransmission time-
outs.

In 1996, Pejhan et al. [216] studied retransmission in multicast trees. The study
focused on two NACK-based retransmission models. In the first model, a unicast packet
was retransmitted directly to the receiver upon the receipt of the corresponding NACK.
In the second model, each lost packet was multicast to all receivers. Furthermore, the
second model allowed the server to wait a certain amount of time before retransmitting
requested packets to accumulate several NACKs from multiple receivers. Specifically,
the paper examined the cases of immediate multicast (zero waiting time), multicast upon
the receipt of all NACKs (which required the knowledge of the maximum one-way delay

17

in the tree), and a more general case, in which the waiting time was between the mini-
mum and the maximum one-way delay. The authors built a retransmission cost model for
multicast trees under certain simplifying assumptions and presented a quantitative analy-
sis of the various retransmission schemes taking into account the probability of generat-
ing late retransmissions, the average packet recovery time, the number of times each lost
packet is retransmitted, and the cost to the network (in terms of duplicate packets) of each
retransmission scheme. After analyzing and simulating the different schemes, the paper
reached a conclusion that immediate (preferably multicast) retransmission worked best
and, in the most general case, was optimal in the context of all four criteria.

In 1996, Papadopoulos et al. [199] proposed a real-time retransmission scheme
for streaming. The scheme utilized a video playout buffer and applied a special buffering
delay to the video data before the first frame was passed to the decoder. The extra buffer-
ing delay was used to allow more time for the retransmission of the lost packets. The
proposed scheme operated using NACKs and relied on the gaps in packet sequence num-
bers to infer packet loss (i.e., the scheme did not attempt to detect out-of-order packets).
The sender inserted each transmitted video packet in a temporary FIFO queue of the
same size as the receiver’s playout buffer. If a retransmission request came after the cor-
responding packet had left the sender’s temporary buffer, the request was ignored under
the assumption that the discarded packet would not have been able to arrive to the re-
ceiver before its deadline. Among other features, the proposed scheme included condi-
tional retransmission, which prevented the receiver from requesting packets that were
likely to be late for their decoding deadline. For that purpose, the receiver maintained a
weighted exponential average of the RTT samples and used this value to decide which
packets were likely to be recovered before their deadlines.

In 1998, Rhee [241] proposed a retransmission-based receiver buffer model, in
which lost packets were recovered until the deadline of the group of pictures (GOP) in-
stead of the deadline of each individual lost packet. Traditionally, if a packet arrives after
its decoding deadline, the entire frame containing such late packet is discarded. Rhee
proposed to hold each incomplete frame until all lost packets from that frame were re-
covered (even if the full recovery happened after the frame’s decoding deadline) and then
use this late frame to reconstruct subsequent frames within the same GOP. However, in
order to perform this “catch-up” decoding, the decoder had to work faster than the target
fps, and some extra buffering was needed at the client. In the second part of the paper,
Rhee applied an FEC coding scheme to the video and tested the entire video streaming
scheme in simulation and over the Internet. Furthermore, the paper used a hybrid NACK-
ACK retransmission scheme, in which each frame was ACKed by the receiver, and each
ACK carried the information about missing packets from the corresponding frame. The
sender retransmitted lost packets (as requested by each ACK), waited for three frame du-
rations, and retransmitted the same packets again if it received another ACK showing that
the same packets were still missing.

18

2.2.2 Retransmission in TCP and other protocols

In 1999, Allman et. al. [4] studied the performance of TCP’s RTO estimator
based on the traces of TCP connections between a large number of geographically dis-
tributed Internet sites (i.e., Paxson’s 1995 dataset [209]). The study compared the per-
formance of RTO estimators for several values of exponential weights (α, β) and con-
cluded that no estimator performed significantly better than TCP’s default RTO. Among
other TCP-related retransmission schemes, Keshav et al. [124] described a retransmission
strategy (called SMART) for a reliable transport protocol that used sender-based re-
transmission timeouts equal to twice the SRTT (i.e., identical to those in RFC 793).

Paul et al. [202] presented a reliable multicast transport protocol (RMTP) in
which the receivers sent NACKs for the same packet at least RTT time units apart, where
the RTT was “computed using a TCP-like scheme.” Among other Internet protocols,
Gupta et al. [96] proposed a web transport protocol (WebTP) designed to provide better
performance than TCP. Although not directly a real-time streaming protocol, WebTP had
many similarities to real-time applications, which included a rate-based flow control and
a receiver-initiated (i.e., NACK-based) retransmission scheme. The retransmission time-
out (RTO) used in WebTP was based on the current sending rate r (which was estimated
at the receiver and conveyed to the sender in special control packets) and a TCP-like (i.e.,
EWMA) variance σ of the inter-packet arrival delay with undisclosed exponential
weights α and β. A timeout occurred at the receiver if no packets arrived within [1/r +
Mσ] time units after the arrival of the last packet, where M was an undisclosed factor that
allowed for one-way delay variation. In addition, in order to be able to detect out-of-order
packets, WebTP used TCP’s triple-ACK scheme, in which three arriving out-of-order
packets triggered a retransmission (if the retransmission had not happened earlier due to a
timeout).

2.2.3 ITD Video Buffer Model and Efficient Packet Loss Re-
covery

Some of the previous work mentioned in this section is applicable to voice data
and certain video applications that can tolerate playback jitter. However, these solutions
may not be acceptable in video-on-demand services (e.g., entertainment-oriented applica-
tions). In addition, it is crucial to take into consideration the characteristics of com-
pressed video, which usually has a variable number of bytes per video frame. Due to the
wide range of compressed pictures’ sizes, a video buffer model has to be employed to
ensure the continuous decoding and presentation of video at the receiver. It is important
to note that a video buffer model is needed even in the absence of any network jitter or
packet loss events. Examples of video buffer models are the ones supported by the ISO
MPEG-2 and ITU-T H.263 standards.

To overcome the deficiencies of the protocols only suitable for audio, Radha et al.
[225] introduced a joint transport-layer/video-decoder buffer model suitable for retrans-
mission-based Internet video applications, which could tolerate short delays (e.g., on the

19

order of a few seconds). We refer to this model as the Integrated Transport Decoder
(ITD) buffer model. In the ITD, the decoder buffer is partitioned into two regions – the
jitter detection region and the retransmission region. Missing packets in the jitter detec-
tion region are suspected to be reordered or delayed by the network due to delay jitter.
Hence, their retransmission is not initiated until they leave the jitter detection region and
make it into the retransmission region. The retransmission region is used to recover lost
packets through multiple retransmission requests to the server. The size of each region
and the delay between subsequent requests of the same lost packet are determined in real-
time based on the measurements of the current network conditions.

2.2.4 Forward Error Correction

Forward error correction codes (such as the ones used in [26], [218], [233]) pro-
vide another dimension to error recovery, which is orthogonal to retransmission-based
approaches. The issue of whether FEC is better for real-time traffic than retransmission
(or vice versa) is still under consideration in the research community. Clearly, in some
cases FEC performs better (especially in multicast sessions and under large end-to-end
delays) and in others it may perform worse (e.g., in non-interactive unicast applications
with bursty packet loss). This thesis does not explicitly study or apply FEC-based meth-
ods to video, but instead studies the performance and limitations of retransmission-based
packet loss recovery.

2.2.5 Error Concealment

Receiver-based error concealment (such as in [269]) hides the negative effects of
damaged (i.e., lost) packets on video or audio frames by approximating the values of the
lost data using the data from the adjacent frames. Error concealment has been success-
fully used in both audio and video streaming. However, several impediments do exist in
concealing packet loss in motion-compensated video. For example, spatial interpolation
in video is often hindered by the use of variable-length codes (VLC) within a coded
frame. Upon packet loss, errors in the lost macroblocks of a video frame propagate into
adjacent blocks and adversely affect the rest of the frame data (since the decoder loses
synchronization within the VLC codes). As the result, interpolation of the lost data from
adjacent macroblocks of the same frame is sometimes difficult (even with the use of re-
versible VLCs and resynchronization markers). In addition, temporal interpolation is of-
ten not possible either, because the use of motion compensation and strong temporal de-
pendence between frames force errors to propagate into adjacent frames. MPEG-4 and
other video coding standards do not specify or standardize error concealment techniques
that can be used to conceal the loss of entire packets or frames. Consequently, in the cur-
rent Internet, either FEC or retransmission (or both) are often necessary in addition to any
error concealment implemented at the video level.

20

2.3 Congestion Control

In this section, we present a short overview of the work related to congestion con-
trol, congestion avoidance, and adaptive video streaming over the Internet. We parti-
tioned the work into several categories and mention a few results in each area. In the first
area, we discuss several early congestion control schemes. The second area deals with
TCP-related congestion control. In the third area, we overview router-based congestion
avoidance schemes and recent advancements in that area. The fourth area of congestion
control discusses RTP (Real-time Transport Protocol)-based methods. The fifth area con-
sists of recently-proposed TCP-friendly (equation-based) congestion control. There is
mounting evidence that formula-based congestion control schemes can be effectively
used for real-time video streaming, while achieving fair utilization of the bandwidth with
TCP flows. The final area consists of an overview of several video streaming solutions
proposed in the past (including rate adaptation and quality adaptation mechanisms).

2.3.1 Early approaches to congestion control

In one of the first documents on congestion control following the standardization
of TCP/IP, Nagle [184] discussed various possibilities of serious congestion in the
ARPANET. The work described one of the first (dating back to 1983) congestion col-
lapses in a wide-area TCP/IP network and coined the term “congestion collapse,” which
refers to a state of the network in which the utilization stays close to 100% and the
throughput stays close to zero. In addition, Nagle [184] examined the problem of high
overhead associated with small TCP packets (the solution to which was later incorporated
into TCP as “Nagle’s algorithm”) and identified ICMP Source Quench messages as the
solution to congestion. Nagle suggested that a TCP sender react to ICMP Source
Quenches by closing the sender’s transmission window for a certain duration. On a re-
lated topic, the paper proposed that ICMP Source Quench messages be sent when the
router’s queues were half full, instead of when an actual packet loss occurred. Finally,
Nagle proposed that, upon congestion, routers penalize flows with the highest sending
rate. The latter two ideas are currently used in Random Early Detection (RED) [84].

In 1985 (RFC 969) and later in 1987 [56], [57] Clark et al. proposed one of the
first rate-based flow control protocols called NETBLT (Network Block Transfer).
NETBLT was an end-to-end transport-layer protocol designed for reliable high-
throughput bulk data transfer. In general, congestion control in rate-based applications is
more difficult than that in window-based applications. Due to this difficulty, NETBLT
was never supplemented with congestion control and was left in an experimental stage
with no provision for rate adaptation in response to packet loss.

In 1989, Jain [116] suggested a delay-based congestion avoidance algorithm,
which adapted the sender’s transmission window in response to the change in the round-
trip delay. The proposed scheme assumed a deterministic network, in which the end-to-
end delay was a linear function of the sender’s transmission window size. Packet loss

21

was assumed to be non-existent and acknowledgements traveled instantaneously from the
receiver to the sender. The paper developed an AIMD (Additive Increase, Multiplicative
Decrease) algorithm to control the sender’s window in response to the variation in the
RTT. Under the assumed idealistic conditions, the paper showed that the proposed AIMD
algorithm performed well and converged to an optimal lossless state. The author ac-
knowledged that the proposed congestion avoidance mechanism was unsuitable for real
networks and that future work was required to solve protocol’s reliance on idealistic as-
sumptions.

2.3.2 TCP congestion control

The basic operation of TCP is specified in RFC 793 [221]. TCP is a window-
based transmission protocol, in which congestion control was not implemented until the
late 1980s. The absence of congestion control in TCP led to numerous congestion col-
lapses in the ARPANET and the early NSFNET.

RFC 793 TCP relied on timeouts to detect packet loss and recover lost packets.
The computation of the retransmission timeout (RTO) was based on the current estimate
of the round-trip delay, whereas current TCPs take into account the variation of the RTT
as well as the RTT itself. In all versions of TCP, the smoothed estimate of the round-trip
delay, which is called SRTT, is computed as an exponentially weighted moving average
(EWMA) of the past RTT samples:

 SRTTi = (1–α)⋅SRTTi–1 + α⋅RTTi, (1)

where i is the sample number, RTTi is the latest observation of the round-trip de-
lay, and α is a smoothing factor (1/8 in the current TCP). Given the current smoothed es-
timate SRTT of the round-trip delay, the RTO in the original TCP was computed as:

 tRTO = β⋅SRTT, (2)

where β (delay variance factor) was a fixed constant between 1.3 and 2.0. In the
early 1980s, it seemed reasonable to multiply the latest SRTT by a factor of two and ex-
pect that all round-trip delays in the immediate future would be well within the RTO. In
reality, however, the RTO specified in RFC 793 was frequently insufficient when used
over the Internet and led to numerous unnecessary retransmissions. The problem was es-
pecially noticeable, because many Internet hosts connected to the relatively slow Internet
through high-speed Ethernet LANs and were able to send substantial amounts of re-
transmitted traffic into congested routers before realizing that their RTO was too low.

Another problem with the original TCP was the absence of any graceful startup,
i.e., the original TCP started blasting packets at the maximum speed (up to the size of its
initial window) before it even got its first estimate of the RTT. In cases when packets
from the original burst were lost, it was too soon for the RTO to reflect the actual RTT.
Consequently, to a large degree, many retransmission decisions at the beginning of a ses-
sion were based on inaccurate RTOs.

22

In 1988, Jacobson [110] proposed the first effective version of congestion control
for TCP. Jacobson, following a 1986 congestion collapse in the ARPANET, suggested
several modifications to TCP that increased its stability during periods of heavy loss and
reduced the number of spurious retransmissions. The proposed modifications included
slow start, exponential timer backoff, dynamic windows sizing (currently called conges-
tion avoidance), fast retransmit, and RTT variance estimator.

Under proposed slow start, a TCP sender started its transmission by slowly in-
creasing the sending rate until a packet loss occurred, instead of blasting entire windows
of packets into the network. A new congestion window, cwnd, was used to keep track of
the current number of packets that the sender could send in one RTT. Under slow start,
cwnd started at one packet and was increased exponentially during each RTT until a
packet loss occurred.

In [110], in order to increase network stability during congestion, the exponential
timer backoff algorithm instructed a TCP sender to double its retransmission timeout each
time the same packet was retransmitted. The exponential backoff slowed down the sender
in case of heavy congestion (i.e., when the sender had no feedback) and allowed the net-
work to stay in a stable state.

In addition, each packet loss triggered the dynamic window sizing algorithm. The
algorithm recorded half of the effective transmission window at the time of a packet loss
as ssthresh (slow start threshold), set the congestion window to one, and immediately ini-
tiated slow start. Slow start was executed until either another packet loss occurred or un-
til cwnd reached the value of ssthresh. When the latter condition occurred, slow start was
over and cwnd was increased linearly to probe for new bandwidth.3

Fast retransmit referred to the method of retransmitting certain lost packets with-
out waiting for a timeout. If a packet was lost or reordered, the subsequent packets arriv-
ing to the receiver triggered duplicate ACKs (i.e., ACKs that acknowledged the same
data). The sender, from the receipt of duplicate ACKs, could infer that a particular packet
had been lost. In order to avoid retransmitting reordered packets, the sender responded
only to the third consecutive duplicate ACK (hence, the fast retransmit method is some-
times called “triple-ACK”).

Finally, Jacobson [110] proposed adding an RTT variance estimator in the com-
putation of retransmission timeouts (RTO). According to Jacobson’s observations, under
high network load, the original TCP [221] was unable to keep up with highly varying
values of the RTT and caused frequent premature retransmissions. Recall that RFC 793
TCP [221] suggested multiplying the value of SRTT by constant β (between 1.3 and 2.0)
and taking the result as the value of the RTO. Jacobson estimated that β = 2 could adapt
to link utilization loads of only 30%, which was too low for frequently-congested Internet
of the 1980s. As a result, [110] suggested computing the value of the RTO by adding four
smoothed RTT variances to the value of the smoothed RTT (i.e.,

3 In current literature, the behavior of TCP when cwnd < ssthresh is called “slow start” and when cwnd >
ssthresh it is called “congestion avoidance.” When cwnd = ssthresh, either algorithm can be executed [5],
[258].

23

tRTO = SRTT + 4⋅RTTVAR). The paper showed that the resulting RTO was able to adapt to
much higher network loads.

TCP, with Jacobson’s modifications, was implemented in 4.3 BSD Unix in 1988
and became known as Tahoe TCP. In 1990, the fast recovery algorithm was added to
TCP’s congestion control [5], [258]. In Tahoe TCP, upon fast retransmit, the sender was
forced to go into slow start. Later, it was realized that a single packet loss (such as the
one detected by fast retransmit) did not necessarily indicate a network congestion and did
not require slow start. Instead, it was proposed that upon packet loss, the sender reduce
congestion window cwnd by half and perform a modified version of congestion avoid-
ance that quickly restored the window back to the original value in the absence of addi-
tional packet loss. The latter algorithm was termed fast recovery and was first imple-
mented in 4.3 BSD Unix in 1990 (the Reno release).

In the next few years, Jacobson et al. [113], [114], [115] proposed three TCP op-
tions that have since been placed on the IETF (Internet Engineering Task Force) stan-
dards track. Besides large TCP windows, the suggested options allowed the sender to in-
clude transmission timestamps in TCP headers in order to accurately compute the round-
trip delay. In addition to computing sender-based RTT, timestamps could be used to
compute packet delay jitter at the receiver, even though there is no clear use of delay jit-
ter in TCP. The third and most important option allowed the receiver to use selective
ACKs (called SACKs) to request retransmission of specific lost packets (regular ACKs
could still be used in conjunction with SACKs). The resulting TCP is usually referred to
as SACK TCP and its detailed description can be found in [165].

The addition of SACK to TCP stems from the following observations. Upon fast
retransmit, Tahoe TCP suffers from potentially retransmitting multiple packets that have
already been successfully delivered. Reno TCP, on the other hand, is limited to retrans-
mitting at most one lost packet per RTT. In addition, the performance of Reno TCP is
substantially reduced when multiple packets from the same window are dropped (which
happened in cases of bursty packet loss). Fall et al. [69] compared the performance of
Tahoe, Reno, and SACK TCP, and showed that Reno TCP had major performance prob-
lems in the presence of bursty packet loss (performance was even worse than that of Ta-
hoe TCP). Reno TCP performed so poorly in the presence of bursty packet loss, because
it exited fast recovery too soon and was forced to wait for a retransmission timeout in or-
der to recover additional lost packets within the same window. Fall et. al. proposed a
modification to Reno, called NewReno (currently in IETF as [82]), that did not suffer
from the same problem. NewReno was based on Hoe’s work in [102] and instructed the
sender to stay in the fast recovery mode until all packets from the window, which was in
effect when the first packet loss was detected, were acknowledged. NewReno’s perform-
ance could still be hindered by bursty packet loss, although not as severely as that of
Reno. The overall conclusion of [69] was that SACK TCP performed well in all cases
and that selective acknowledgements should become a part of the TCP standard [165].

Hoe [102], in addition to the changes to the fast recovery algorithm (discussed
above under the NewReno modifications), suggested an adaptive way of estimating the
initial value of ssthresh (recall that the initial ssthresh is used to gauge how long the

24

sender performs the initial slow start). Large values of ssthresh cause the sender to in-
crease its rate too aggressively and may potentially result in overshooting the available
bandwidth by up to 100% during slow start. Hoe [102] proposed that the sender estimate
the bandwidth-delay product from the first several acknowledgements it receives and use
the estimated bandwidth-delay product to compute ssthresh before slow start causes a
packet loss (similar ideas were developed by Brakmo et al. in [35], see below). Accurate
estimates can be especially beneficial to short connections (such as the majority of HTTP
flows); however, accurate estimation of the bandwidth is hard in the presence of delayed
and compressed ACKs. Allman et. al. [4] experimented with the same idea and found
that in the majority of TCP connections studied in Paxson’s large-scale experiment, real-
time estimation of ssthresh was not warranted.

In 1996, Mathis et al. [164] proposed a forward ACK scheme for TCP, which they
called FACK TCP. The proposed scheme was built on selective acknowledgements pro-
posed earlier [113], [114], [115], [165] and took a better use of SACKs in the presence of
bursty packet loss. The work suggested minor modifications to the fast recovery and fast
retransmit algorithms that allowed the sender to interpret non-continuous segments of
SACKs in a more intelligent way. Mathis et al. showed that in simulations FACK per-
formed better than SACK-enhanced Reno due to better management of unacknowledged
packets and better ability to recover from episodes of heavy loss.

Independently of the NewReno and SACK modifications to TCP, a new version
of TCP was designed and simulated by Brakmo et. al. in 1994. Brakmo et al. [35] pro-
posed a new TCP congestion control scheme called TCP Vegas, which incorporated a
novel bandwidth estimation scheme into the TCP sender. The congestion avoidance
phase was changed to include real-time estimation of the expected throughput (based on
the smallest experienced RTT) and the actual throughput (based on the latest RTT).
Knowing the amount of packets in flight (i.e., window size), the per-RTT throughput
could be computed as the ratio of the window size to the RTT. The paper made an as-
sumption that as the network congestion approached, the actual throughput would be-
come smaller (due to larger round-trip delays and backed up queues). Therefore, if the
actual throughput dropped below a certain threshold compared to the expected through-
put, TCP Vegas initiated a linear (per RTT) decrease of the congestion window. If, how-
ever, the actual throughput was close to the expected throughput and stayed above an-
other threshold, TCP Vegas linearly increased the congestion window to probe for new
bandwidth. If the actual throughput was between the two thresholds, the network was
considered to be stable and the congestion window was not changed. Other changes in
TCP Vegas included a modified slow start (also based on the expected and actual
throughput, and a half-rate exponential increase), fine-granular RTO timers, and the de-
cision not to react to multiple packet losses within the same transmission window (i.e.,
Vegas reacted to congestion at most once per RTT). In simulations, TCP Vegas achieved
between 37 and 71 percent better throughput and incurred between 50 and 80 percent
fewer lost packets than Reno TCP.

In addition to TCP Vegas, Brakmo et al. [35] examined the possibility of estimat-
ing the available bandwidth during slow start based on a modified packet-pair mecha-

25

nism [121]. The new version of TCP was tentatively called Vegas* and used four con-
secutive ACKs arriving from the receiver during slow start to set the initial value of
ssthresh. In experiments, Vegas* had a more graceful startup behavior and rarely caused
heavy packet loss. On the other hand, Vegas (as well as Tahoe and Reno) during slow
start often overshot the available bandwidth by as much as 100% and caused significant
packet loss. Despite a better startup behavior of Vegas*, the authors concluded that the
new mechanism did not have a measurable effect on throughput and only marginally im-
proved the loss rate. For these reasons, Vegas* modifications were not included into the
final version of TCP Vegas.

One year later, Ahn et al. [3] ported the TCP Vegas implementation from the x-
kernel simulator to SunOS and tested it over the Internet. They confirmed that Vegas had
better congestion avoidance properties and on average retransmitted 2 to 5 times fewer
packets than Reno, experienced fewer coarse timeouts, and subsequently incurred less
congestion in the network. When Vegas and Reno competed for bandwidth along the
same path, Reno was more aggressive and achieved up to 50 percent higher throughput.
The difference in throughput was explained by the fact that Vegas was more conservative
and backed off upon incipient congestion, while Reno pushed the network to the limit
and forced packet loss. The study also discovered that a Reno sender behaved poorly
when paired with a Tahoe receiver and that a Vegas sender actually performed better
with a Tahoe receiver than with a Reno receiver. The paper concluded that Vegas offered
an overall throughput improvement of 4-20 percent over Reno, much lower RTT, and a
reduction in lost packets between 50 and 80 percent.

After much controversy in the Internet community, TCP Vegas received recent at-
tention from Hengartner et al. in [101]. Under the same simulation conditions used in
[35], Hengartner reported similar performance of TCP Vegas to that described by
Brakmo et. al. [35]. Besides studying the performance of TCP Vegas, Hengartner et al.
identified which new features of Vegas were responsible for the improvement in
throughput and lower packet loss. The paper found that Vegas’ new fast recovery and
slow start mechanisms had the most influence on the throughput and its ability to reduce
packet loss, and showed that the other changes in Vegas had little impact on its perform-
ance. In addition, the study noticed that in a scenario with multiple competing Vegas
flows, sessions that started earlier yielded bandwidth to sessions that started later, and
that Vegas flows running along the same path were sometimes unfair to each other.

Other recent papers [97], [177] showed that Vegas’ congestion avoidance algo-
rithm was more stable than that of Reno, that Vegas was not biased against connections
with large RTTs, and that, at the same time, Vegas suffered from unfairness to other Ve-
gas flows and yielded to Reno TCP along shared paths.

Bolliger et al. [20] took Paxson’s approach [209] and studied several versions of
TCP by sending streams of packets between geographically distributed Internet sites. The
study lasted for six months in 1997-1998 and involved eleven Internet sites in North
America and Europe. The purpose of the study was to compare Reno and Vegas TCPs
with several FACK-based versions [164]. At exponentially distributed intervals, a cen-
tralized process chose a random pair of Internet hosts and instructed them to send a 1-

26

MByte file using a randomly chosen TCP protocol. The main result of the study was that
FACK-based TCPs outperformed in all aspects Reno and Vegas TCPs. FACK TCP
achieved higher throughput under all conditions, maintained fewer unnecessary retrans-
missions, had up to 50% fewer timeouts, and was able to cope with bursty packet loss
much better than either Reno or Vegas. The work concluded that, even though the results
somewhat contradicted earlier work [11], [153], FACK-based TCP is a considerable im-
provement over Reno-style TCPs.

2.3.3 Router-based congestion avoidance

One of the first router-based congestion control methods for IP networks was the
ICMP Source Quench mechanism [219]. According to [219], a congested router would
send a special ICMP message (called Source Quench) back to each source whose packet
had been dropped by the congested router. In 1987, IETF gateway requirement document
[34] confirmed the use of Source Quenches, acknowledging, however, that sometimes
Source Quenches could worsen congestion and that routers could become overly bur-
dened by generating such messages. In 1995, [34] was “overruled” by a new IETF router
requirement document [10], in which routers were explicitly prohibited to send Source
Quenches due to unnecessarily heavy CPU overhead and little effect on congestion.

In 1988, Ramakrishnan et al. [229] proposed a congestion avoidance scheme
called DECbit. DECbit was a window-based protocol, which relied on routers to set a
congestion notification bit in packet headers to signal congestion to the sources. Each
router computed the average outgoing queue size for every arriving packet over the last
and current busy periods. If the average queue size was larger than one, the congestion
bit was set in the packet’s header. If at least half of the packets in the last transmission
window had their congestion bit set, the sender reduced its transmission window multi-
plicatively. Otherwise, the window was increased additively. This approach relied on in-
stantaneous router queue size and therefore, was somewhat unfair to bursty traffic and
appeared to be susceptible to instability and oscillation.

Other similar Explicit Congestion Notification (ECN) schemes have been pro-
posed for ATM networks – Forward ECN (FECN) and Backward ECN (BECN). It is ex-
pected that ATM FECN/BECN will be replaced with the IP version of ECN that we dis-
cuss below.

Random Early Detection (RED) [84] is a congestion avoidance algorithm that al-
lows routers to drop randomly selected packets when they detect that their average queue
size has reached a certain threshold. In addition to avoiding congestion, RED targets to
improve the fairness between flows and avoid global synchronization between sources.
Furthermore, RED naturally penalizes sources with the highest sending rate and, upon
congestion, slows down the sources that contribute to the congestion the most. Recent
IETF literature [32] encourages Internet routers to support RED, and many of them do.
Even though routing software supports RED, it is still not deployed in the public Internet
[156] due to several implementation issues [50], [167].

27

In 1994, immediately following the proposal of RED in [84], Floyd [79] sug-
gested a modification that allowed RED to mark IP packets instead of dropping them.
The proposed architecture called for the Explicit Congestion Notification (ECN) bit in
the IP header that would be set by routers in the packets they decided to mark and would
be left untouched in unmarked packets. Upon the receipt of a packet with the ECN bit set,
the receiver would communicate congestion status to the sender and expect the sender to
reduce its transmission rate. The paper suggested that TCP react to marked packets the
same way it reacted to packet loss (i.e., by reducing congestion window cwnd and
ssthresh by half), however, no more than one rate reduction per round-trip time was al-
lowed. The paper studied an ECN-enabled TCP in a network of ECN routers and com-
pared its performance with that of non-ECN TCPs in RED and Drop Tail networks.
Floyd found that ECN TCPs maintained a much lower end-to-end delay and achieved the
same or higher throughput than non-ECN TCPs in the same simulated network.

Currently, the IETF proposal for IP ECN is in an experimental stage [228]. In the
proposal, the ECN is supported through reserved bits in the Differentiated Services (DS)
[189] (formerly known as the ToS) field of the IP header. In addition to reserved bits in
the IP header, the scheme utilizes reserved bits in the TCP header to allow a TCP re-
ceiver to inform the source about congestion. To avoid setting the IP CE (Congestion Ex-
perienced) bit in non-ECN flows and inherent unfairness, the proposal calls for another
bit in the DS field (called ECT – ECN-Capable Transport) that would be set by all ECN
sources in every packet they send. Thus, routers would use packet drop to mark packets
from non-ECN flows (i.e., flows with ECT = 0) and would set the congestion bit to mark
packets of ECN-enabled flows (i.e., flows with ECT = 1).

In another recent work, Floyd et al. [80] suggested that routers detect flows that
do not respond to packet loss in a TCP-friendly fashion and penalize them in case of con-
gestion. Among possible methods of identifying TCP-unfriendly flows, the paper pro-
posed that routers apply one of the TCP-friendly formulas [166], [194] to each flow and
verify that the flow was in fact responding to packet loss in a TCP-compatible way (i.e.,
the flow’s sending rate was below or equal to the rate predicted by the model of TCP
throughput). Since routers generally do not know the end-to-end packet loss or RTTs of
individual flows, the paper developed a method for the routers to estimate the upper limit
of each flow’s sending rate using information local to the router.

Among router-based congestion control methods, we mention only a few. In
1992, Mishra et al. [175] developed a router-based, rate congestion control scheme, in
which routers performed congestion management by exchanging control messages be-
tween each other, maintained a per-flow state for each network stream, and applied per-
link rate limiting to each flow. In 1995, Kanakia et al. [119], suggested an adaptive
router-based congestion control scheme for real-time video applications. The scheme
provided explicit feedback to each source regarding the optimal sending rate. The sources
would then adjust their real-time encoding rates according to a control law, which main-
tained a predefined queue length at the bottleneck router and resulted in a congestion-free
network. Many similar methods are currently used in ATM.

28

2.3.4 RTP-based congestion control

Real-time Transport Protocol (RTP) [246] is an IETF standards-track protocol for
real-time, rate-based data transport for unicast and multicast networks. RTP uses a con-
trol protocol called RTCP (Real-time Transport Control Protocol) to collect feedback
from each receiver about their perceived quality of the network. Receiver feedback mes-
sages include packet loss, observed throughput, delay jitter, etc., and, in theory, are used
by the source to adapt the sending rate in response to congestion. RTP/RTCP [246], how-
ever, does not specify how the sources should react to RTCP receiver reports, and the
issue of proper rate adaptation in response to RTCP reports has become the center of
RTP-related research.

In 1994 and later in 1996, Turletti et al. [264] and Bolot et al. [25] experimented
with RTP-based congestion control in the context of the Internet. These studies devel-
oped a rate adaptation algorithm based on receiver-reported packet loss in a multicast
session. If the packet loss was above a certain tolerable threshold, the streaming rate was
reduced by half. However, if the packet loss was below the same threshold, the sender
used an exponential rate increase to probe for new bandwidth. The resulting MIMD
(Multiplicative Increase, Multiplicative Decrease) scheme does not converge to fairness
in a general sense [49] and can be very unstable when used in a real network.

The authors redesigned their congestion control scheme in 1998, when Bolot et
al. [26] proposed a true AIMD congestion control scheme on top of RTP. The conditions
of the AIMD control decision have changed as well, allowing periods of neither increase
nor decrease. The authors implemented the new schemes and found them to work well
over the MBone.

In 1998, Sisalem et al. [255] used a packet-pair bandwidth estimation algorithm
in conjunction with RTCP receiver reports to solve the problem of congestion control for
multicast. Under the proposed scheme, the sender was instructed to send data in n-packet
bursts and the receiver used each of the n–1 inter-packet gaps in each burst to estimate
the bottleneck bandwidth. Before sending bandwidth samples back to the source, the re-
ceiver used Carter’s filtering procedure [44] to arrive at a single good estimate. The re-
sulting estimates were sent back to the source through RTCP, and the sender used the in-
formation about packet loss and estimated bottleneck bandwidth in an AIMD-like rate
adaptation algorithm.

2.3.5 TCP-friendly congestion control

In 1998, Cen et al. [45] developed a window-based congestion control that util-
ized a TCP-like rate adaptation scheme and proposed its use in multimedia streaming ap-
plications. The suggested scheme, called Streaming Control Protocol (SCP), borrowed
the slow start algorithm, exponential retransmission timer backoff, and exponential
weighted averaging of RTT samples from TCP. The sender continuously estimated the
current network bandwidth from the receipt of ACKs (according to an undisclosed for-
mula) and used this estimate in its congestion control. TCP’s congestion avoidance algo-

29

rithm was modified and involved keeping the sender’s transmission window W equal to
the bandwidth-delay product of the end-to-end path at all times. Finally, the computation
of the RTO (retransmission timeout) was adopted from TCP; however, since TCP’s RTO
performed poorly in SCP, the authors multiplied it by a factor of 1.25.

In 1999, Rejaie et al. [239] proposed a TCP-friendly congestion control scheme
called RAP (Rate Adaptation Protocol). RAP was a rate-based version of TCP for
streaming. In RAP, the calculation of the RTT and timeouts was identical to that in TCP,
ACKs were modified to include the location of the last gap in sequence numbers as de-
tected by the receiver. The control part of RAP consisted of an AIMD rate-adjustment
scheme, in which the decisions to change the rate were made once per RTT. Extensive
simulation in ns2 showed that RAP was TCP-friendly across a wide range of experiments
and achieved even better fairness with TCP in RED-enabled simulations.

Models of TCP throughput as a function of packet loss and round-trip delay
[166], [196] have recently prompted several formula-based, rate congestion control
schemes. Padhye et. al. [198] proposed a scheme called TCP-friendly rate control proto-
col (TFRCP), in which the sender adjusted its rate at every round-trip interval based on
the information fed back by the receiver inside positive ACKs. The ACKs contained the
sequence number of the packet they acknowledged and the status of the preceding eight
packets (whether they had been received or not). Upon packet loss within an RTT inter-
val, the sender recomputed the transmission rate based on the updated values of the RTT
and packet loss. In the absence of lost packets with an RTT interval, the sender doubled
its rate.

Floyd et al. in [86] proposed an improved version of the above protocol that was
better suited for Internet-like environments and contained several important oscillation-
preventing methods. The work adopted one of the formulas from [196], supplied it with
slow start and a stable rate control function, and called the new scheme TCP-friendly
Rate Control (TFRC) (discussed in more detail in [274]). The basis of TFRC was the
TCP-friendly rate equation [196]:

()2321

8
33

3
2 ppptpR

MTUT

RTO +⋅⋅⋅⋅+
= (3)

where p was the current loss event rate, R was the current smoothed estimate of
the RTT, MTU was the packet size, and tRTO was the value of a TCP-like retransmission
timeout. Furthermore, in TFRC, each sender packet was acknowledged by the receiver.
In cases when the sender ceased receiving the ACKs, it slowly reduced its rate and even-
tually stopped. The latter condition prevented an open-loop streaming in cases when the
receiver had died or was unreachable. Robust estimation of packet loss was the essence
of the proposed protocol. In TFRC, the receiver with each arriving packet computed the
loss event rate p based on the average loss interval s and fed back the value of p to the
sender. The paper used a clever weighted smoothing of the values of loss interval s to
achieve smoothness of the sending rate. Another aspect addressed in the paper was the

30

prevention of rate oscillations due to frequently-changing RTTs, while maintaining quick
response to congestion. To avoid unnecessary instability arising from instantaneous
changes in the RTT, the paper proposed to set the inter-packet spacing for actual trans-
mission of packets to:

MT

RMTU
t

⋅
= 0 , (4)

where R0 was the latest RTT sample, T was the latest TCP-friendly rate in bytes
per second, and M was the weighted exponential average of the square-roots of the RTTs.

Finally, the paper supplied TFRC with slow start, similar to the one in TCP. In
order to avoid large overshooting of the available bandwidth at the beginning of a ses-
sion, the sender doubled its rate once per RTT according to a modified version of slow
start. At each RTT interval, the sender chose the minimum of the sending rate during the
last RTT interval and the reported rate at which the packets arrived to the receiver during
the same interval. The chosen minimum was then doubled to probe for new bandwidth.
TFRC was extensively tested over the Internet and in two network simulators, was shown
to perform with considerably less rate fluctuation than TCP, and was found to be TCP-
friendly.

In 1998, Tan et al. [263] developed a 3D subband scalable video coding and used
a formula-based rate control to stream video data over the Internet. The resulting scheme,
called TCP-friendly rate-based transport protocol (TFRP), used the formula of TCP
throughput from [166] to control the sending rate of the source and achieved a fair alloca-
tion of bandwidth with TCP during several Internet experiments.

2.3.6 Real-time video streaming protocols

In 1998, Bolot et al. [26] (and earlier in [25], [264]) used RTP for adapting the
streaming rate of a video sender in a multicast session. The congestion control proposed
in the paper was based on RTCP receiver reports and implemented an AIMD rate-
adaptation scheme (for discussion, see section 2.3.4). However, the proposed video en-
coding method (H.261) did not envision any scalable video compression, and as a conse-
quence, the method was applicable only to live video sources (i.e., the sources that could
adapt the encoding rate in real time). For non-live video sources (i.e., stored video), the
method used frame skipping and frame rate variation in response to network congestion.
During the experiments with a live video source shown in [26], the receiver’s frame rate
fluctuated between 0 and 25 frames per second (fps) in response to packet loss.

Rejaie et al. [236] discussed a method for a video application to manipulate
coarse-granular video enhancement layers in response to network congestion in order to
minimize the fluctuation of the perceived video quality at the receiver. The paper as-
sumed a unicast session, a fixed number of equal-bandwidth enhancement layers, a linear
quality-bandwidth dependence within each layer, and solved the problem of finding an

31

optimal layer-manipulation scheme given arbitrarily-fluctuating available bandwidth in
the network.

2.4 Bandwidth Measurement

In this section, we briefly describe each of the techniques that can be used to
measure the bottleneck bandwidth of an end-to-end path and overview related work that
utilizes these bandwidth estimation techniques. We discuss four bandwidth estimation
methods, three of which are based on the packet pair principle (explained in section
2.4.1). The majority of work in this area uses off-line analysis and generates single (per-
connection) bandwidth estimates using packet data traces from the entire connection.

2.4.1 Sender-based packet pair

Sender-based packet pair (SBPP) refers to the mechanism of estimating the bot-
tleneck (or sometimes the available4) bandwidth from the spacing delay between the
ACKs arriving to the sender. In the simplest form of SBPP, the sender transmits two
back-to-back packets (packet pair) of size s1 and s2. Assuming there is a bottleneck link
along the path to the receiver and assuming ideal conditions for both packets (i.e., no
cross traffic), the packets will be buffered behind each other at the bottleneck link (Figure
2 adapted from [110]), since the second packet arrives before the link can fully transmit
the first packet (if this is not true, then the link is not the bottleneck link by definition).
After passing through the bottleneck link, the packets are spread out by the transmission
time of the second packet over the bottleneck link, and the same spacing is ideally pre-
served by the ACKs. From the spacing between the ACKs, the sender is able to derive
samples of the bottleneck bandwidth.

4 In cases of WFQ (Weighted Fair Queueing) routers, for example.

32

Sender Receiver

Bottleneck link

packet pair at
high speed

packet pair at
low speed

packet pair at
high speed

ACK pair at
high speedACK pair at low speed

ACK pair at
high speed

∆T ∆T

∆T∆T

∆T

∆T

R1

R1

R2

R2

Figure 2. Sender Based Packet Pair.

Figure 2 shows a sender transmitting two packets back-to-back over the first high
speed link. The vertical dimension of each packet represents the transmission speed of
the link and the horizontal dimension is the transmission time. Once the packets arrive to
the bottleneck link, their transmission duration increases (i.e., they become wider and
vertically shorter). Assuming there is no other traffic, the bottleneck link spreads out the
packets by the transmission time of the second packet over the bottleneck link (∆T in the
figure). For all practical purposes, we use the transmission time of the second packet in-
stead of the first one, because the receiver is notified about the arrival of a packet when
the packet’s last bit is received by the NIC (network interface card). In Figure 2, the same
spacing ∆T between packets is preserved along other links since they are no slower than
the bottleneck link according to our assumption. Therefore, packets ideally arrive to the
destination the same way they left the bottleneck link and the receiver generates ACKs at
the times when the last bit of each packet is received. Since ACKs generally have the
same size, spacing ∆T applies to the first bits of the ACKs as well as to the last bits as
shown in Figure 2. Upon the receipt of the ACKs, the sender is able to estimate ∆T and
compute the bottleneck bandwidth as:

T

sBB ∆
= 2 (5)

SBPP assumes no cross-traffic at the bottleneck link; however, in practice, packet
from other flows typically queue between the packets in the packet pair and cause the
samples of the bottleneck bandwidth to be inaccurate. Other limitations of SBPP are dis-
cussed in section 2.4.2.

In 1988, Jacobson [110] noticed the effect of bottleneck links on the spacing be-
tween ACKs and suggested that sender’s self-clocking (derived from ACK spacing) al-
lows a TCP connection to indirectly estimate the available network bandwidth. The pa-
per, however, did not go as far as literally computing the bandwidth from ACK spacing.

33

In 1991, Keshav [121], [122], [123] proposed a rate-based packet-pair flow con-
trol mechanism for FQ (Fair Queuing)-enabled networks. Keshav applied stochastic
modeling to FQ networks and used packet pair probing mechanism to estimate the cur-
rent service rate at the bottleneck FQ router. In the proposed scheme, the source transmit-
ted a packet pair at regular intervals, and the receiver acknowledged each packet as soon
as it was received. Each pair of ACKs provided the sender with the current estimate of
the service rate at the bottleneck router and the current estimate of the RTT. Since the
bottleneck bandwidth in a FQ router depends on the number of concurrently running
flows through the bottleneck router, the service rate µ at the router was not constant. Due
to arriving and departing flows, service rate at the bottleneck router at any time could ei-
ther increase or decrease. Keshav modeled the change in the service rate as white Gaus-
sian noise ω (i.e., µ(k+1) = µ(k) + ω(k)) and derived control-theoretic laws for the send-
ing rate λ(k), where k represented discrete RTT intervals. The work analyzed the stability
of the control law and derived an asymptotically stable rate adjustment scheme. Inde-
pendently of the control law, the scheme needed a robust state estimator. Keshav exam-
ined the suitability of the Kalman filter (i.e., the minimum variance state estimator of a
linear system) in solving the problem, but found it to be impractical since the Kalman
filter required the knowledge of both observation and system noises. As an alternative,
the work suggested a heuristic estimator based on fuzzy exponential averaging and
showed that it did not require the knowledge of either of the noises. The proposed flow
control scheme was found to work well in simulation, but was never implemented in the
real Internet (due to the fact that FQ is not deployed in the current Internet routers).

In 1996, Carter et al. [44] took another look at the packet pair technique and in-
vestigated its applicability to the real Internet. The authors designed two tools for meas-
uring the bottleneck (bprobe) and the available (cprobe) bandwidths. The bottleneck
bandwidth estimation in bprobe utilized a 10-packet SBPP technique, which was applied
to ICMP traffic. In this scheme, the sender used each of the nine inter-packet gaps to es-
timate the bottleneck bandwidth. Out of the nine estimates, the highest and lowest were
dropped, and the resulting seven participated in the estimation process. Each 10-packet
run was repeated with increasingly larger packet sizes (from 124 to 8,000 bytes per
packet). After a seven-run measurement (ideally resulting in 49 samples of bandwidth), a
filtering technique was used to eliminate the outliers and derive a final estimate. Carter’s
filtering method involved looking for the area of the highest clustering of samples and
locating the final estimate in that area using one of the two proposed heuristic methods.
The second SBPP technique (implemented in cprobe) was designed to measure the
available bandwidth of an end-to-end path by sending ten back-to-back ICMP echo pack-
ets and deriving a single bandwidth estimate from the arrival times of the first and the last
ICMP echo replies. Assuming the difference between the arrival time of the first and the
last ICMP echo reply messages was ∆T, the final estimate was computed by dividing the
size of all ten packets by ∆T. Both bprobe and cprobe were tested in several LAN and
Internet environments and were found to work well.

In 1997, Paxson [205], [209] collected extensive packet traces from a large num-
ber of TCP connections and utilized an off-line tool to investigate the effectiveness of

34

SBPP as if it were used in real-time by each recorded TCP connection. Using collected
TCP headers, Paxson studied pairs of back-to-back packets that suffered packet expan-
sion along the path to the receiver. Analyzing ACK pairs generated by the receiver in re-
sponse to expanded packet pairs, Paxson was able to estimate the bottleneck bandwidth
as it could have been computed by the sender using SBPP. After applying several heuris-
tics to the SBPP method in order to reject inaccurate samples, Paxson found that SBPP’s
estimates were within ± 20% of the capacity of the bottleneck link only for 60% of the
connections.

2.4.2 Receiver-based packet pair

Receiver-based packet pair (RBPP) is an improvement over SBPP that does not
allow ACKs to interfere with the measurement of bandwidth. In RBPP, the receiver com-
putes the bottleneck bandwidth based on the spacing between packets in the packet pair
and sends the estimates of the bottleneck bandwidth to the sender. This idea is illustrated
in Figure 3.

Sender Receiver

Bottleneck link

packet pair at
high speed

packet pair at
low speed

packet pair at
high speed

∆T ∆T

R1

R1

R2

R2

Compute
BB

Special packet
carries BB

Special packet
carries BB

Figure 3. Receiver-based packet pair (RBPP).

In Figure 3, the receiver computes the bottleneck bandwidth BB at the time it re-
ceives the packet pair. It then generates a special packet (which could be a regular ACK)
with an embedded estimate BB. RBPP is typically more accurate than SBPP for several
reasons. First, in SBPP, the protocol overhead needed to generate the ACKs may skew
their spacing and provide an inaccurate estimate to the sender. Some protocol implemen-
tations employ delayed ACKs (such as TCP), in which case instead of two ACKs the re-
ceiver sends only one. In addition, ACK spacing may be altered due to OS kernel sched-
uling delays or other protocol-independent reasons. Second, ACKs in SBPP have a good
chance of getting arbitrarily compressed or expanded on the way back to the sender due
to possible heavy cross-traffic in the reverse direction. Therefore, SBPP is more likely to
generate an inaccurate sample. Finally, if the bottleneck bandwidth along the reverse path

35

from the receiver to the sender is significantly less than that in the forward direction,
ACKs in SBPP can measure the reverse bottleneck bandwidth instead of the forward bot-
tleneck bandwidth. Next, we mention several papers that studied RBPP.

In addition to experimenting with SBPP, Paxson [209], [205] analyzed the per-
formance of RBPP using the same TCP packet traces. Paxson observed that, while SBPP
measured the bandwidth within ± 20% of the correct value only for 60% of the connec-
tions, RBPP achieved similar accuracy for 98% of the connections. Paxson identified the
main shortcoming of the RBPP method to be the necessity for the sender to include
transmission timestamps in each packet of a packet pair. Such timestamps would be
needed for the receiver to properly detect packet compression and avoid generating inac-
curate estimates upon the receipt of compressed packet pairs. In addition, Paxson noticed
that both SBPP and RBPP consistently failed over multi-channel bottleneck links (i.e.,
ISDN BRI).

In 1999, Lai et al. conducted a thorough review of various bandwidth estimation
techniques in [132] and suggested a low-overhead version called Receiver-Only Packet
Pair (ROPP). ROPP was based on RBPP, except the sender did not use timestamps to de-
tect compressed packet pairs. Lai et al. further concluded that SBPP was quite inaccurate
under a variety of conditions and focused on improving RBPP. In the proposed modifica-
tion, called Measured Bandwidth Filtering (MBF), the paper suggested applying a mov-
ing interpolation kernel to the samples in order to average the collected bandwidth sam-
ples, suppress the outliers, and smooth the random errors generated by ROPP.

2.4.3 Packet Bunch Mode

In order to overcome the deficiencies of SBPP and RBPP, Paxson [4], [205],
[209] proposed a novel approach to reliable estimation of the bottleneck bandwidth. The
new scheme, called Packet Bunch Mode (PBM), was based on RBPP, but allowed the
sender to employ more than two packets in a packet pair and allowed the packets to vary
in size. Paxson applied PBM to the same traces of TCP connections and searched for
multiple back-to-back packets that qualified for the packet pair technique. By default,
PBM stopped at packet bunches of size four, and proceeded to larger bunches only if its
heuristic bandwidth estimator did not converge by that time. PBM performed much better
than SBPP or RBPP; however, a major part of PBM’s operation was based on a number
of heuristic rules that were formulated based on Paxson’s data.

Recently, PBM received more attention from Ratnasamy et al. in [231]. The paper
applied Paxson’s PBM to packet pairs (i.e., only packet bunches of size two). The main
theme of the paper was to derive a logical topology of a multicast tree by correlating re-
ceivers by their packet loss patterns. Once a logical multicast tree was constructed, the
paper used PBM to narrow down the location and compute the speed of the bottleneck
links in the constructed tree.

36

2.4.4 Pathchar

Pathchar (Path Characterization) is a method of estimating the bottleneck band-
width (as well as latencies and queuing delays) of individual links along an Internet path.
Pathchar started as a program written by Van Jacobson in 1997 [111]. Pathchar has not
been given much thought until recently, when Downey [68] examined the performance of
pathchar along two Internet paths and derived interesting methods of speeding up the
convergence of the algorithm. Pathchar works similar to traceroute and exploits the
TTL field of IP packets. Instead of sending one packet per hop, pathchar sends multiple
packets of linearly increasing size to probe each router. Each of the TTL expired mes-
sages returned by a router provides an estimate of the round-trip time to that particular
router. Using minimum filtering, pathchar keeps only samples of the RTT that (ideally)
have not been affected by the cross traffic. In the presence of several simple assumptions
about the path, estimates of the bottleneck bandwidth for each link can be derived from
the linear increase slope in the minimum RTT as a function of probe size.

Unfortunately, achieving high accuracy using pathchar requires sending enor-
mous amounts of traffic along the path under consideration. A thorough investigation of a
path with a slow bottleneck link may up to last several hours. Downey in [68] utilized 64
probes per packet size and 45 different packet sizes from 120 to 1528 bytes. Under such
testing conditions, pathchar required 2.8 Mbytes of data per each hop. Even given a
relatively exhaustive examination of the path mentioned above, [68] found that pathchar
measurements contained a substantial amount of inaccurate samples. In the end, Downey
was able to reduce the number of messages sent to each hop by establishing a conver-
gence criteria for each estimate; however, he was unable to significantly improve the ac-
curacy of the algorithm.

37

PART I

Performance Study of Real-time
Streaming in the Internet

38

Chapter Three

3 Performance of Internet Streaming:
Statistical Analysis

In this chapter, we analyze the results of a seven-month real-time streaming ex-
periment, which was conducted between a number of unicast dialup clients, connecting to
the Internet through access points in more than 600 major U.S. cities, and a backbone
video server. During the experiment, the clients streamed low-bitrate MPEG-4 video se-
quences from the server over paths with more than 5,000 distinct Internet routers. We
describe the methodology of the experiment, the architecture of our NACK-based stream-
ing application, study end-to-end dynamics of 16 thousand ten-minute sessions (85 mil-
lion packets), and analyze the behavior of the following network parameters: packet loss,
round-trip delay, one-way delay jitter, packet reordering, and path asymmetry. We also
study the impact of these parameters on the quality of real-time streaming.

3.1 Introduction

The Internet has become a complex interconnection of a large number of com-
puter networks. The behavior of the Internet has been the target of numerous studies, but
nevertheless, the performance of the Internet from the perspective of an average home
user still remains relatively undocumented. At the same time, we believe that since end
users are responsible for a large fraction of Internet traffic, the study of network condi-
tions experienced by these users is an important research topic. This is the reason that
compelled us to conduct a fundamentally different performance study that looks at Inter-
net dynamics from the angle of an average Internet user.

39

Even though the Internet has been extensively analyzed in the past, an over-
whelming majority of previous studies were based on TCP or ICMP traffic. On the other
hand, real-time streaming protocols have not received as much attention in these studies.
In fact, the dynamics of UDP NACK-based protocols (not necessarily real-time) are still
not understood very well in the Internet community. As an illustration, a recent study
[159] found that the widely accepted TCP retransmission timeout (RTO) estimator [4],
[110] was not necessarily an optimal choice for low-bitrate NACK-based protocols em-
ployed over the Internet.

The novelty of our study is emphasized by the fact that no previous work at-
tempted to characterize the performance of real-time streaming in a large-scale experi-
ment involving low-bitrate Internet paths. The Internet has been studied from the per-
spective of TCP connections by Paxson [209], Bolliger et al. [19], Caceres et al. [40],
Mogul [178], and several others (e.g., [11]). Paxson’s study included 35 geographically
distributed sites in 9 countries; Bolliger et al. employed 11 sites in 7 countries and com-
pared the throughput performance of various implementations of TCP during a six-month
experiment; whereas the majority of other researchers monitored transit TCP traffic at a
single backbone router [11], [178] or inside several campus networks [40] for the dura-
tion ranging from several hours to several days.

The methodology used in both large-scale TCP experiments [19], [209] was simi-
lar and involved a topology where each participating site was paired with every other par-
ticipating site for an FTP-like transfer. Although this setup approximates well the current
use of TCP in the Internet, future entertainment-oriented streaming services, however, are
more likely to involve a small number of backbone video servers and a large number of
home users.5

We believe that in order to study the current dynamics of real-time streaming in
the Internet, we must take the same steps to connect to the Internet as an average end-
user6 (i.e., through dialup ISPs). For example, ISPs often experience congestion in their
own backbones, and during busy hours, V.90 modems in certain access points are not
available due to high user demand, none of which can be captured by studying the Inter-
net from a small campus network directly connected to the Internet backbone.

In addition to choosing a different topological setup for the experiment, our work
is different from the previous studies in several other aspects. First, the sending rate of a
TCP connection is driven by its congestion control, which can often cause increased
packet loss and higher end-to-end delays in the path along which it operates (e.g., during
slow start). In our experiment, we measured true end-to-end path dynamics without the

5 Our work focuses on non-interactive streaming applications where the user can tolerate short (i.e., in the
order of several seconds) startup delays (e.g., TV over the Internet).
6 Recent market research reports (e.g., [108]) show that in Q2 of 2001, approximately 89% of US house-
holds used dialup access to connect to the Internet. Furthermore, it is predicted [107], [217] that even in
2005, the majority of US households will still be using dialup modems, and it is unclear when broadband
penetration in the US will reach 50% of households.

40

bias of congestion control applied to slow modem links.7 Furthermore, our decision not to
use congestion control was influenced by the evidence that the majority of streaming traf-
fic in the current Internet employs constant-bitrate (CBR) video streams [232], where the
user explicitly selects the desired streaming rate from the corresponding web page (note
that the additional rate adaptation implemented in [232] is very rudimentary and could
hardly be considered congestion control).

Second, TCP uses a positive ACK retransmission scheme, whereas current real-
time applications (such as [232]) employ NACK-based retransmission to reduce the
amount of traffic from the users to the streaming server. As a consequence, end-to-end
path dynamics perceived by a NACK-based protocol could differ from those sampled by
TCP along the same path: real-time applications acquire samples of the round-trip delay
(RTT) at rare intervals, send significantly less data along the path from the receiver to the
sender, and bypass certain aspects of TCP’s retransmission scheme (such as exponential
timer backoff). Previous work [159] suggests that NACK-based retransmission schemes
may require a different retransmission timeout (RTO) estimator and leads us to believe
that research in this area should be extended.

Finally, TCP relies on window-based flow control, and real-time applications usu-
ally utilize rate-based flow control. In many video-coding schemes, a real-time streaming
server must maintain a certain target streaming (i.e., sending) rate for the decoder to
avoid underflow events, which are produced by packets arriving after their decoding
deadlines. As a result, a real-time sender may operate at different levels of packet
burstiness and instantaneous sending rate than a TCP sender, because the sending rate of
a TCP connection is governed by the arrival of positive ACKs from the receiver rather
than by the application.

We should further mention that the Internet has been extensively studied by vari-
ous researchers using ICMP ping and traceroute packets [1], [53], [54], [55], [182],
[209], UDP echo packets [22], [29], [30], and multicast backbone (MBone) audio packets
[282], [283]. With the exception of the last one, similar observations apply to these stud-
ies – neither the setup, nor the type of probe traffic represented realistic real-time stream-
ing scenarios. In addition, among the studies that specifically sent audio/video traffic
over the Internet [25], [26], [63], [62], [247], [263], [264] the majority of experiments
involved only a few Internet paths, lasted for a very short period of time, and focused on
analyzing the features of the proposed scheme rather than the impact of Internet condi-
tions on real-time streaming.

In this chapter, we present the methodology and analyze the results of a seven-
month large-scale real-time streaming experiment, which involved three nation-wide
dialup ISPs, each with several million active subscribers in the United States. The topol-
ogy of the experiment consisted of a backbone video server streaming MPEG-4 video
sequences to unicast home users located in more than 600 major U.S. cities. The stream-

7 Without a doubt, future real-time streaming protocols will include some form of scalable congestion con-
trol; however, at the time of the experiment, it was not even clear which methods represented such conges-
tion control.

41

ing was performed in real-time (i.e., with a real-time decoder), utilized UDP for the
transport of all messages, and relied on simple NACK-based retransmission to recover
lost packets before their decoding deadlines.

Even though we consider it novel and unique in many aspects, there are two limi-
tations to our study. First, our experiments document Internet path dynamics perceived
by low-bitrate (i.e., modem-speed) streaming sessions. Recall that one of the goals of our
work was to conduct a performance study of the Internet from the angle of a typical home
Internet user, and to this extent, we consider our work to be both thorough and success-
ful. In addition, by focusing on low-bitrate paths, our study shows the performance of
real-time protocols under the most difficult network conditions (i.e., large end-to-end de-
lays, relatively high bit-error rates, low available bandwidth, etc.) and provides a “lower
bound” on the performance of future Internet streaming applications. In addition, note
that some of the emerging wireless data services with packet video capabilities (such as
3G or GPRS) share certain end-to-end characteristics (e.g., large delays and high error
rates) with the current dialup technologies, and the results of this chapter may be relevant
to their design.

Second, during the experiment, the server did not adapt the streaming rate to the
available bandwidth. Our study explicitly considers rate-based congestion control to be
beyond the scope of the chapter (as discussed above) and attempts to sample the network
parameters of the Internet with the minimum influence on the congestion already present
in the network.

Despite these limitations, we believe that the results of our study conclusively es-
tablish the feasibility of video streaming in the currently best-effort Internet, show that
retransmission is an effective method of recovering lost packets even for real-time traffic,
and provide a valuable insight into dynamics of real-time streaming from the perspective
of an average Internet user.

The remainder of the chapter is organized as follows. Section 3.2 describes the
methodology of the experiment and section 3.3 discusses end-to-end path dynamics ob-
served by our application.

3.2 Methodology
3.2.1 Setup for the Experiment

We started our work by attaching a Unix video server to the UUNET backbone
via a T1 link (Figure 4). To support the client’s connectivity to the Internet, we selected
three major nation-wide dialup ISPs (which we call ISPa, ISPb, and ISPc)8, each with at
least five hundred V.90 (i.e., 56 kb/s) dialup numbers in the U.S., and designed an ex-
periment in which hypothetical Internet users dialed a local access number to reach the
Internet (through one of our three ISPs) and streamed video sequences from the server.

8 The corresponding ISPs were AT&T WorldNet, Earthlink, and IBM Global Network.

42

Although the clients were physically placed in our lab in the state of New York, they di-
aled long-distance phone numbers and connected to the Internet through ISPs’ access
points located in each of the 50 states. Our database of phone numbers included 1813 dif-
ferent V.90 access points in 1188 major U.S. cities.

National
dial-up ISP

UUNET
(MCI)

Internet

server

T1 link

client

Philips
Research

USA

modem link

Figure 4. Setup of the experiment.

After the phone database was in place, we designed and implemented special
software, which we call the dialer, that dialed phone numbers from the database, con-
nected to the ISPs using the point-to-point protocol (PPP), issued a parallel traceroute to
the server, and upon success, started the video client with the instructions to stream a ten-
minute video sequence from the server. Our implementation of traceroute (built into the
dialer) used ICMP probes, sent all probes in parallel instead of sequentially (hence the
name “parallel”), and recorded the IP time-to-live (TTL)9 field of each returned “TTL
expired” message. The use of ICMP packets and parallel traceroute facilitated much
quicker discovery of routers, and the analysis of the TTL field in the returned packets al-
lowed the dialer to compute the number of hops in the reverse path from each intermedi-
ate router to the client machine (using a simple fact that each router reset the TTL field of
each generated “TTL expired” packet to the value of the initial TTL10). Using the infor-
mation about the number of forward and reverse hops for each router, the dialer was able
to detect asymmetric end-to-end paths, which we study in section 3.3.6.

In our analysis of the data, we attempted to isolate clearly modem-related pa-
thologies (such as packet loss caused by a poor connection over the modem link and
large RTTs due to data-link retransmission) from those caused by congested routers of
the Internet. Thus, connections that were unable to complete a traceroute to the server,

9 Recall that the TTL field is decremented by 1 every time a packet is forwarded by a level-3 (i.e., IP-level)
device.
10 The majority of routers used the initial TTL equal to 255, while some initialized the field to 30, 64, or
128. Subtracting the received TTL from the initial TTL produced the number of hops along the reverse
path.

43

connections with high bit-error rates (BER), and connections during which the modem
could not sustain our streaming rates were all considered useless for our study and were
excluded from the analysis in this chapter.

In practice, to avoid studying connections with clearly insufficient end-to-end
bandwidth and various modem-related problems, we utilized the following methodology.
We defined a streaming attempt through a particular access number to be successful, if
the ISP’s access number was able to sustain the transmission of our video stream for its
entire length at the stream’s target IP bitrate r. To be specific, the video client terminated
connections in which the aggregate (i.e., counting from the very beginning of a session)
packet loss grew beyond a certain threshold βp or the aggregate incoming bitrate dropped
below another threshold βr. The experiments reported in this chapter used βp equal to
15% and βr equal to 0.9r, both of which were experimentally found to be necessary con-
ditions for efficient filtering out of modem-related failures. The packet-loss threshold was
activated after 1 minute of streaming and the bitrate threshold after 2 minutes to make
sure that slight fluctuations in packet loss and incoming bitrate at the beginning of a ses-
sion were not mistaken for poor connection quality. After a session was over, the success
or failure of the session was communicated from the video client to the dialer, the latter
of which kept track of the time of day and the phone number that either passed or failed
the streaming test.

In order to make the experiment reasonably short, we considered all phone num-
bers from the same state to be equivalent, and consequently, we assumed that a success-
ful streaming attempt through any phone number of a state indicated a successful cover-
age of the state regardless of which phone number was used. Furthermore, we divided
each 7-day week into 56 three-hour timeslots (i.e., 8 timeslots per day) and designed the
dialer to select phone numbers from the database in such order so that each state would
be successfully covered within each of the 56 timeslots at least once. In other words, each
ISP needed to sustain exactly 50⋅56 = 2,800 successful sessions before the experiment
was allowed to end.

3.2.2 Real-time Streaming

For the purpose of the experiment, we used an MPEG-4 encoder to create two
ten-minute QCIF (176x144) video streams coded at 5 frames per second (fps). The first
stream, which we call S1, was coded at the video bitrate of 14 kb/s, and the second steam,
which we call S2, was coded at 25 kb/s. The experiment with stream S1 lasted during No-
vember – December 1999 and the one with stream S2 was an immediate follow-up during
January – May 2000.

During the transmission of each video stream, the server split it into 576-byte IP
packets. Video frames always started on a packet boundary, and consequently, the last
packet in each frame was allowed to be smaller than others (in fact, many P (prediction-
coded) frames were smaller than the maximum payload size and were carried in a single
UDP packet). As a consequence of packetization overhead, the IP bitrates (i.e., including

44

IP, UDP, and our special 8-byte headers) for streams S1 and S2 were 16.0 and 27.4 kb/s,
respectively. The statistics of each stream are summarized in Table I.

Stream Size, MB Packets Video bi-

trate, kb/s
Average frame size,

bytes
S1 1.05 4,188 14.0 350
S2 1.87 5,016 25.0 623

Table I. Summary of streams statistics.

In our streaming experiment, the term real-time refers to the fact that the video
decoder was running in real-time. Recall that each compressed video frame has a specific
decoding deadline, which is usually based on the time of the frame’s encoding. If a com-
pressed video frame is not fully received by the decoder buffer at the time of its deadline,
the video frame is discarded and an underflow event is registered. Moreover, to simplify
the analysis of the results, we implemented a strict real-time decoder model, in which the
playback of the arriving frames continued at the encoder-specified deadlines regardless
of the number of underflow events (i.e., the decoding deadlines were not adjusted based
on network conditions). Note that in practice, better results can be achieved by allowing
the decoder to freeze the display and re-buffer a certain number of frames when under-
flow events become frequent (e.g., as done in [232]).

In addition, many CBR (constant bitrate) video coding schemes include the notion
of the ideal startup delay [225], [232] (the delay is called “ideal” because it assumes a
network with no packet loss and a constant end-to-end delay). This ideal delay must al-
ways be applied to the decoder buffer before the decoding process may begin. The ideal
startup delay is independent of the network conditions and solely depends on the deci-
sions made by the encoder during the encoding process.11 On top of this ideal startup de-
lay, the client in a streaming session usually must apply an additional startup delay in
order to compensate for delay jitter (i.e., variation in the one-way delay) and permit the
recovery of lost packets via retransmission. This additional startup delay is called the de-
lay budget (Dbudget) and reflects the values of the expected (at the beginning of a session)
delay jitter and round-trip delay during the length of the session. Note that in the context
of Internet streaming, it is common to call Dbudget simply “startup delay” and to com-
pletely ignore the ideal startup delay (e.g., [63]). From this point on, we will use the same
convention. In all our experiments, we used Dbudget equal to 2,700 ms, which was manu-
ally selected based on preliminary testing. Consequently, the total startup delay (observed
by an end-user) at the beginning of each session was approximately 4 seconds.

11 We will not elaborate further on the ideal startup delay, except mention that it was approximately 1,300
ms for each stream.

45

3.2.3 Client-Server Architecture

For the purpose of our experiment, we implemented a client-server architecture
for MPEG-4 streaming over the Internet. The server was fully multithreaded to ensure
that the transmission of packetized video was performed at the target IP bitrate of each
streaming session and to provide quick response to clients’ NACK requests. The stream-
ing was implemented in bursts of packets (with the burst duration Db varying between
340 and 500 ms depending on the bitrate) for the purposes of making the server as low-
overhead as possible (for example, RealAudio servers use Db = 1,800 ms [173]). Al-
though we agree that in many cases the desired way of sending constant bitrate (CBR)
traffic is to equally space packets during transmission, there are practical limitations
(such as OS scheduling and inter-process switching delays) that often do not allow us to
follow this model.

The second and the more involved part of our architecture, the client, was de-
signed to recover lost packets through NACK-based retransmission and collect extensive
statistics about each received packet and each decoded frame. Furthermore, as it is often
done in NACK-based protocols, the client was in charge of collecting round-trip delay
(RTT) samples.12 The measurement of the RTT involved the following two methods. In
the first method, each successfully recovered packet provided a sample of the RTT (i.e.,
the RTT was the duration between sending a NACK and receiving the corresponding re-
transmission). In our experiment, in order to avoid the ambiguity of which retransmission
of the same packet actually returned to the client, the header of each NACK request and
each retransmitted packet contained an extra field specifying the retransmission number
of the packet.

The second method of measuring the RTT was used by the client to obtain addi-
tional samples of the round-trip delay in cases when network packet loss was too low.
The method involved periodically sending simulated retransmission requests to the server
if packet loss was below a certain threshold. In response to these simulated NACKs, the
server included the usual overhead13 of fetching the needed packets from the storage and
sending them to the client. In our experiment, the client activated simulated NACKs,
spaced 30 seconds apart, if packet loss was below 1%.

We tested the software and the concept of a wide-scale experiment of this sort for
nine months before we felt comfortable with the setup, the reliability of the software, and
the exhaustiveness of the collected statistics. In addition to extensive testing of the proto-
type for nine months, we monitored various statistics reported by the clients in real-time
(i.e., on the screen) during the experiments for sanity and consistency with previous tests.
Overall, the work reported in this chapter took us 16 months to complete (9 months test-
ing and 7 months collecting the data).

12 The resolution of the timestamps was 100 microseconds.
13 The server overhead was below 10 ms for all retransmitted packets and did not have a major impact on
our characterization of the RTT process later in this chapter.

46

Our traces consist of six datasets, each collected by a different machine. Through-
out this chapter, we will use notation Dn

x to refer to the dataset collected by the client
assigned to ISPx (x = a, b, c) during the experiment with stream Sn (n = 1, 2). Fur-
thermore, we will use notation Dn to refer to the combined set {Dn

a ∪ Dn
b ∪ Dn

c}.

3.3 Experiment
3.3.1 Overview

In dataset D1, the three clients performed 16,783 long-distance connections to the
ISPs’ remote modems and successfully completed 8,429 streaming sessions.14 In D2, the
clients performed 17,465 modem connections and sustained 8,423 successful sessions.
Analysis of the above numbers suggests that in order to receive real-time streaming mate-
rial with a minimum quality at 16 to 27.4 kb/s, an average U.S. end-user, equipped with a
V.90 modem, needs to make approximately two dialing attempts to the ISPs’ phone num-
bers within the state where the user resides. The success rate of streaming sessions during
different times of the day is illustrated in Figure 5. Note the dip by a factor of two be-
tween the best and the worst times of the day.

0%

15%

30%

45%

60%

75%

90%

0:00 -
3:00

3:00 -
6:00

6:00 -
9:00

9:00 -
12:00

12:00 -
15:00

15:00 -
18:00

18:00 -
21:00

21:00 -
0:00

time (EDT)

pe
rc

en
t s

uc
ce

ss
fu

l

Figure 5. Success of streaming attempts during the day.

14 Typical reasons for failing a session were PPP-layer connection problems, inability to reach the server
(i.e., failed traceroute), high bit-error rates, and low (14.4-19.2 kb/s) connection rates.

47

Furthermore, in dataset D1, the clients traced the arrival of 37.7 million packets,
and in D2, the arrival of additional 47.3 million (for a total of 85 million). In terms of
bytes, the first experiment transported 9.4 GBytes of video data and the second one
transported another 17.7 GBytes (for a total of 27.1 GBytes).

Recall that each experiment lasted as long as it was needed to cover the entire
United States. Depending on the success rate within each state, the access points used in
the experiment comprised a subset of our database. In D1, the experiment covered 962
dialup points in 637 U.S. cities, and in D2, it covered 880 dialup points in 575 U.S. cities.
Figure 6 shows the combined (i.e., including both datasets D1 and D2) number of distinct
cities in each state covered by our experiment (1,003 access points in 653 cities).

22

6
6

6 4

19

3

7
16

5

5 4

3

4

5
12

16

8
24

14

13

7

13
7 11 13

21

12

20

238
13

9

2229
22

25
24

8

3

5

4

25

27

14

24

Legend
(total 653)

20 to 29 (14)
14 to 20 (6)

9 to 14 (10)
6 to 9 (9)
1 to 6 (12)

Figure 6. The number of cities per state that participated in either D1 or D2.

During the experiment, each session was preceded by a parallel traceroute, which
recorded the IP addresses of all discovered routers (DNS and WHOIS15 lookups were
done off-line after the experiments were over). The average time needed to trace an end-
to-end path was 1,731 ms, 90% of the paths were traced under 2.5 seconds, and 98% un-
der 5 seconds. Dataset D1 recorded 3,822 distinct Internet routers, D2 recorded 4,449 dis-
tinct routers, and both experiments combined produced the IP addresses of 5,266 unique
routers. The majority of the discovered routers belonged to the ISPs’ networks (51%) and
UUNET (45%), which confirmed our intuition that all three ISPs had direct peering con-
nections with UUNET. Moreover, our traces recorded approximately 200 routers that be-
longed to five additional Autonomous Systems (AS).

The average end-to-end hop count was 11.3 in D1 (6 minimum and 17 maximum)
and 11.9 in D2 (6 minimum and 22 maximum). Figure 7 shows the distribution of the
number of hops in the encountered end-to-end paths in each of D1 and D2. As the figure

15 The WHOIS database was used to discover the Autonomous System (AS) of each router.

48

shows, the majority of paths (75% in D1 and 65% in D2) contained between 10 and 13
hops.

0%

5%

10%

15%

20%

25%

30%

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
end-to-end hops

pe
rc

en
t r

ou
te

s
D1 D2

Figure 7. Distribution of the number of end-to-end hops.

Throughout the rest of the chapter, we restrict ourselves to studying only success-
ful (as defined in section 3.2.1) sessions in both D1 and D2. We call these new purged
datasets (with only successful sessions) D1p and D2p, respectively (purged datasets Dnp

x
are defined similarly for n = 1, 2 and x = a, b, c). Recall that {D1p∪D2p} contains 16,852
successful sessions, which are responsible for 90% of the bytes and packets, 73% of the
routers, and 74% of the U.S. cities recorded in {D1∪D2}.

3.3.2 Packet Loss

3.3.2.1 Overview

Numerous researchers have studied Internet packet loss, and due to the enormous
diversity of the Internet, only few studies agree on the average packet loss rate and the
average loss burst length (i.e., the number of packets lost in a row). Among numerous
studies, the average Internet packet loss was reported to vary between 11% and 23% by
Bolot [22] depending on the inter-transmission spacing between packets, between 0.36%
and 3.54% by Borella et al. [29], [30] depending on the studied path, between 1.38% and
11% by Yajnik et al. [283] depending on the location of the MBone receiver, and be-
tween 2.7% and 5.2% by Paxson [209] depending on the year of the experiment. In addi-
tion, 0.49% average packet loss rate was recently reported by Balakrishnan et al. [11],
who analyzed the dynamics of a large number of TCP web sessions at a busy Internet
server.

49

In dataset D1p, the average recorded packet loss rate was 0.53% and in D2p, it was
0.58%. Even though these rates are much lower16 than those traditionally reported by
Internet researchers during the last decade, they are still somewhat higher than those re-
ported by backbone ISPs [265]. Furthermore, 38% of the sessions in {D1p∪D2p} did not
experience any packet loss, 75% experienced loss rates below 0.3%, and 91% experi-
enced loss rates below 2%. On the other hand, 2% of the sessions suffered packet loss
rates 6% or higher.

In addition, as we expected, average packet loss rates exhibited a wide variation
during the day. Figure 8 shows the evolution of loss rates as a function of the timeslot
(i.e., the time of day), where each point represents the average of approximately 1,000
sessions. As the figure shows, the variation in loss rates between the best (3-6 am) and
the worst (3-6 pm) times of the day was more than by a factor of three. The apparent dis-
continuity between timeslots 7 (21:00-0:00) and 0 (0:00-3:00) is due to a coarse time-
scale in Figure 8. On finer timescales (e.g., minutes), loss rates converge to a common
value near midnight. A similar discontinuity in packet loss rates was reported by Paxson
[209] for North American sites, where packet loss during timeslot 7 was approximately
twice as high as that during timeslot 0.

0.0%

0.2%

0.3%

0.5%

0.6%

0.8%

0.9%

0:00 -
3:00

3:00 -
6:00

6:00 -
9:00

9:00 -
12:00

12:00 -
15:00

15:00 -
18:00

18:00 -
21:00

21:00 -
0:00

time of day (EDT)

pa
ck

et
 lo

ss
 ra

te

D1p D2p

Figure 8. Average packet loss rates during the day.

16 Note that during the experiment, simply dialing a different access number in most cases fixed the prob-
lem of high packet loss. This fact shows that the majority of failed sessions documented pathologies cre-
ated by the modem (or the access point) rather than the actual packet loss in the Internet. Since an end-user
typically would re-dial a bad connection searching for better network conditions, we believe that the bias
created by removing failed sessions reflects the actions of an average Internet user.

50

The variation in the average per-state packet loss (as shown in Figure 9) was
quite substantial (from 0.2% in Idaho to 1.4% in Oklahoma), but virtually did not depend
on the state’s average number of end-to-end hops (correlation coefficient ρ was –0.04) or
the state’s average RTT (correlation –0.16). However, as we will see later, the average
per-state RTT and the number of end-to-end hops were in fact positively correlated.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

AK AR C
A C
T

D
E

G
A IA IL KS LA M
D M
I

M
O

M
T

N
D

N
H

N
M N
Y

O
K

PA SC TN U
T

VT W
I

W
Y

state

av
er

ag
e

lo
ss

 (p
er

ce
nt

)

0

2

4

6

8

10

12

14

16

av
er

ag
e

ho
ps

Average loss Average hops

Figure 9. Average per-state packet loss rates.

3.3.2.2 Loss Burst Lengths

We next attempt to answer the question of how bursty Internet packet loss was
during the experiment. Figure 10 shows the distribution (both the PDF and the CDF) of
loss burst lengths in {D1p∪D2p} (without loss of generality, the figure stops at burst
length 20, covering more than 99% of the bursts). Even though the upper tail of the dis-
tribution had very few samples, it was fairly long and reached burst lengths of over 100
packets.

51

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 5 10 15 20
loss burst length (packets)

PD
F

pe
rc

en
t

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
D

F
pe

rc
en

t

PDF CDF

Figure 10. PDF and CDF functions of loss burst lengths in {D1p∪D2p}.

Figure 10 is based on 207,384 loss bursts and 431,501 lost packets. The preva-
lence of single packet losses, given the fact that packets in our experiment were injected
into the Internet in bursts at the T1 speed17, leads us to speculate that either router queues
sampled in our experiment overflowed on timescales smaller than the time needed to
transmit a single IP packet over a T1 link (i.e., 3 ms for the largest packets and 1.3 ms for
the average-size packets), or that backbone routers employed Random Early Detection
(RED) for preventing congestion. However, a second look at the situation reveals that
server’s possible interleaving of packets from different sessions could have expanded the
inter-packet transmission distance of each flow by up to a factor of 3. Furthermore, be-
fore each lost packet reached the corresponding congested router, packets from other
Internet flows could have queued immediately behind the lost packet, effectively expand-
ing the inter-packet distance even further. Therefore, our initial speculation about the du-
ration of buffer overflows during the experiment may not hold in all cases.

On the other hand, to investigate the presence of RED in the Internet, we con-
tacted several backbone and dialup ISPs whose routers were recorded in our trace data
and asked them to comment on the deployment of RED in their backbones. Among the
ISPs that responded to our request, the majority had purposely disabled RED and the rest
were running RED only for select customers at border routers, but not on the public back-
bone. Consequently, we conclude that even though the analysis of our datasets points

17 The server was only involved in low-bitrate streaming for our clients and did not have a problem blasting
bursts of packets at the full speed of the adjacent link (i.e., 10 mb/s). The spacing between packets was
further expanded by the T1 link to UUNET.

52

points towards transient (i.e., 1-3 ms) buffer overflows in the Internet routers sampled by
our experiment, we cannot reliably determine the exact duration of these events.

In addition, we should note that single packet losses were under-represented in
our traces, because packets that were lost in bursts longer than one packet could have
been dropped by different routers along the path from the server to the client. Therefore,
using end-to-end measurements, an application cannot distinguish between n (n ≥ 2) sin-
gle-packet losses at n different routers from an n-packet bursty loss at a single router.
Both types of loss events would appear identical to an end-to-end application, even
though the underlying cause is quite different.

Furthermore, as previously pointed out by many researchers, the upper tail of loss
burst lengths usually contains a substantial percentage of all lost packets. In each of D1p
and D2p, single-packet bursts contained only 36% of all lost packets, bursts two packets
or shorter contained 49%, bursts 10 packets or shorter contained 68%, and bursts 30
packets or shorter contained 82%. At the same time, 13% of all lost packets were
dropped in bursts at least 50 packets long.

Traditionally, the burstiness of packet loss is measured by the average loss burst
length. In the first dataset (D1p), the average burst length was 2.04 packets. In the second
dataset (D2p), the average burst length was slightly higher (2.10), but not high enough to
conclude that the higher bitrate of stream S2 was clearly responsible for burstier packet
loss. Furthermore, the conditional probability of packet loss, given that the previous
packet was also lost, was 51% in D1p and 53% in D2p. These numbers are consistent with
those previously reported in the literature. Bolot [22] observed the conditional probability
of packet loss to range from 18% to 60% depending on inter-packet spacing during
transmission, Borella et al. [30] from 10% to 35% depending on the time of day, and
Paxson [209] reported 50% conditional probability for loaded (i.e., queued behind the
previous) TCP packets and 25% for unloaded packets. Using Paxson’s terminology, the
majority of our packets were loaded since the server sent packets in bursts at a rate higher
than the bottleneck link’s capacity.

3.3.2.3 Loss Burst Durations

To a large degree, the average loss burst length depends on how closely the pack-
ets are spaced during transmission. Assuming that bursty packet loss comes from buffer
overflow events in drop-tail queues rather than from consecutive hits by RED or from
bit-level corruption, it is clear that all packets of a flow passing through an overflown
router queue will be dropped for the duration of the instantaneous congestion. Hence, the
closer together the flow’s packets arrive to the router, the more packets will be dropped
during each queue overflow. This fact was clearly demonstrated in Bolot’s experiments
[22], where UDP packets spaced 8 ms apart suffered larger loss burst lengths (mean 2.5
packets) than packets spaced 500 ms apart (mean 1.1 packets). Yajnik et al. [283] re-
ported a similar correlation between loss burst lengths and the distance between packets.
Consequently, instead of analyzing burst lengths, one might consider analyzing burst
durations since the latter does not depend on inter-packet spacing during transmission.

53

Using our traces, we can only infer an approximate duration of each loss burst,
because we do not know the exact time when the lost packets were supposed to arrive to
the client. Hence, for each loss event, we define the loss burst duration as the time
elapsed between the receipt of the packet immediately preceding the loss burst and the
packet immediately following the loss burst. Figure 11 shows the distribution (CDF) of
loss burst durations in seconds. Although the distribution tail is quite long (up to 36 sec-
onds), the majority (more than 98%) of loss burst durations in both datasets D1p and D2p
fall under 1 second. Paxson’s study [209] also observed large loss burst durations (up to
50 seconds), however, only 60% of the loss bursts studied by Paxson were contained be-
low 1 second. In addition, our traces showed that the average distance between lost pack-
ets in the experiment was 172-188 good packets, or 21-27 seconds, depending on the
streaming rate.

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 100
loss burst duration (seconds)

C
D

F
pe

rc
en

t

Figure 11. The CDF function of loss burst durations in {D1p∪D2p}.

3.3.2.4 Heavy Tails

In conclusion of this section, it is important to note that packet losses sometimes
cannot be modeled as independent events due to buffer overflows that last long enough to
affect multiple adjacent packets. Consequently, future real-time protocols should expect
to deal with bursty packet losses (Figure 10) and possibly heavy-tailed distributions of
loss burst lengths (see below).

Several researchers reported a heavy-tailed nature of loss burst lengths, and the
shape parameter α of the Pareto distribution fitted to the length (or duration) of loss
bursts was recorded to range from 1.06 (Paxson [209]) to 2.75 (Borella et al. [30]). On
the other hand, Yajnik et al. [283] partitioned the collected data into stationary segments
and reported that loss burst lengths could be modeled as exponential (i.e., not heavy-

54

tailed) within each stationary segment. In addition, Zhang et al. [292] reported that
packet loss along some Internet paths was stationary and could be modeled as exponen-
tial, whereas other paths were found to be non-stationary and not easy to model.

Using intuition, it is clear that packet loss and RTT random processes in both D1p
and D2p are expected to be non-stationary. For example, the non-stationarity can be at-
tributed to the time of day or the location of the client. In either case, we see three ap-
proaches to modeling such non-stationary data. In the first approach, we would have to
analyze 16,852 PDF functions (one for each session) for stationarity and heavy tails. Un-
fortunately, an average session contained only 24 loss bursts, which is insufficient to
build a good distribution function for a statistical analysis.

The second approach would be to combine all sessions into groups, which are in-
tuitively perceived to be stationary (e.g., according to the access point or the timeslot),
and then perform similar tests for stationarity and heavy tails within each group. We
might consider this direction for future work. The third approach is to do what the major-
ity has done in the past – assume that all data samples belong to a stationary process and
are drawn from a single distribution. Using this last approach, Figure 12 shows a log-log
plot of the complementary CDF function from Figure 10 with a least-squares fit of a
straight line representing a hyperbolic (i.e., heavy-tailed) distribution (the dotted curve is
the exponential distribution fitted to the data). The fit of a straight line is quite good (with
correlation ρ = 0.99) and provides a strong indication that the distribution of loss burst
lengths in the combined dataset {D1p∪D2p} is heavy-tailed. Furthermore, as expected, we
notice that the exponential distribution in Figure 12 decays too quickly to even remotely
fit the data.

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100
loss burst length (packets)

P
(X

 >
=

x)

Loss Burst Lengths Power (Loss Burst Lengths)
Expon. (Loss Burst Lengths)

Figure 12. The complimentary CDF of loss burst lengths in {D1p∪D2p} on a log-log scale
fitted with hyperbolic (straight line) and exponential (dotted curve) distributions.

55

Finally, consider a Pareto distribution with CDF F(x) = 1–(β/x)α and PDF f(x) =
αβαx-α-1, where α is the shape parameter and β is the location parameter. Using Figure
12, we establish that a Pareto distribution with α = 1.34 (finite mean, but infinite vari-
ance) and β = 0.65 fits our data very well.

3.3.3 Underflow Events

The impact of packet losses on real-time applications is understood fairly well.
Each lost packet that is not recovered before its deadline causes an underflow event. In
addition to packet loss, real-time applications suffer from large end-to-end delays. How-
ever, not all types of delay are equally important to real-time applications. As we will
show below, one-way delay jitter was responsible for 90 times more underflow events in
our experiment than packet loss combined with large RTTs.

Delays are important for two reasons. First, large round-trip delays make retrans-
missions late for their decoding deadlines. However, the RTT is important only to the
extent of recovering lost packets and, in the worst case, can cause only lost packets to be
late for decoding. On the other hand, the second kind of delay, delay jitter (i.e., one-way
delay variation), can potentially cause each data (i.e., non-retransmitted) packet to be late
for decoding.

Consider the following. In {D1p∪D2p}, packet loss affected 431,501 packets, out
of which 159,713 (37%) were discovered to be missing after their decoding deadlines
had passed, and consequently, NACKs were not sent for these packets. Out of 271,788
remaining lost packets, 257,065 (94.6%) were recovered before their deadlines, 9,013
(3.3%) arrived late, and 5,710 (2.1%) were never recovered. The fact that more than 94%
of “recoverable” lost packets were actually received before their deadlines indicates that
retransmission is a very efficient method of overcoming packet loss in real-time applica-
tions. Clearly, the success rate will be even higher in networks with smaller end-to-end
delays.

Before we study underflow events caused by delay jitter, let us introduce two
types of late retransmissions. The first type consists of packets that arrived after the de-
coding deadline of the last frame of the corresponding group of pictures (GOP). These
packets were completely useless and were discarded. The second type of late packets,
which we call partially late, consists of those packets that missed their own decoding
deadline, but arrived before the deadline of the last frame of the same GOP. Since the
video decoder in our experiment could decompress frames at a substantially higher rate
than the target fps, the client was able to use partially late packets for motion-
compensated reconstruction of the remaining frames from the same GOP before their
corresponding decoding deadlines. Out of 9,013 late retransmissions, 4042 (49%) were
partially late. Using each partially late packet, the client was able to save on average 4.98
frames from the same GOP18 in D1p and 4.89 frames in D2p by employing the above-
described catch-up decoding technique (for more discussion, see [241]).

18 We used 10-frame GOPs in both sequences.

56

The second type of delay, one-way delay jitter, caused 1,167,979 data (i.e., non-
retransmitted) packets to miss their decoding deadlines. Hence, the total number of un-
derflow (i.e., missing at the time of decoding) packets was 159,713 + 9,013 + 5,710 +
1,167,979 = 1,342,415 (1.7% of the number of sent packets), which means that 98.9% of
underflow packets were created by large one-way delay jitter, rather than by pure packet
loss. Even if the clients had not attempted to recover any lost packets, still 73% of the
missing packets at the time of decoding would have been caused by large delay jitter.
Furthermore, these 1.3 million underflow packets caused a “freeze-frame” effect for the
average duration of 10.5 seconds per ten-minute session in D1p and 8.6 seconds in D2p,
which can be considered excellent given the small amount of delay budget (i.e., startup
delay) used in the experiments.

To further understand the phenomenon of late packets, we plotted in Figure 13 the
CDFs of the amount of time by which late packets missed their deadlines (i.e., the
amount of time that we need to add to delay budget Dbudget = 2,700 ms in order to avoid a
certain percentage of underflow events) for both late retransmissions and late data pack-
ets. As the figure shows, 25% of late retransmissions missed their deadlines by more than
2.6 seconds, 10% by more than 5 seconds, and 1% by more than 10 seconds (the tail of
the CDF extends up to 98 seconds). At the same time, one-way delay jitter had a more
adverse impact on data packets – 25% of late data packets missed their deadlines by more
than 7 seconds, 10% by more than 13 seconds, and 1% by more than 27 seconds (the
CDF tail extends up to 56 seconds).

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 100

seconds

C
D

F
pe

rc
en

t

data retransmissions

Figure 13. CDF functions of the amount of time by which retransmitted and data packets
were late for decoding.

The only way to reduce the number of late packets caused by both large RTTs and
delay jitter is to apply a larger startup delay Dbudget at the beginning of a session (in addi-
tion to freezing the display and adding extra startup delays during the session, or running
the server at a faster-than-ideal bitrate to accumulate more frames in the decoder buffer,

57

neither of which was acceptable in our model). Hence, for example, Internet applications
utilizing a 13-second delay budget (which corresponds to 10.3 seconds of additional de-
lay in Figure 13) would be able to “rescue” 99% of late retransmissions and 84% of late
data packets in similar streaming conditions.

3.3.4 Round-trip Delay

3.3.4.1 Overview

We should mention that circuit-switched long-distance links through PSTN be-
tween our clients and remote access points did not significantly influence the measured
end-to-end delays, because the additional delay on each long-distance link was essen-
tially the propagation delay between New York and the location of the access point
(which is determined by the speed of light and the geographical distance, i.e., 16 ms coast
to coast). Clearly, this delay is negligible compared to the queuing and transmission de-
lays experienced by each packet along the entire end-to-end path. Figure 14 shows the
PDF functions of the round-trip delay in each of D1p and D2p (660,439 RTT samples in
both datasets). Although the tail of the combined distribution reached the enormous val-
ues of 126 seconds for simulated and 102 seconds for real retransmissions, the majority
(75%) of the samples were below 600 ms, 90% below 1 second, and 99.5% below 10
seconds. The average RTT was 698 ms in D1p and 839 ms in D2p. The minimum RTT was
119 and 172 ms, respectively. Although very rare, extremely high RTTs were found in all
six datasets D1p

a – D2p
c. Furthermore, out of more than 660 thousand RTT samples in

{D1p∪D2p}, 437 were at least 30 seconds, 32 at least 50 seconds, and 20 at least 75 sec-
onds.

0%

10%

20%

30%

40%

50%

60%

0.1 1 10
RTT (seconds)

PD
F

pe
rc

en
t

D1p D2p

Figure 14. PDF functions of the RTT samples in each of D1p and D2p.

58

Although pathologically high RTTs may seem puzzling at first, there is a simple
explanation. Modem error correction protocols (i.e., the commonly used V.42) implement
retransmission for corrupted blocks of data on the physical layer.19 Error correction is
often necessary if modems negotiated data compression (i.e., V.42bis) over the link and
is desirable if PPP Compression Control Protocol (CCP) is enabled on the data-link layer.
In all our experiments, both types of compression were enabled, imitating the typical
setup of a home user. Therefore, if a client established a connection to a remote modem
at a low bitrate (which was sometimes accompanied by a significant amount of noise in
the phone line), each retransmission on the physical layer took a large time to complete
before the data was delivered to the upper layers. In addition, large IP-level buffers on
either side of the modem link further delayed packets arriving to or originating from the
client host.

Note that the purpose of classifying sessions into failed and successful in section
3.2.1 was to avoid reporting pathological conditions caused by the modem links. Since
only a handful (less than 0.5%) of RTTs in {D1p∪D2p} were seriously effected by mo-
dem-level retransmission and bit errors (we consider sessions with RTTs higher than 10
seconds to be caused by modem-related problems20), we conclude that our heuristic was
successful in filtering out the majority of pathological connections and that future appli-
cation-layer protocols, running over a modem link, should be prepared to experience
RTTs in the order of several seconds.

Furthermore, the removal of sessions with RTTs higher than 10 seconds does not
change any of the results below and, at the same time, prohibits us from showing the ex-
tent of variation in the network parameters experienced by a home Internet user. There-
fore, since all sessions in {D1p∪D2p} were able to successfully complete, we consider the
removal of sessions based on their large RTT to be unwarranted.

3.3.4.2 Heavy Tails

Mukherjee [182] reported that the distribution of the RTT along certain Internet
paths could be modeled as a shifted gamma distribution. Even though the shape of the
PDF in Figure 14 resembles that of a gamma function, the distribution tails in the figure
decay much slower than those of an exponential distribution (see below). Using our ap-
proach from section 3.3.2.4 (i.e., assuming that each studied Internet random process is
stationary), we extracted the upper tails of the PDF functions in Figure 14 and plotted the
results on a log-log scale in Figure 15. The figure shows that a straight line (without loss
of generality fitted to the PDF of D2p in the figure) provides a good fit to the data (corre-

19 Since the telephone network beyond the local loop in the U.S. is mostly digital, we believe that dialing
long-distance (rather than local) numbers had no significant effect on the number of bit errors during the
experiment.
20 For example, one of the authors uses a modem access point at home with IP-level buffering on the ISP
side equivalent to 6.7 seconds. Consequently, delays as high as 5-10 seconds may often be caused by non-
pathological conditions.

59

lation 0.96) and allows us to model the upper tails of the PDF functions as a Pareto dis-
tribution with PDF f(x) = αβαx-α-1, where shape parameter α equals 1.16 in dataset D1p
and 1.58 in D2p (as before, the distribution has a finite mean, but an infinite variance).

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.1 1 10 100
RTT (seconds)

P
(X

 =
 x

)

D1p D2p Power (D2p)

Figure 15. Log-log plot of the upper tails of the distribution of the RTT (PDF). The
straight line is fitted to the PDF from D2p.

3.3.4.3 Variation of the RTT

We conclude the discussion of the RTT by showing that the round-trip delay ex-
hibited a variation during the day similar to that of packet loss (previously shown in
Figure 8) and that the average RTT was positively correlated with the length of the end-
to-end path. Figure 16 shows the average round-trip delay during each of the eight time-
slots of the day (as before, each point in the figure represents the average of approxi-
mately 1,000 sessions). The figure confirms that the worst time for sending traffic over
the Internet is between 9 am and 6 pm EDT and shows that the increase in the delay dur-
ing the peak hours is relatively small (i.e., by 30-40%).

60

0

200

400

600

800

1000

1200

0:00 -
3:00

3:00 -
6:00

6:00 -
9:00

9:00 -
12:00

12:00 -
15:00

15:00 -
18:00

18:00 -
21:00

21:00 -
0:00

time of day (EDT)

R
TT

 (m
s)

D1p D2p

Figure 16. Average RTT as a function of the time of day.

Figure 17 shows the average RTT sampled by the clients in each of the 50 U.S.
states. The average round-trip delay was consistently high (above 1 second) for three
states – Alaska, New Mexico, and Hawaii. On the other hand, the RTT was consistently
low (below 600 ms) also for three states – Maine, New Hampshire, and Minnesota. These
results (except Minnesota) can be directly correlated with the distance from New York;
however, in general, we find that the geographical distance of the access point from the
East Coast had little correlation with the average RTT. Thus, for example, some states in
the Midwest had small (600-800 ms) average round-trip delays and some states on the
East Coast had large (800-1000 ms) average RTTs. A more substantial link can be estab-
lished between the number of end-to-end hops and the average RTT as shown in Figure
17. Even though the average RTT of many states did not exhibit a clear dependency on
the average length of the path, the correlation between the RTT and the number of hops
in Figure 17 was reasonably high with ρ = 0.52. This result was intuitively expected
since the RTT is essentially the sum of queuing and transmission delays at intermediate
routers.

61

0

200

400

600

800

1000

1200

AK AR C
A C
T

D
E

G
A IA IL KS LA M
D M
I

M
O

M
T

N
D

N
H

N
M N
Y

O
K

PA SC TN U
T

VT W
I

W
Y

state

av
er

ag
e

R
TT

 (m
s)

6

8

10

12

14

16

18

20

av
er

ag
e

ho
ps

Average RTT Average hops

Figure 17. Average RTT and average hop count in each of the states in {D1p∪D2p}.

3.3.5 Delay Jitter

As we discussed above, in certain streaming situations, round-trip delays are
much less important to real-time applications than one-way delay jitter, because the latter
can potentially cause significantly more underflow events. In addition, due to asymmetric
path conditions (i.e., uneven congestion in the upstream and downstream directions),
large RTTs are not necessarily an indication of bad network conditions for a NACK-
based application. For example, in many sessions with high RTTs during the experiment,
the outage was caused by the upstream path, while the downstream path did not suffer
from extreme one-way delay variation, and data (i.e., non-retransmitted) packets were
arriving to the client throughout the entire duration of the outage. Hence, we conclude
that the value of the RTT was not necessarily a good indicator of a session’s quality dur-
ing the experiment and that one-way delay jitter should be used instead.

Assuming that delay jitter is defined as the difference between one-way delays of
each two consecutively sent packets, an application can sample both positive and nega-
tive values of delay jitter. Negative values are produced by two types of packets – those
that suffered a packet compression event (i.e., the packets’ arrival spacing was smaller
than their transmission spacing) and those that became reordered. The former case is of
great interest in packet-pair bandwidth estimation studies and otherwise remains rela-
tively unimportant. The latter case will be studied in section 3.3.6 under packet reorder-
ing. On the other hand, positive values of delay jitter represent packet expansion events,
which are responsible for late packets. Consequently, we analyzed the distribution of
only positive delay jitter samples and found that although the highest sample was 45 sec-

62

onds, 97.5% of the samples were under 140 ms and 99.9% under 1 second. As the above
results show, large values of delay jitter were not frequent, but once a packet was signifi-
cantly delayed by the network, a substantial number of the following packets were de-
layed as well, creating a “snowball” of late packets. This fact explains the large number
of underflow events reported in previous sections, even though the overall delay jitter
was relatively low.

3.3.6 Packet Reordering

3.3.6.1 Overview

Real-time protocols often rely on the assumption that packet reordering in the
Internet is a rare and an insignificant event for all practical purposes (e.g., [63]). Al-
though this assumptions simplifies the design of a protocol, it also make the protocol
poorly suited for the use over the Internet. Certainly, there are Internet paths along which
reordering is either non-existent or extremely low. At the same time, there are paths that
are dominated by multipath routing effects and often experience reordering (e.g., Paxson
[209] reported a session with 36% of packets arriving out of order).

Unfortunately, there is not much data documenting reordering rates experienced
by IP traffic over modem links. Using intuition, we expected reordering in our experi-
ments to be extremely rare given the low bitrates of streams S1 and S2. However, we were
surprised to find out that certain paths experienced consistent reordering with a relatively
large number of packets arriving our of order, although the average reordering rates in
our experiments were substantially lower than those reported by Paxson [209].

For example, in dataset D1p
a, we observed that out of every three missing21 pack-

ets one was reordered. Hence, if users of ISPa employed a streaming protocol, which used
a gap-based detection of lost packets [63] (i.e., the first out-of-order packet triggers a
NACK), 33% of NACKs would be flat-out redundant and a large number of retransmis-
sions would be unnecessary, causing a noticeable fraction of ISP’s bandwidth to be
wasted.

Since each missing packet is potentially reordered, the true frequency of reorder-
ing can be captured by computing the percentage of reordered packets relative to the total
number of missing packets. The average reordering rate in our experiment was 6.5% of
the number of missing packets, or 0.04% of the number of sent packets. These numbers
show that our reordering rates were at least by a factor of 10 lower than those reported by
Paxson [209], whose average reordering rates varied between 0.3% and 2% of number of
sent packets depending on the dataset. This difference can be explained by the fact that
our experiment was conducted at substantially lower end-to-end bitrates, as well as by the
fact that Paxson’s experiment involved several paths with extremely high reordering
rates.

21 Missing packets are defined as gaps in sequence numbers.

63

Out of 16,852 sessions in {D1p∪D2p}, 1,599 (9.5%) experienced at least one reor-
dering. Interestingly, the average session reordering rates in our datasets were very close
to those in Paxson’s 1995 data [209] (12% sessions with at least one reordering), despite
the fundamental differences in sending rates. The highest reordering rate per ISP in our
experiment occurred in D1p

a, where 35% of the number of missing packets (0.2% of the
number of sent packets) turned out to be reordered. In the same D1p

a, almost half of the
sessions (47%) experienced at least one reordering event. Furthermore, the maximum
number of reordered packets in a single session occurred in D1p

b and was 315 packets
(7.5% of the number of sent packets).

Interestingly, the reordering probability did not show any dependence on the time
of day (i.e., the timeslot), and was virtually the same for all states.

3.3.6.2 Reordering Delay

To further study packet reordering, we define two metrics that allow us to meas-
ure the extent of packet reordering. First, let packet reordering delay Dr be the delay
from the time when a reordered packet was declared as missing to the time when the re-
ordered packet arrived to the client. Second, let packet reordering distance dr be the
number of packets (including the very first out-of-sequence packet, but not the reordered
packet itself) received by the client during reordering delay Dr. These definitions are il-
lustrated in Figure 18, where reordering distance dr is 2 packets and reordering delay Dr
is the delay between receiving packets 3 and 2.

1 3 4 2

Dr

t ime

Figure 18. The meaning of reordering delay Dr.

Figure 19 shows the PDF of the reordering delay Dr in {D1p∪D2p}. The largest
reordering distance dr in the combined dataset was 10 packets, and the largest reordering
delay Dr was 20 seconds (however, in the latter case, dr was only 1 packet). Although
quite large, the maximum value of Dr is consistent with previously reported numbers
(e.g., 12 seconds in Paxson’s data [209]). The majority (90%) of samples in Figure 19 are
below 150 ms, 97% below 300 ms, and 99% below 500 ms.

64

0%

10%

20%

30%

40%

50%

0 200 400 600 800 1000
Reordering delay Dr (ms)

PD
F

pe
rc

en
t

Figure 19. The PDF of reordering delay Dr in {D1p∪D2p}.

3.3.6.3 Reordering Distance

We next analyze the suitability of TCP’s triple-ACK scheme in helping NACK-
based protocols detect reordering. TCP’s fast retransmit relies on three consecutive du-
plicate ACKs (hence the name “triple-ACK”) from the receiver to detect packet loss and
avoid unnecessary retransmissions. Therefore, if reordering distance dr is either 1 or 2,
the triple-ACK scheme successfully avoids duplicate packets, and if dr is greater than or
equal to 3, it generates a duplicate packet. Figure 20 shows the PDF of reordering dis-
tance dr in both datasets. Using the figure, we can infer that TCP’s triple-ACK would be
successful for 91.1% of the reordering events in our experiment, double-ACK for 84.6%,
and quadruple-ACK for 95.7%. Note that Paxson’s TCP-based data [209] show similar,
but slightly better detection rates, specifically 95.5% for triple-ACK, 86.5% for double-
ACK, and 98.2% for quadruple-ACK.

65

84.63%

6.53% 4.49% 2.19% 1.35% 0.51% 0.18% 0.08% 0.03% 0.00%
0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10
reordering distance dr (packets)

PD
F

pe
rc

en
t

Figure 20. The PDF of reordering distance dr in {D1p∪D2p}.

3.3.7 Asymmetric Paths

Recall that during the initial executions of traceroute, our dialer recorded the TTL
fields of each received “TTL expired” packet. The TTL fields of these packets allowed
the dialer to compute the number of hops between the router that generated a particular
“TTL expired” message and the client. Suppose some router i was found at hop fi in the
upstream (i.e., forward) direction and at hop ri in the downstream (i.e., reverse) direction.
Hence, we can conclusively establish that an n-hop end-to-end path is asymmetric, if
there exists a router for which the number of downstream hops is different from the num-
ber of upstream hops (i.e., ∃i, 1 ≤ i ≤ n: fi ≠ ri). However, the opposite is not always true –
if each router has the same number of downstream and upstream hops, we cannot con-
clude that the path is symmetric (i.e., it could be asymmetric as well). Hence, we call
such paths possibly-symmetric.22

In {D1p∪D2p}, 72% of the sessions sent their packets over definitely asymmetric
paths. In that regard, two questions prompt for an answer. First, does path asymmetry de-
pend on the number of end-to-end hops? To answer this question, we extracted path in-
formation from {D1p∪D2p} and counted each end-to-end path through a particular access
point exactly once. Figure 21 shows the percentage of asymmetric paths as a function of
the number of end-to-end hops in the path. As the figure shows, almost all paths with 14

22 In the most general case, even performing a reverse traceroute from the server to the client could not
have conclusively established each path’s symmetry, because traceroute identifies router interfaces rather
than individual routers. See [209] for more discussion.

66

hops or more were asymmetric, as well as that even the shortest paths (with only 6 hops)
were prone to asymmetry. This result can be explained by the fact that longer paths are
more likely to cross over AS boundaries or intra-AS administrative domains. In both
cases, “hot-potato” routing policies can cause path asymmetry.

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16 18 20 22 24
end-to-end hops

pe
rc

en
t a

sy
m

m
et

ric

Figure 21. Percentage of asymmetric routes in {D1p∪D2p} as a function of the number of
end-to-end hops.

The second question we attempt to answer is whether path asymmetry has any-
thing to do with reordering. In {D1p∪D2p}, 95% of all sessions with at least one reordered
packet were running over an asymmetric path. Consequently, we can conclude that if a
session in our datasets experiences a reordering event along a path, then the path is most
likely asymmetric. However, a new question that arises is whether the opposite is true as
well: if a path is asymmetric, will a session be more likely to experience a reordering? To
answer the last question, we have the following numbers. Out of 12,057 sessions running
over a definitely asymmetric path, 1,522 experienced a reordering event, which translates
into 12.6% reordering rate. On the other hand, out of 4,795 sessions running over a pos-
sibly-symmetric path, only 77 (1.6%) experienced a reordering event. Hence, an asym-
metric path is 8 times more likely to experience a reordering event than a possibly-
symmetric path.

Even though there is a clear link between reordering and asymmetry in our data-
sets, we speculate that the two could be related through the length of each end-to-end
path. In other words, longer paths were found to be more likely to experience reordering
as well as be asymmetric. Hence, rather than saying that reordering causes asymmetry or
vice versa, we can explain the result by noting that longer paths are more likely to cross
inter-AS boundaries or intra-AS administrative domains, during which both “hot potato”

67

routing (which causes asymmetry) and IP-level load-balancing (which causes reordering)
are apparently quite frequent.

Clearly, the findings in this section depend on the particular ISP employed by the
end-user and the autonomous systems that user traffic traverses. Large ISPs (such as the
ones studied in this work) often employ numerous peering points (hundreds in our case),
and path asymmetry rates found in this section may not hold for smaller ISPs. Neverthe-
less, our data allow us to conclude that the majority of home users in the US experience
asymmetric end-to-end paths with a much higher frequency than symmetric ones.

68

Chapter Four

4 Real-time Retransmission: Evaluation
Model and Performance

This chapter presents a trace-driven simulation study of two classes of retransmis-
sion timeout (RTO) estimators in the context of real-time streaming over the Internet. We
explore the viability of employing retransmission timeouts in NACK-based (i.e., rate-
based) streaming applications to support multiple retransmission attempts per lost packet.
The first part of our simulation is based on trace data collected during a number of real-
time streaming tests between dialup clients in all 50 states in the U.S. (including 653 ma-
jor U.S. cities) and a backbone video server. The second part of the study is based on
streaming tests over DSL and ISDN access links. First, we define a generic performance
measure for assessing the accuracy of hypothetical RTO estimators based on the samples
of the round-trip delay (RTT) recorded in the trace data. Second, using this performance
measure, we evaluate the class of TCP-like estimators and find the optimal estimator
given our performance measure. Third, we introduce a new class of estimators based on
delay jitter and show that they significantly outperform TCP-like estimators in NACK-
based applications with low-frequency RTT sampling. Finally, we show that high-
frequency sampling of the RTT completely changes the situation and makes the class of
TCP-like estimators as accurate as the class of delay-jitter estimators.

4.1 Introduction

Many Internet transport protocols rely on retransmission to recover lost packets.
Reliable protocols (such as TCP) utilize a well-established sender-initiated retrans-
mission scheme that employs retransmission timeouts (RTO) and duplicate acknowl-

69

edgements (ACKs) to detect lost packets [110]. RTO estimation in the context of re-
transmission refers to the problem of predicting the next value of the round-trip delay
(RTT) based on the previous samples of the RTT. RTO estimation is usually a more
complicated problem than simply predicting the most likely value of the next RTT. For
example, an RTO estimator that always underestimates the next RTT by 10% is signifi-
cantly worse than the one that always overestimates the next RTT by 10%. Although
both estimators are within 10% of the correct value, the former estimator generates 100%
duplicate packets, while the latter one avoids all duplicate packets with only 10%
unnecessary waiting.

Even though Jacobson’s RTO estimator [110] is readily accepted by many TCP-
like protocols, the problem of estimating the RTO in streaming protocols has not been
addressed before. Current streaming protocols [232] deployed in the Internet rely on
NACK-based flow control and usually do not implement congestion control, and the
question of whether TCP’s RTO estimator is suitable for such protocols remains an open
issue. This chapter sheds new light on the problem of RTO estimation in NACK-based
protocols and shows the performance of several classes of RTO estimators in realistic
Internet streaming scenarios.

Traditionally, NACK-based protocols sample the RTT only at times of packet
loss (see below for details of how this is done). Even though there is nothing that inher-
ently stops NACK-based protocols from sampling the RTT at a higher rate, our study for
the most part follows the assumptions of the existing NACK-based applications [232]
(i.e., the receiver sends messages to the server only upon packet loss and the RTT is
measured only for the retransmitted packets).

As a result of our investigation, we found that TCP’s RTO was an inadequate
predictor of future values of the RTT when used in a NACK-based protocol over paths
with low-frequency RTT sampling (i.e., low packet loss). We further found that along
such paths, the accuracy of estimation could be substantially improved if the client used
delay jitter in its computation of the RTO. On the other hand, when the RTT sampling
rate was increased, TCP’s RTO performed very well and the benefits of delay jitter were
much less significant. Since an application typically does not know its future packet loss
rates, we find that NACK-based protocols, augmented with high-frequency (i.e., in the
order of once per RTT) sampling of the round-trip delay, will perform very well regard-
less of the end-to-end characteristics of a particular path (for example, high-frequency
RTT sampling in real-time streaming can be implemented by using congestion control
messages and once-per-RTT receiver-based feedback [157]).

In addition, this chapter presents a generalized (i.e., suitable for many real-time
applications) NACK-based, real-time retransmission model for multimedia streaming
over the Internet and assess the effectiveness of various RTO estimators in the context of
Internet streaming and our retransmission model. While the primary goal of our study is
to develop a better retransmission mechanism for real-time applications, our retransmis-
sion model and new performance measure introduced in this chapter are generic enough
to apply to TCP as well.

70

Our characterization of RTO estimators is based on a reasonably large number of
real-time streaming tests conducted between dialup clients from all 50 states in the U.S.
and a backbone server during a seven-month period. We believe that this setup accurately
reflects the current situation with real-time streaming in the Internet since the majority
(i.e., 87-89%) of households in the U.S. still connect to the Internet through dialup mo-
dems [108], [217].

A good RTO estimator is the basis of any retransmission scheme. An application
utilizing an RTO estimator that consistently underestimates the round-trip delay gener-
ates a large number of duplicate packets. The effect of duplicate packets ranges from be-
ing simply wasteful to actually causing serious network congestion. Note that in NACK-
based applications, the receiver (i.e., the client) is responsible for estimating the RTO and
the server is no longer in charge of deciding when to initiate a particular retransmission.
This is illustrated in Figure 22 (left), in which the client sends three NACKs in response
to a single lost packet and produces two duplicate packets due to insufficient RTO.

On the other hand, overestimation of the RTT defers the generation of subsequent
retransmission requests and leads to lower throughput performance in TCP and causes an
increased number of underflow events (which are generated by packets arriving after their
decoding deadlines) in real-time applications. In either case, the amount of overestima-
tion can be measured by the duration of unnecessary waiting for timeouts (i.e., waiting
longer than the RTT of the lost retransmission). This is illustrated in Figure 22 (right). In
the figure, the first retransmission is lost as well, and the generation of the second NACK
is significantly delayed because the RTO is higher than the network RTT.

Server

Client

NACK

lost

RTO

NACK

RTO

NACK

RTT

Server

Client

NACK

lost

RTT

RTO

NACK

lost

Figure 22. Underestimation results in duplicate packets (left) and overestimation results
in unnecessary waiting (right).

Therefore, the performance (i.e., accuracy) of an RTO estimator is fully described
by two parameters (quantified later in this chapter) – the number of duplicate packets and
the amount of unnecessary timeout waiting. These two parameters cannot be minimized
at the same time, since they represent a basic trade-off of any RTO estimator (i.e., de-
creasing one parameter will increase the other). To study the performance of RTO esti-
mators, we define a weighted sum of these two parameters and study a multidimensional
optimization problem in order to find the tuning parameters that make an RTO estimator

71

optimal within its class. The minimization problem is not straightforward because the
function to be minimized is non-continuous, has unknown (and often non-existent) de-
rivatives, and contains a large number of local minima.

The chapter is organized as follows. Section 4.2 provides the background on the
problem of estimating retransmission timeouts and discusses some of the related work.
Section 4.3 describes the methodology of our experiment. Section 4.4 introduces a novel
performance measure that is used to judge the accuracy of hypothetical RTO estimators
throughout this chapter. Section 4.5 studies the class of TCP-like RTO estimators and
models their performance. Section 4.6 discusses a new class of jitter-based RTO estima-
tors and shows their superior performance in our modem datasets. Section 4.7 studies the
performance of RTO estimators along high-speed Internet paths with high-frequency
RTT sampling and shows that these paths require a different estimator.

4.2 Background

Recall that TCP’s RTO estimation consists of three algorithms. The first algo-
rithm, smoothed RTT estimator (SRTT), is an exponentially-weighted moving average
(EWMA) of the past RTT samples [4], [110], [212]:





≥⋅α+⋅α−
=

=
− 1,)1(

0,

1

0

iRTTSRTT
iRTT

SRTT
ii

i , (6)

where RTTi is the i-th sample of the round-trip delay produced at time ti and α (set
by default to 1/8) is a smoothing factor that can be varied to give more or less weight to
the history of RTT samples. In the original RFC 793 [221], the RTO was obtained by
multiplying the latest value of the SRTT by a fixed factor between 1.3 and 2.0. In the late
1980s, Jacobson [110] found that the RFC 793 RTO estimator produced an excessive
amount of duplicate packets when employed over the Internet and proposed that the sec-
ond algorithm, smoothed RTT variance estimator (SVAR), be added to TCP’s retransmis-
sion scheme [4], [110], [212]:





≥⋅β+⋅β−
=

=
− 1,)1(

0,2/

1

0

iVARSVAR
iRTT

SVAR
ii

i , (7)

where β (set by default to ¼) is an EWMA smoothing factor and VARi is the abso-
lute deviation of the i-th RTT sample from the previous smoothed average:
VARi = |SRTTi–1 – RTTi|. Current implementations of TCP compute the RTO by multiply-
ing the smoothed variance by four and adding it to the smoothed round-trip delay [4],
[212]:

72

 RTO(t) = n⋅SRTTi + k⋅SVARi, (8)

where t is the time at which the RTO is computed, n = 1, k = 4, and i = max i:
ti ≤ t.

The third algorithm involved in retransmission, exponential timer backoff, refers
to Jacobson’s algorithm [110] that exponentially increases the timeout value each time
the same packet is retransmitted by the sender. Exponential timer backoff does not in-
crease the accuracy of an RTO estimator, but rather conceals the negative effects of un-
derestimating the actual RTT.23 Since this chapter focuses on tuning the accuracy of RTO
estimators, we consider the timer backoff algorithm to be an orthogonal issue, to which
we will not pay much attention. Furthermore, real-time applications have the ability to
utilize a different technique that conceals RTT underestimation, which involves setting a
deterministic limit on the number of retransmission attempts for each lost packet based
on real-time decoding deadlines.

Rigorous tuning of TCP’s retransmission mechanism has not been attempted in
the past (possibly with the exception of [4]), and the study of TCP’s RTO over diverse
Internet paths is limited to [205], [209] in which Paxson found that 40% of retransmis-
sions in the studied TCP implementations were redundant.24

Recently, Allman and Paxson [4] conducted a trace-driven simulation study based
on TCP traffic to investigate the performance of hypothetical TCP-like RTO estimators
(8) for several values of α, β, and k (n was kept at 1). The authors compared the per-
formance of eight estimators by varying (α,β) and keeping k fixed at 4 and examined
eight additional estimators by running k through eight integer values and keeping (α,β)
fixed at their default values. The paper further concluded that no TCP-like RTO estimator
could perform significantly better in the future versions of TCP than Jacobson’s de-facto
standard [110] and that even varying parameter n in (8) would not make the estimator
substantially better.

Among other reliable protocols with non-Jacobson RTO estimation, Keshav et al.
[124] employed sender-based retransmission timeouts equal to twice the SRTT (i.e., the
RFC 793 estimator), and Gupta et al. [96] used a NACK-based retransmission scheme, in
which receiver timeouts and detection of lost packets were based on inter-packet arrival
delay jitter.

The situation with RTO estimation in real-time streaming applications is some-
what different – the majority of real-time protocols either use TCP’s RTO or rely on
novel RTO estimation methods whose performance in the real Internet is unknown. Pa-
padopoulos et al. [199] proposed a real-time retransmission scheme in which the receiver
used the value of the SRTT in (1) to decide which packets were eligible for the first re-
transmission and employed special packet headers to support subsequent retransmissions.
The benefit of avoiding timeouts was offset by the inability of the proposed scheme to

23 Another method of reducing the number of duplicate packets in TCP is to use a minimum of 1 second in
(8), as suggested in a recent IETF document [212].
24 Note that not all redundant retransmissions were due to an insufficient RTO.

73

overcome NACK loss. Rhee [241] employed a retransmission scheme in which the
sender used three frame durations (instead of an estimate of the RTT) to decide on sub-
sequent retransmissions of the same packet. A similar sender-based retransmission
scheme was proposed by Gong et al. [91], with the exception that the sender used an un-
disclosed estimate of the RTT to decide when the same packet was eligible for a repeated
retransmission.

4.3 Methodology
4.3.1 Experiment

Our evaluation study of RTO estimators is based on experimental data collected
in a large-scale real-time streaming experiment over the Internet during November 1999
– May 2000. Aiming to create a setup the reflects the current use of real-time streaming
in the Internet by the majority of home users [232], we implemented an MPEG-4 real-
time streaming client-server architecture with NACK-based retransmission and used it to
sample the RTT process along diverse paths in the dialup Internet.

To achieve an extensive coverage of dialup points in the U.S., we selected three
major national dialup ISPs (which we call ISPa, ISPb, and ISPc), each with at least five
hundred V.90 (i.e., 56 kb/s) dialup numbers in the U.S. and several million active sub-
scribers. We further designed an experiment in which hypothetical Internet users of all 50
states dialed a local access number to reach the Internet and streamed video sequences
from our backbone server. Although the clients were physically located in our lab in the
state of New York, they dialed long-distance phone numbers (see Figure 23) and con-
nected to the Internet through a subset of the ISPs’ 1813 different V.90 access points lo-
cated in 1188 U.S. cities. A detailed description of the experiment can be found in [156].

National
dial-up ISP

UUNET
(MCI)

Internet

server

T1 link

client

Philips
Research,

USA

modem link

Figure 23. The setup of the modem experiment.

74

We used two 10-minute QCIF (176x144) MPEG-4 sequences coded at video bi-
trates of 14 and 25 kb/s. The corresponding IP bitrates (i.e., including IP, UDP, and our
streaming headers) were 16.0 and 27.4 kb/s, respectively.

During the experiment, the clients performed over 34 thousand long-distance
phone calls and received 85 million packets (27.1 GBytes of video data) from the server.
The majority of end-to-end paths between the server and the clients contained between
10 and 13 hops (with 6 minimum and 22 maximum). Moreover, server packets in our ex-
periment traversed 5,266 distinct Internet routers, passing through 1003 dialup access
points in 653 major U.S. cities (see Figure 24) [156].

22

6
6

6 4

19

3

7
16

5

5 4

3

4

5
12

16

8
24

14

13

7

13
7 11 13

21

12

20

238
13

9

2229
22

25
24

8

3

5

4

25

27

14

24

Legend
(total 653)

20 to 29 (14)
14 to 20 (6)

9 to 14 (10)
6 to 9 (9)
1 to 6 (12)

Figure 24. The number of cities per state that participated in the streaming experiment.

4.3.2 RTT Measurement

In order to maintain an RTO estimator, the receiver in a real-time session must
periodically measure the round-trip delay. In our experiment, the client obtained RTT
measurements by utilizing the following two methods. The first method used packet loss
to measure the round-trip delay – each successfully recovered packet provided a sample
of the RTT (i.e., the RTT was the duration between sending a NACK and receiving the
corresponding retransmission). In order to avoid the ambiguity of which retransmission
of the same packet actually returned to the client, the header of each NACK request and
each retransmitted packet contained an extra field specifying the retransmission attempt
for that particular packet. Thus, the client was able to pair retransmitted packets with the
exact times when the corresponding NACKs were sent to the server (i.e., Karn’s [120]
retransmission ambiguity problem was avoided).

The second method of measuring the RTT was used by the client to obtain addi-
tional samples of the round-trip delay in cases when network packet loss was too low.

75

The method involved periodically sending simulated retransmission requests to the server
if packet loss was below a certain threshold. In response to these simulated NACKs, the
server included the usual overhead25 of fetching the needed packets from the storage and
sending them to the client. Note that even though we call these retransmissions “simu-
lated,” the round-trip delays they generated were 100% real and the use of these RTTs in
updating the RTO estimator was fully justified. During the experiment, the client acti-
vated simulated NACKs, spaced 30 seconds apart, if packet loss was below 1%.

Note that all NACKs were sent using UDP, which made them susceptible to
packet loss as well. Further discussion of the sampled RTTs, heavy-tailed distributions of
the RTT, and various “sanity checks” can be found in [156].

4.4 Performance
4.4.1 Retransmission Model

In real-time streaming, RTO estimation is necessary when the client supports
multiple retransmission attempts per lost packet. After studying our traces, we found that
95.7% of all lost packets, which were recovered before their deadline, required a single
retransmission attempt, 3.8% two attempts, 0.4% three attempts, and 0.1% four attempts.
These results are important for two reasons.

First, 4.3% of all lost packets in our experiment could not be recovered with a
single retransmission attempt. Even though it does not seem like a large number, our ex-
periments with MPEG-4 indicate that there is no “acceptable” number of underflow
events that a user of a real-time video application can feel completely comfortable with,
and therefore, we believe that each lost packet must be recovered with as much reason-
able persistence as possible.

Furthermore, since the average packet loss during the experiment was only 0.5%
[156], the majority of retransmitted packets were able to successfully arrive to the client.
However, in environments with a much lower end-to-end delay and/or higher packet
loss26, the percentage of packets recovered with a single retransmission attempt will be
much lower than 95.7%. Besides the obvious higher probability of losing a retransmis-
sion or a NACK (due to higher packet loss), the RTT in such environments is likely to be
much lower than the startup delay, which naturally allows more retransmission attempts
per lost packet before the packet’s deadline. Therefore, the existence of paths with lower
delays and higher packet loss provides a strong justification for using more than one per-
packet retransmission attempt in future streaming applications.

Second, our trace data show that if a lost packet in our experiment was suc-
cessfully recovered before its deadline, the recovery was performed in no more than four

25 Server logs showed that the overhead was below 10 ms for all retransmitted packets.
26 For example, in certain DSL experiments with higher average packet loss, only 70% of the lost packets
were recovered using one retransmission attempt.

76

attempts. The latter observation is used in our retransmission model (described later in
this section) to limit the number of per-packet retransmission attempts (which we call
Rmax) to four. Note that this limit applies only to the collected traces and is not an inherent
restriction of our model.

Ideally, an RTO estimator should be able to predict the exact value of the next
round-trip delay. However, in reality, it is quite unlikely that any RTO estimator would
be able to do that. Hence, there will be times when the estimator will predict smaller, as
well as larger values than the next RTT. To quantify the deviation of the RTO estimate
from the real value of the RTT, we utilize the following methodology.

Imagine that we sequentially number all successfully recovered packets in the
trace (excluding simulated retransmissions) and let rttk be the value of the round-trip de-
lay produced by the k-th successfully recovered packet at time tk (see Figure 25). Note
that we distinguish rttk from RTTi, where the latter notation includes RTT samples gener-
ated by simulated retransmissions, and former one does not.

time

NACK for
packet k is

sent

NACK for
packet k+1 is

sent

Packet k is
recovered

Packet k+1 is
recovered

RTO RTO

treq(k) treq(k+1) tk tk+1

rttk
rttk+1

RTO = RTO(treq(k))

…

Figure 25. Operation of an RTO estimator given our trace data.

In Figure 25, the effective RTO for recovered packet k is computed at the time of
the retransmission request, i.e., at time treq(k) = tk – rttk. Therefore, assuming that RTO(t)
is the value of the retransmission timeout at time t and assuming that the client uses the
latest value of the RTO for each subsequent retransmission of a particular lost packet, it
makes sense to examine how well the value of the RTO at the time of the request,
RTO(treq(k)), predicts the real value of the round-trip delay rttk. Hence, the accuracy of an
RTO estimator in predicting the RTT of lost packets based on our trace data can be estab-

77

lished by computing the timeout waiting factor wk for each successfully recovered packet
k in the trace:

k

kk
k rtt

rtttRTOw)(−
= . (9)

Note that although our model does not use RTT samples measured by simulated
retransmissions in computing wk’s (because they do not represent an actual loss), it uses
them in updating the RTO estimator.

Since the exact effect of overestimation and underestimation of the RTT depends
on whether the first retransmission of a particular packet was lost or not (and in some
cases on whether subsequent retransmissions were lost or not), we simplify the problem
and study the performance of RTO estimators assuming the worst case: values of wk less
than 1 always indicate that the estimator would have tried (if not limited by Rmax) to pro-
duce rttk / RTO(tk – rttk) = 1/wk duplicate packets given our trace data (i.e., assuming
that all retransmissions arrived to the client), and values of wk greater than 1 always indi-
cate that the estimator would have waited longer than necessary before detecting that a
subsequent retransmission was needed (i.e., assuming that the first retransmission initi-
ated at time treq(k) was lost). In Figure 25, given our assumptions, the RTO estimator
generates four (i.e., 1/wk) duplicate packets while recovering packet k.

The negative effects of duplicate packets (i.e., wasted bandwidth and aggravation
of congestion) are understood fairly well. On the other hand, the exact effect of unneces-
sary timeout waiting in real-time applications depends on a particular video stream (i.e.,
the decoding delay of each frame), video coding scheme (i.e., the type of motion com-
pensation, scalability, and transform used), individual lost packets (i.e., which frames
they belong to), and the video startup delay.

Nevertheless, we can make a generic observation that RTO estimators with higher
timeout overwaiting factors wk suffer a lower probability of recovering a lost packet and
consequently incur more underflow events. To keep our results universal and applicable
to any video stream, we chose not to convert wk’s into the probability of an underflow
event (or any other performance metric related to the video quality), and instead, study
the tradeoff between a generic average timeout overwaiting factor w and the percentage
of duplicate packets d:

 ∑
≥+

=
1

1

kw
kw

N
w , (10)

 ∑
<

















=

1
,1min1

kw
max

k

R
wN

d , (11)

78

where N+ is the number of times the RTO overestimated the next RTT (i.e., the
number of times wk was greater than or equal to 1) and N is the total number of lost pack-
ets. Parameter w is always above 1 and represents the average factor by which the RTO
overestimates the RTT. Parameter d is the percentage of duplicate packets (relative to the
number of lost packets) generated by the RTO estimator assuming that all requested re-
transmissions successfully arrived to the client.

In addition, we should note that the use of exponential backoff 27 instead of Rmax
provides similar, but numerically different results. However, in order to properly study
the tradeoff between exponential backoff and Rmax, our model must take into account re-
transmission attempts beyond the first one and study the probability of an underflow
event in that context (i.e., the model must include a video coding scheme, video se-
quence, particular lost packets, and an actual startup delay). We consider such analysis to
be beyond the scope of this thesis.

Finally, we should point out that all RTO estimators under consideration in this
chapter depend on a vector of tuning parameters a = (a1, …, an). For example, the class
of TCP-like RTO estimators in (8) can be viewed as a function of four tuning parameters
α, β, k, and n. Therefore, the goal of the minimization problem that we define in the next
section is to select such vector a that optimizes the performance of a particular RTO es-
timator RTO(a; t). By the word performance throughout this chapter, we mean tuple
(d,w) defined in (10) and (11).

4.4.2 Optimality and Performance

As we mentioned before, the problem of estimating the RTT is different from
simply minimizing the deviation of the predicted value RTO(a; tk – rttk) from the ob-
served value rttk. If that were the case, we would have to solve a well-defined least-
squares minimization problem (i.e., the maximum likelihood estimator):

 ()∑ −−
k

kkkaa
rttrtttRTO

n

2

)...,,(
);(min

1

a . (12)

The main problem with the maximum likelihood estimator (MLE) lies in the fact
that the MLE cannot distinguish between over and underestimation of the RTT, which
allows the MLE to assign equal cost to estimators that produce a substantially different
number of duplicate packets.

Instead, we introduce two performance functions H(a) and G(a) and use them to
judge the accuracy of RTO estimators in the following way. We consider tuning parame-
ter aopt of an RTO estimator to be “optimal” within tuning domain S of the estimator
(aopt∈S), if aopt minimizes the corresponding performance function (i.e., either H or G)

27 In which case, (11) should read ∑
< 



















+=

1
2 11log1

kw kwN
d .

79

within domain S. Later in this section, we will show that given the classes of RTO esti-
mators studied in this chapter and given our experimental data, the two performance
measures (i.e., functions) produce equivalent results. Note that “optimality” is meaning-
ful only within a given class of estimators, its tuning domain S, and the trace data used in
the simulation.

In the first formulation, our goal is to minimize an RTO performance vector-
function H(a) = (d(a),w(a)):

 ())(),(min)(min aaaH
aa

wd
SS ∈∈

= . (13)

For the minimization problem in (13) to make sense, we must also define vector
comparison operators greater than and less than. The following are a natural choice:

 () ())()()()(),(),(212121212211 wwddwwddwdwd <∧≤∨≤∧<⇔< , (14)
 () ())()()()(),(),(212121212211 wwddwwddwdwd >∧≥∨≥∧>⇔> , (15)

and otherwise we consider tuples (d1,w1) and (d2,w2) to be equivalent. Figure 26
illustrates the above operators for a given RTO estimator and provides a graphical map-
ping between the performance of an RTO estimator and points on a 2-D plane. The
shaded convex area in Figure 26 is the range of a hypothetical RTO estimator, where the
range is produced by varying tuning parameter a within the estimator’s tuning domain S
(i.e., the convex area consists of points H(a), ∀a∈S). Given a particular point D = (d,w)
in the range, points to the left and down from D (e.g., D1) clearly represent a better esti-
mator; points to the right and up from D (i.e., D3) represent a worse estimator; and points
in the other two quadrants may or may not be better (i.e., D2 and D4).

D
D1

D2

D4

D3

d

w

m1d + w = C1

m2d + w = C3 D5

m1d + w = C2

Figure 26. Comparison between RTO performance vector points (d,w).

80

In order to help us understand which performance points in Figure 26 are optimal,
we define the optimal RTO curve to be such points in the (d,w) space, produced by the
RTO estimator, that are less than or equal to any other point produced by the RTO esti-
mator, i.e., all points (dopt,wopt) = H(aopt), aopt∈S, such that ∀a∈S: H(aopt) ≤ H(a). In
Figure 26, the optimal RTO curve is shown in bold along the left bottom side of the
shaded area. Hence, finding the set of tuning parameters a that map to the optimal RTO
curve is equivalent to solving the minimization problem in (13).

In the second formulation, we can state the problem of finding a better RTO esti-
mator as that of minimizing a weighted sum of the percentage of duplicate packets d and
the average overwaiting factor w (similar methods are frequently used in rate-distortion
theory). The problem in the new formulation is easier to solve since it involves the mini-
mization of a scalar function instead of a vector function. In addition, our reformulation
allows us to decide on the exact relationship between equivalent points (i.e., in cases
when neither (14) nor (15) holds) by assigning proper weight to one of the parameters in
the (d,w) tuple.

Hence, we define a weighted RTO performance function G(a, M) as following:

 ∞<≤+⋅= MwdMMG 0),()(),(aaa , (16)

where M is a weight, which assigns desired importance to duplicate packets d
(large M) or overwaiting factor w (small M). As we will see below, by running M through
a range of values and optimizing G(a, M) for each weight M, we can build the optimal
RTO curve; however, the actual values of M used to build the curve are not important.

Note that using performance function G we can unambiguously establish a rela-
tionship between equivalent points in the (d,w) space, given a certain weight M (i.e.,
points a with smaller G(a, M) are better). Specifically, for each weight M and for any
constant C > 0, there exists a performance equivalence line Md + w = C, along which all
points (d,w) are equal given the performance function in (16); points below the line are
better (i.e., they belong to lines with smaller C); and points above the line are worse. In
Figure 26, two parallel lines are drawn for M = m1 using two different values of the con-
stant (C2 < C1). Given weight m1, point D2 is now equal (not just equivalent) to D, point
D1 is still better, point D3 is still worse, while point D4 is now also worse.

In addition, not only is point D1 better than D given performance function
G(a, M) and weight m1, but D1 is also the “optimal” point of the RTO estimator in Figure
26 for weight m1, i.e., point D1 minimizes function (16) for weight m1 within tuning do-
main S. In other words, to graphically minimize function G(a, M) for any weight M, one
needs to slide the performance equivalence line Md + w as far left and down as possible,
while maintaining the contact with the range of the RTO estimator.

Notice how point D1 found by minimizing function G(a, M) lies on the optimal
RTO curve earlier defined using the performance measure in (13). We can further gener-
alize this observation by saying that if the optimal RTO curve is given by a convex con-
tinuous function similar to the one in Figure 26, all points that optimize the weighted per-
formance function G(a, M) will lie on the optimal RTO curve (and vice versa).

81

Consequently, using intuition, we can attempt to build the entire optimal RTO
curve out of points Dopt(M) = (dopt(M), wopt(M)), where dopt(M) and wopt(M) are the result
of minimizing G(a, M) for a particular weight M. For example, from Figure 26, we can
conclude that optimal point Dopt(m1) is given by D1 and optimal point Dopt(m2) is given by
D5. Hence, by varying M in Dopt(M) between zero (flat performance equivalence line) and
infinity (vertical performance equivalence line) we can produce (ideally) any point along
the optimal RTO curve.

Note that we view the above retransmission model and both performance meas-
ures as an important contribution of this work. These techniques can be used to study the
performance of RTO estimators in other datasets and even in ACK-based protocols (with
properly taking into account exponential timer backoff as shown in section 4.4.1). The
rest of the chapter describes how our model and performance functions can be applied to
the traces of our wide-scale Internet experiment [156] and discusses the important lessons
learned.

Now we are ready to plot the values of vector function H(a) for different values
of the tuning parameter a = (a1, …, an) in different RTO estimators, as well as identify
the optimal points and understand which values of parameter a give us the best perform-
ance. Throughout the rest of the chapter, in order to conserve space, we show the results
derived from streaming traces through ISPa (129,656 RTT samples). Streaming data col-
lected through the other two ISPs produce similar results.

4.5 TCP-like Estimators
4.5.1 Performance

We start our analysis of RTO estimators with a generalized TCP-like RTO esti-
mator given in (8). We call this estimator RTO4, because its tuning parameter a consists
of four variables: a = (α, β, k, n). Recall that aTCP = (0.125, 0.25, 4, 1) corresponds to Ja-
cobson’s RTO [110] and a793 = (0.125, 0, 0, 2) corresponds to the RFC 793 RTO [221].

In order to properly understand which parameters in (8) contribute to the im-
provements in the performance of the TCP-like estimator, we define two reduced RTO
estimators depending on which tuning parameters (α, β, k, n) are allowed to vary. In the
first reduced estimator, which we call RTO2, we use only (α,β) to tune its performance,
i.e., a = (α, β, 4, 1). In the second reduced estimator, which we call RTO3, we addition-
ally allow k to vary, i.e., a = (α, β, k, 1).

Figure 27 shows the optimal RTO4 curve and the range of values H(a) produced
by both reduced estimators. The ranges of RTO2 (900 points) and RTO3 (29,000 points)
were obtained by conducting a uniform exhaustive search of the corresponding tuning
domain S, and the optimal RTO4 curve was obtained by extracting the minimum values of
H(a) after a similar exhaustive search through more than 1 million points. In addition,
Figure 27 shows the performance of Jacobson’s RTO estimator, H(aTCP) = (12.63%,

82

4.12), by a square and the performance of the RFC 793 RTO estimator, H(a793) =
(15.34%, 2.84), by a diamond. Clearly, Jacobson’s and the RFC 793 RTO estimators are
equivalent, since neither one is located below and to the left of the other.

0

5

10

15

20

25

0 5 10 15 20 25
duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO3 RTO2 RTO4-opt TCP 793

Figure 27. Performance of TCP-like estimators.

The performance of RTO estimators in Figure 27 certainly gets better with the in-
crease in the number of free tuning variables. For a given average overwaiting factor
w = 4.12, RTO2 and RTO3 both achieve optimality in the same point and offer only a
slight improvement in the number of duplicate packets over TCP RTO – 11.15% com-
pared to 12.63%. RTO4, however, offers a more substantial improvement, generating only
d = 7.84% duplicate packets.

Furthermore, Figure 27 shows that the optimal RTO4 curve (built by the exhaus-
tive search) is convex and fairly continuous until approximately 20% duplicate packets.
Consequently, we can build another optimal RTO4 curve using scalar weighted perform-
ance function G(a) and compare the results with those in Figure 27. A scalar function
such as G(a) allows us to use various numerical multidimensional minimization methods,
which usually do not work with vector functions. In addition, we find that numerical op-
timization methods produce points along the optimal RTO curve with more accuracy than
the exhaustive search (given a reasonable amount of time) and with fewer computations
of functions d(a) and w(a) (i.e., faster).

To verify that weighted performance function G(a) does in fact produce the same
optimal RTO4 curve, we focused on the following minimization problem for a range of
values of weight M:

 ())()(min),(min aaa
aa

wdMMG
SS

+⋅=
∈∈

 (17)

83

The fact that function G(a, M) has unknown (and non-existent) partial derivatives
∂G(a, M)/∂ak suggests that we are limited to numerical optimization methods that do not
use derivatives. After applying the Downhill Simplex Method in Multidimensions (due to
Nelder and Mead [188]) and quadratically convergent Powell’s method [36], we found
that the former method performed significantly better and arrived at (local) minima in
fewer iterations. To improve the found minima, we discovered that restarting the Simplex
method in random locations in the N-dimensional space ten times per weight M produced
very good results.

Figure 28 shows the points built by the Downhill Simplex method for the RTO4
estimator (each point corresponds to a different weight M) and the corresponding optimal
RTO4 curve previously derived from the exhaustive search. As the figure shows, points
built by Downhill Simplex are no worse (and often slightly better) than those found in the
exhaustive search.

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10
duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO4- Exhaustive Search RTO4 - Simplex

Figure 28. Points built by Downhill Simplex and the exhaustive search in the optimal
RTO4 curve.

Interestingly, the optimal curves in Figure 28 resemble power functions in the
form of:

 wopt = C(dopt)–p, p > 0. (18)

To investigate this observation further, Figure 29 replots the points of the Down-
hill Simplex curve from Figure 28 on a log-log scale with a straight line fitted to the
points. A straight line provides an excellent fit (with correlation 0.99) and suggests that
the optimal RTO curve could be modeled as a power function (18) with C = 1.022 and p
= 0.55.

84

1

10

100

0.1 1 10
duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

Figure 29. Log-log plot of the optimal (Simplex) RTO4 curve.

Assuming that the relationship between w and d in the optimal RTO4 curve is a
power function (18), we can now analytically compute optimal points (dopt,wopt) that
minimize function G(a) for a given weight M. Rewriting (16) using the function from
(18), taking the first derivative, and equating it to zero we get:

 () 0)(1 =−=+
∂

∂
=

∂
∂ −−− p

opt
p

optopt
optopt

CpdMCdMd
dd

G a . (19)

Solving (19) for dopt and using (18) one more time, we can express the optimal
values of both the number of duplicate packets dopt and the average overwaiting factor
wopt as a function of weight M:

1

1
+







=

p

opt M
Cpd and

1
1
+







=

p

opt M
Cp

p
Mw . (20)

4.5.2 Tuning Parameters

In this section, we provide a reverse mapping from optimal performance points
H(a) in Figure 28 to points a in tuning domain S (i.e., describe how to construct optimal
RTO4 estimators). While analyzing RTO2, we noticed that for each given β, larger values
of α produced fewer duplicate packets, as well as that for each fixed value of α, smaller
values of β similarly produced fewer duplicate packets. To further study this phenome-
non, we examined the correlation between the RTO2 estimates and the corresponding fu-

85

ture round-trip delays rttk for different values of (α,β). Interestingly, the highest correla-
tion was reached in point (1.0, 0.044), which suggests that an RTO estimator with (α,β)
fixed at (1,0) should provide estimates with a reasonably high correlation with the future
RTT, as well as that it could be possible to achieve the values of the optimal RTO4 curve
by just varying parameters n and k in RTO4.

To investigate this hypothesis, we constructed another reduced estimator called
RTO4(1,0), which is produced by RTO4 at input points (1, 0, k, n). The results of an exhaus-
tive search of the reduced tuning domain (k, n) for RTO4(1,0) are plotted in Figure 30
(lightly shaded area). As the figure shows, the optimal RTO4 curve (shown as squares in
Figure 30) touches the range of RTO4(1,0), which means that the reduced estimator can
achieve the points along the optimal RTO4 curve while keeping α and β constant. This
fact implies that it is not necessary to maintain a smoothed RTT average to achieve opti-
mality within our datasets, because α = 1.0 means that the SRTT always equals the latest
RTT sample.

1

10

100

0.1 1 10
duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO4(1,0) RTO4(1,0,0) RTO4 simplex

Figure 30. RTO4-Simplex and two reduced RTO4 estimators on a log-log scale.

The next logical step is to question the need for SVAR in RTO4 since SVAR turns
out to be a constant when β equals zero. In the same Figure 30, we plotted an additional
optimal curve for estimator RTO4(1,0,0), which represents RTO4 at input points (1, 0, 0, n).
As the figure shows, all values of the RTO4(1,0,0) estimator lie next to the optimal curve as
opposed to many sub-optimal points produced by RTO4(1,0). At the end of this section, we
discuss the explanation of why smoothing of RTT samples does not increase the accuracy
of RTO4, but first show how to construct an RTO4(1,0,0) estimator with a given perform-
ance.

A straight line fitted to the RTO4(1,0,0) curve in Figure 30 produces a power func-
tion (18) with C = 1.07 and p = 0.546. Further investigation discovered that there is a

86

strong linear dependency between the optimal value of nopt in RTO4(1,0,0) and the optimal
value of the average overwaiting factor wopt:

 nopt = mwopt + b, (21)

where m = 0.86 and b = –0.13. Since we already know the dependency between
wopt and dopt in (18), we can derive the relationship between nopt and dopt in RTO4(1,0,0):

 nopt = mC(dopt)–p + b. (22)

Consequently, (22) can be used to build optimal RTO4(1,0,0) estimators given any
desired value of duplicate packets dopt. For example, if an application specifies that the
maximum number of duplicate packets it is willing to tolerate is dopt = 2%, using (18), the
optimal overwaiting factor wopt is 9.12 (the corresponding weight M is 248) and using
(22), the optimal RTO estimator is given by RTO4(1,0,0) with nopt = 7.31.

4.5.3 Discussion

This is the point when we must address a major conceptual difference between
ACK and NACK-based retransmission schemes, as well as point out several properties of
our experiment. The difference between ACK and NACK-based protocols lies in the fact
that NACK-based applications obtain RTT samples only upon packet loss, while ACK-
based applications consistently obtain RTT samples on a per-packet basis. Consequently,
the distance between RTT samples in a NACK-based application is often large and fluc-
tuates widely (i.e., between tens of milliseconds and tens of seconds). Given a low aver-
age packet loss of 0.5% during our Internet experiment, the average distance between
consecutive RTT samples in our datasets was 15.7 seconds.

Hence, we observed that NACK-based protocols in the presence of low packet
loss greatly undersample the RTT process, and further smoothing of already rare RTT
samples with EWMA formulas produces a very sluggish and slow-responding moving
average. Such moving average in the form of (1) and (7) can rarely keep up with the ac-
tual RTT and turns out to be a poor predictor of the future values of the round-trip delay.
This observation represents the first major conclusion of our study – NACK-based proto-
cols in our experiment combined with low-frequency RTT sampling (i.e., low packet loss)
required a different RTO estimation method than the classical Jacobson’s RTO; specifi-
cally, smoothed averaging of RTT samples proved to be hurtful, and the latest RTT sam-
ple turned out to be the best predictor of the future RTTs.

87

4.6 Jitter-Based Estimators
4.6.1 Structure and Performance

The second class of RTO estimators, which we call RTOJ, is derived from
RTO4(1,0,0) by adding to it a smoothed variance of the inter-packet arrival delay (quanti-
fied later in this section). As we will show below, RTOJ reduces the number of duplicate
packets in our trace data compared to RTO4 by up to 60%.

The receiver in a real-time protocol usually has access to a large number of delay
jitter samples between the times when it measures the RTT. It would only be logical to
utilize tens or hundreds of delay jitter samples between retransmissions to fine-tune RTO
estimation. This fine-tuning is receiver-oriented and is not available to TCP senders
(which they do not need since TCP obtains a substantial amount of RTT samples through
its ACK-based operation). In fact, TCP’s ability to derive an RTT sample from (almost)
each ACK gave it an advantage that may now be available to NACK-based protocols in
the form of delay jitter.

Before we describe our computation of delay jitter, we must introduce the notion
of a packet burst. In practice, many real-time streaming servers are implemented to
transmit their data in bursts of packets [173], [225], [226] instead of sending one packet
every so many milliseconds. Although the latter is considered to be an ideal way of send-
ing video traffic by many researchers (e.g., [86]), in practice, there are limitations that do
not allow us to follow this ideal model [156].

In our server, we implemented bursty streaming with the burst duration Db (i.e.,
the distance between the first packets in successive bursts) varying between 340 and 500
ms depending on the streaming bitrate (for comparison, RealAudio servers use Db =
1,800 ms [173]). Each packet in our real-time application carried a burst identifier, which
allowed the receiver to distinguish between packets from different bursts. After analyzing
the traces, we found that inter-burst delay jitter had more correlation with the future RTT
than inter-packet delay jitter (we speculate that one of the reasons for this was that more
cross traffic was able to queue between the bursts than between individual packets).

To be more specific, suppose for each burst j, the last packet of the burst arrived
to the client at time tlast(j), and the first packet of the burst arrived at time tfirst(j). Conse-
quently, the inter-burst delay for burst j is defined as:

 ∆j = tfirst(j) – tlast(k), j ≥ 1 (23)

where burst k is the last burst received before burst j (unless there is packet loss,
k = j – 1). For each burst, using EWMA formulas similar to those in TCP, we compute
smoothed inter-burst delay S∆j and smoothed inter-burst delay variance SVAR∆j:





≥∆⋅α+∆⋅α−
=∆

=∆
− 2,)1(

1,

111

1

jS
j

S
jj

j (24)

88

and





≥∆⋅β+∆⋅β−
=∆

=∆
− 2,)1(

1,2/

111

1

jVARSVAR
j

SVAR
jj

j , (25)

where α1 and β1 are exponential weights, and VAR∆j is the absolute deviation of
∆j from its smoothed version S∆j–1. In our experience, S∆j is usually proportional to burst
duration Db and thus, cannot be used the same way in real-time applications with differ-
ent burst durations. On the other hand, smoothed variance SVAR∆j is fairly independent
of the burst duration and reflects the variation in the amount of cross traffic in router
queues along the path from the server to the client.

Given our definition of delay variation in (25), suppose that ti is the time when
our trace recorded the i-th RTT sample (including simulated retransmissions), then the
effective jitter-based RTO at time t is:

 RTOJ (t) = n⋅RTTi + m⋅SVAR∆j, (26)

where i = max i: ti ≤ t and j = max j: tfirst(j) ≤ t.
Figure 31 compares the performance of the RTOJ estimator with that of RTO4

(both optimal curves were built using the Downhill Simplex method). Given a particular
value of the average overwaiting factor w, RTOJ offers a 45-60% improvement over
RTO4 in terms of duplicate packets. Recall that for an average overwaiting factor w =
4.12, Jacobson’s RTO estimator produced 12.63% duplicate packets and RTO4 achieved
7.84%. At the same time, RTOJ is now able to improve this value to 3.25%.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10
duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO4-simplex RTOJ-simplex w = 4.12

Figure 31. The jitter-based RTO estimator compared with the RTO4 estimator.

89

4.6.2 Tuning Parameters

RTOJ contains four tuning variables a = (α1, β1, m, n), just like the RTO4 estima-
tor. This time, however, the performance of the estimator does not strongly depend on the
first two variables. Several values in the proximity of α1 = 0.5 give optimal performance.
For β1, the optimal performance is achieved at β1 = 0.125, which is helpful if SVAR∆j is
to be computed using only integer arithmetics. Just as in the RTO4(1,0,0) estimator, (α1,β1)
can be fixed at their optimal values and the optimal RTOJ curve can be entirely built us-
ing n and m.

To further reduce the number of free variables in jitter-based estimators, we ex-
amined the relationship between nopt and mopt in the optimal RTOJ curve shown in Figure
31. Although the relationship is somewhat random, there is an obvious linear trend,
which fitted with a straight line (with correlation ρ = 0.88) establishes that function

 mopt = 4.2792⋅nopt – 2.6646 (27)

describes the optimal parameters n and m reasonably well. Consequently, we cre-
ated a reduced estimator, which we call RTOJ427, by always keeping m as a function of n
shown in (27) and compared its performance (by running n through a range of values) to
that of RTOJ in Figure 32. As the figure shows, the reduced estimator RTOJ427 reaches the
corresponding optimal RTOJ curve with high accuracy.

0

2

4

6

8

10

12

14

0 2 4 6 8 10
duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTOJ-427 RTOJ-simplex

Figure 32. Reduced jitter-based estimator compared with the optimal RTOJ estimator.

Similar power functions (18) and (22) apply to the optimal RTOJ and RTOJ427
curves. Table II summarizes the values of constants in both equations (18) and (22).

90

Part I. Power function for optimal RTO curves: wopt = C(dopt)–p.

RTO estimator C p correlation
RTO4 1.02 0.5500 0.9994
RTO4(1,0,0) 1.07 0.5456 0.9991
RTOJ 0.50 0.6158 0.9997
RTOJ427 0.53 0.6098 0.9991

Part II. Power function for optimal parameter n: nopt = C1(dopt)–p + C2.
Reduced estimator C1 C2 p
RTO4(1,0,0) 0.88 –0.13 0.5456
RTOJ427 0.20 0.31 0.6098

Table II. Summary of constants in various power laws

Using the same example from section 4.5, for dopt = 2%, we find that wopt is 5.75
in RTOJ427 (compared to 9.12 in RTO4(1,0,0)). Given parameters in the second half of Table
II, the value of nopt in RTOJ427 is 2.47 (compared to 7.31 in RTO4(1,0,0)), and the value of
mopt using (27) is 7.91. As we can see, the superior performance of the RTOJ427 estimator
over RTO4 and RTO4(1,0,0) is achieved by placing lower weight on RTT samples and de-
riving more information about the network from the more frequent delay jitter samples.

Hence, we can summarize our second major conclusion as following – during the
experiment, a NACK-based RTO estimator running over paths with low-frequency RTT
sampling (over 10 seconds between samples) could be significantly improved by adding
smoothed delay jitter to the scaled value of the latest RTT.

4.7 High-frequency sampling

The final question left to resolve is whether the performance of RTO4 and RTOJ is
different in environments with high-frequency RTT sampling. In NACK-based protocols,
high-frequency RTT sampling comes either from high packet loss rates or from frequent
congestion control messages exchanged between the client and the server (in the latter
case, the frequency of sampling is approximately equal to one sample per RTT [86]).

This section investigates the performance of RTO4 and RTOJ in several environ-
ments with high-frequency RTT sampling and verifies whether the conclusions reached
in previous sections hold for such Internet paths. We only show the results based on trace
data collected along a single Internet path; however, the observations made in this section
were also verified along multiple other paths with relatively high packet loss, as well as
in a congestion-controlled streaming application with once-per-RTT sampling of the
round-trip delay.

91

In this section, we apply trace-driven simulation to the datasets collected between
a symmetric DSL (SDSL) client and a video server placed at the City College of New
York (CCNY) during December 2000. This setup is shown in Figure 33. The CCNY
backbone connected to the Internet through the CUNY (City University of New York)
backbone via a series of T3 links. The client’s dedicated SDSL circuit operated at 1.04
mb/s in both directions. The end-to-end path between the client and the server contained
15 routers from five Autonomous Systems (AS). During the experiment, we used a video
stream coded at the video bitrate of 80 kb/s (86 kb/s IP bitrate). The collected dataset
contains traces of 55 million packets, or 26 GBytes of data, obtained during the period of
three weeks.

Savvis
Communications CUNY

backbone

Internet

server

client

1.04 mb/s
SDSL

CCNY
backbone

T3

T3

Figure 33. The setup of the high-speed experiment.

One interesting property of this end-to-end path is that the CUNY border router
dropped a large fraction of packets during this experiment, regardless of the time of day
or the sending rate of our flows. Thus, the average packet loss rate recorded in this trace
was substantially higher than in the modem experiment (i.e., 7.4% vs. 0.5%), and the av-
erage delay between obtaining new RTT samples was only 740 ms, which is by a factor
of 20 less than that in the wide-scale modem experiment.

Figure 34 shows the performance of the three estimators studied earlier in this
chapter in the CUNY dataset. All three optimal curves were built using Downhill Sim-
plex. As the figure shows, both RTO4 and RTOJ achieve the same optimal performance,
which means that the addition of delay jitter to already-frequent RTT samples is not as
beneficial as previously discovered. In addition, note that RTO4(1,0,0) is no longer optimal
within the dataset. Both results were expected, because the higher sampling frequency in
the CUNY dataset allows RTO4 to be a much better predictor than it was possible in the
modem datasets.

92

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7
duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO4-Simplex RTO4(1,0,0) RTO-J

Figure 34. Performance of RTO4, RTOJ and RTO4(1,0,0) in the CUNY dataset.

The final question that stands is what values of tuning variable a make RTO4 op-
timal along paths with high-frequency RTT sampling (i.e., the CUNY dataset)? Our
analysis of the data shows that variance estimator SVAR is still redundant and that RTO4
can be reduced to a simpler estimator, which this time assumes the following form: a =
(α, 0, 0, n). Downhill Simplex optimization of RTO4 shows that values of α between 0.12
and 0.13 are equally optimal and produce an estimator with performance equal to that of
RTO4. Note that Jacobson’s value of α = 0.125 falls within this range and agrees with the
results derived from the CUNY dataset.

To verify that the reduced estimator RTO4(0.125, 0, 0) performs as well as RTO4, we
plotted both optimal RTO curves in Figure 35, which shows that the reduced estimator is
almost identical to RTO4.

93

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7
duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO4-Simplex RTO4(0.125,0,0)

Figure 35. Performance of RTO4 and RTO4(0.125,0,0) in the CUNY dataset.

Note that the above observations about the optimality of RTO4(0.125, 0, 0) were also
found to hold when the CUNY server was replaced with a server located at Michigan
State University, 21 hops from the client (the experiment was conducted in January 2001
and involved the transfer of over 17 million packets). Furthermore, similar results were
obtained in various streaming tests over ISDN (over 77 million packets): in low packet-
loss scenarios, RTOJ was significantly better than RTO4, and RTO4(1,0,0) was optimal
within the class of TCP-like estimators; however, in high packet loss scenarios, RTOJ did
not offer much improvement over RTO4.

We finish this section by reaching our third major conclusion – in our experi-
ments along paths with high-frequency RTT sampling, a simple smoothed round-trip de-
lay estimator SRTT with parameter α between 0.12 and 0.13 was the optimal estimator,
and neither delay jitter nor delay variance estimator SVAR provided any added benefits.

94

PART II

Scalable Congestion Control
for Real-time Streaming

95

Chapter Five

5 Scalability of Rate-based Congestion
Control

Typically, NACK-based (i.e., rate-based) congestion control is dismissed as being
not viable due to the common notion that “open-loop” congestion control is simply “dif-
ficult.” Emerging real-time streaming applications, however, often rely on rate-based
flow control and would benefit greatly from scalable NACK-based congestion control.
This chapter sheds new light on the performance of NACK-based congestion control and
measures the amount of “difficulty” inherently present in such protocols. We specifically
focus on increase-decrease (I-D) congestion control methods for real-time, rate-based
streaming. First, we introduce and study several new performance measures that can be
used to analyze the class of general I-D congestion control methods. These measures in-
clude monotonicity of convergence to fairness and packet-loss scalability (explained later
in the chapter). Second, under the assumptions that the only feedback from the network is
packet loss, we show that AIMD is the only TCP-friendly method with monotonic con-
vergence to fairness. Furthermore, we find that AIMD possesses the best packet-loss
scalability among all TCP-friendly binomial schemes [13] and show how poorly all of the
existing methods scale as the number of flows is increased. Third, we show that if the
flows can obtain the knowledge of an additional network parameter (i.e., the bottleneck
bandwidth), the scalability of AIMD can be substantially improved. We conclude the
chapter by studying the performance of a new scheme, called Ideally-Scalable Conges-
tion Control (ISCC), both in simulation and a NACK-based MPEG-4 streaming applica-
tion over a Cisco testbed.

96

5.1 Introduction

Congestion is an inherent property of the currently best-effort Internet. Conse-
quently, transport protocols (such as TCP) commonly implement congestion control,
which refers to end-to-end algorithms executed by a protocol in order to properly adapt
the sending rate of a network flow to the available bandwidth in the path along which the
flow sends its packets. Protocols with ACK-based flow control utilize one or another ver-
sion of TCP-friendly congestion control, which includes Jacobson’s modifications to
TCP [5], [110], TCP-like congestion control (e.g., [239]), increase-decrease algorithms
(e.g., [13], [14], [49], [81], [125], [141], [186], [286]), and equation-based methods (e.g.,
[86], [196]). These algorithms are shown to work well in the environment where the
sender relies on “self-clocking,” which refers to the use of positive acknowledgements in
congestion control.

However, current real-time streaming applications in the Internet [232] typically
rely on NACK-based (i.e., rate-based) flow control28, for which congestion control either
does not exist, or assumes a very rudimentary form [232]. Furthermore, congestion con-
trol in NACK-based applications is typically labeled as being “difficult” due to the
“open-loop” operation of its flow control, and the actual extent of “difficulty” remains
neither documented nor measured.

At the same time, before emerging real-time streaming applications can gain
wide-spread acceptance, we believe that they first must implement some form of scalable
congestion control. Therefore, in this chapter, we undertake an analysis and performance
study that sheds the light on both the exact difficulties found in “open-loop” congestion
control and the extent of penalty incurred by a NACK-based protocol in an Internet-like
environment. In the course of our investigation, we found that traditional NACK-based
congestion control possessed poor scalability (i.e., their use resulted in high packet loss
when the number of simultaneous flows was large) and that the stability of existing
NACK-based schemes was much lower than that of similar ACK-based schemes. Note
that this chapter does not study a fundamental question of whether NACK-based conges-
tion control can achieve the same level of stability as its ACK-based counterparts, but
rather investigates previously-undocumented drawbacks of NACK-based congestion con-
trol and attempts to improve the performance of the existing schemes in rate-based appli-
cations.

Studying new congestion control methods in this chapter, we sometimes drift
away from TCP-friendly schemes. Hence, we must mention a few words about why find
such practice acceptable. We argue that in the future Internet, it is quite possible that
UDP traffic will not compete with TCP in the same router queues (e.g., DiffServ may be
used to separate these types of traffic at the router level). This intuition is driven by the
fact that real-time flows have substantially different delay requirements from those of

28 Note that ACK-based flow control could be used in real-time streaming, but it typically results in some
form of QoS penalty (such as longer startup delays, more frequent buffer underflow events, etc.).

97

TCP, and it may not be practical to mix the two types of traffic in the same queues. Fur-
thermore, NACK-based applications are unlikely to be fully TCP-friendly, because they
often do not follow TCP’s fast retransmit and timeout backoff algorithms and do not rely
on the “packet-conservation” principle [110] in their flow control.

The remainder of the chapter is organized as follows. Section 5.2 provides the
necessary background on increase-decrease (I-D) congestion control. In section 5.3, we
define the notion of monotonic convergence to fairness of general I-D congestion control
and derive certain desired properties of control functions that guarantee such monotonic
convergence. We next focus on binomial algorithms [13] in section 5.4 and, under simple
assumptions, derive their average link utilization and packet loss rate in the stable state.
In section 5.5, we study packet-loss scalability of binomial congestion control and show
that AIMD possesses the best scalability among all TCP-friendly schemes. In addition,
we show that to achieve optimal scalability (i.e., constant packet loss), a congestion con-
trol scheme must have the knowledge of the bottleneck bandwidth. In section 5.6, we in-
vestigate the feasibility of using real-time bottleneck bandwidth estimates as a supple-
ment to binomial congestion control and study whether the new schemes can achieve bet-
ter scalability than AIMD in a real network.

5.2 Background

Within the class of end-to-end congestion control protocols, we specifically focus
on the class of increase-decrease (I-D) methods. I-D congestion control implements a
simple reactive control system, which responds to congestion by decreasing the sending
rate and responds to the absence of congestion by increasing the sending rate. Hence, at
any stage, the decision of I-D congestion control is binary.

Furthermore, the increase and decrease functions are local [13], [49], which
means that they only use the local state of a flow in computing the next value of the send-
ing rate. In addition, I-D congestion control usually assumes a memoryless model [13],
[49], in which the amount of increase and decrease is based only on the value of the cur-
rent sending rate rather than on the history of the sending rate (e.g., several flavors of
“AIMD with history” are examined in [140], [141]). In this chapter, we explicitly assume
a local and memoryless model of I-D congestion control.

To prevent high-frequency oscillations on timescales smaller than it is needed to
receive the feedback from the network, I-D congestion control is executed on discrete
timescales of R time units long. Typically, R is a multiple of the round-trip delay (RTT)
and in many cases, simply equals the RTT.

Many chapters study congestion control in the context of window-based flow con-
trol [13], [81], [141], [286] and apply I-D formulas to the size of congestion window
cwnd. In such notation, assuming that the size of congestion window cwnd during inter-
val i for a particular flow is given by wi, I-D congestion control can be summarized as:

98





>−
=+

=+ 0),(
0),(

1 fwWw
fwWw

w
iDi

iIi
i . (28)

where f is the congestion feedback (positive values indicate congestion), and WI
and WD are the increase and decrease functions of window-based I-D congestion control,
respectively. In practice, feedback f is usually equal to the packet loss rate observed by
the flow during the last interval (i.e., interval i).

Since our work focuses on rate-based streaming applications (in which cwnd has
little meaning), we must write an equivalent formulation of increase-decrease congestion
control using the value of each flow’s sending rate ri instead of congestion window wi.
The conversion from the packet-based notation to the rate-based notation is straightfor-
ward, i.e., each unit of wi is equivalent to a rate of MTU/RTT bits/s, where the MTU
(Maximum Transmission Unit) is given in bits and the RTT is given in seconds. In other
words, ri = MTU/RTTwi.

 Therefore, assuming that ri is the sending rate of a particular flow during discrete
interval i, the I-D congestion control (28) for that flow can be re-written as:





>−
=+

=+ 0),(
0),(

1 frRr
frRr

r
iDi

iIi
i , (29)

where RI and RD are the increase and decrease functions of rate-based I-D
congestion control, respectively.

One special case of I-D congestion control is given by binomial algorithms,
where the increase and decrease functions are simple power functions [13]:







β=

α= −

l
D

k
I

wwW

wwW

)(

)(
or







σ=

λ= −

l
D

k
I

rrR

rrR

)(

)(
, (30)

where all constants α, β, λ, σ are positive. For binomial algorithms, the difference
between the two notations lies only in the constants in front of the corresponding power
functions. Hence, the conversion from the window-based to the rate-based notation is
supplied by the following formulas:

1+







α=λ

k

RTT
MTU and

l

RTT
MTU −







β=σ

1

. (31)

Throughout the rest of the chapter, we will use both versions of binomial algo-
rithms in (30), sometimes referring to constants (λ,σ) instead of constants (α,β), while
keeping in mind the conversion in (31).

A special case of binomial congestion control that is implemented in TCP is
called AIMD (Additive Increase, Multiplicative Decrease) [49], [110]. In AIMD, k

99

equals 0, i.e., WI(w) = α (α > 0), and l equals 1, i.e., WD(w) = βw (0 < β < 1). AIMD(α,β)
is TCP long-term fair 29, if it achieves the same average throughput when competing with
a TCP connection under the same end-to-end conditions. The necessary condition for
such long-term fairness is [81], [141], [286]: 30

β−

β
=α

2
3 . (32)

On the other hand, for binomial congestion control (30) to be TCP-friendly,
Bansal et al. [13] show that k + l must be equal to 1. Among such (non-AIMD) TCP-
friendly binomial congestion control, they propose two methods called IIAD (Inverse In-
crease, Additive Decrease) with k = 1, l = 0, and SQRT (Square Root) with k = l = ½.

Finally, we should mention that the analysis of increase-decrease congestion con-
trol typically assumes an ideal network with synchronized and immediate feedback [13],
[49], [125], [139], [141]. Synchronized feedback means that all flows sharing a congested
link receive notifications about packet loss at the same time. Immediate feedback means
that if the capacity of any link along an end-to-end path is exceeded during interval i,
feedback f is positive for interval i. Under these ideal conditions, Chiu and Jain [49] show
that all AIMD schemes converge to a fair state. In addition, Bansal et al. [13] show that
for binomial algorithms (30) to converge to fairness, k + l must be strictly greater than
zero.

5.3 General I-D Control

Not all increase-decrease functions RI and RD guarantee convergence to fairness.
In the context of I-D congestion control, convergence to fairness is usually defined as the
ability of any number of identical flows sharing a common bottleneck link to reach a state
in which their rates become equal and stay equal infinitely long. Even though in practice
this is a very difficult goal to achieve, under the ideal conditions of synchronized and
immediate feedback, many schemes can guarantee convergence to fairness.

One of the interesting properties of I-D congestion control that we introduce in
this chapter is the ability of a scheme to approach fairness monotonically, i.e., if the fair-
ness during interval i is given by fi, 0 ≤ fi ≤ 1, then the following conditions are necessary
for monotonic convergence:

29 Sometimes called TCP-compatible [13], [81] or TCP-friendly [286].
30 Note that some papers [13], [285], [286] use a different notation, in which WD(w) = (1–β)w and this for-
mula has a different form. Furthermore, if the rate of AIMD is dominated by timeouts, the formula assumes
yet another form [286].

100

 ii ffi ≥∀ +1: and 1lim =
∞→ ii

f . (33)

Generally, monotonic convergence is not necessary, but it is beneficial, because
non-monotonic convergence tends to temporarily drive the system into extremely unfair
states (i.e., one flow receiving much higher bandwidth), especially in the presence of ran-
dom packet losses and heterogeneous feedback delays. Later in this chapter, we will relax
the above condition of monotonic convergence, but will keep the rest of the results in this
section as they are applicable to both binomial algorithms and the ideally-scalable
schemes studied in section 5.5.

It is common [13], [141] to examine the case of two flows sharing a link, since the
extension to n flows can be easily performed by considering flows pair-wise. It is also
common to use a continuous fluid approximation model [13] and disregard the discrete
nature of packets (i.e., all packets are infinitely divisible). Furthermore, in this chapter,
we use a max-min fairness function fi instead of Chiu’s fairness index [49]. Recall that
max-min fairness of n flows with non-zero sending rates (x1,…, xn) is given by:

 









=

≠
j

i

ji x
xf min . (34)

Consider two flows X and Y sharing a bottleneck link under the above assump-
tions. Suppose that during interval i, the flows’ sending rates are given by xi and yi, re-
spectively. To help us understand the behavior of a two-flow I-D control system, we use
Figure 36 from [49]. In the figure, the axes represent the sending rate of each of the two
flows. Furthermore, line y = x is known as the fairness line and represents points (x, y) in
which fairness f equals 1. Assuming that the capacity of the bottleneck link is C, line x +
y = C is called the efficiency line and represents points in which the bottleneck link is
about to overflow. Given a particular point Pi = (xi, yi) in the figure, line y = mx connect-
ing Pi to the origin is called the equi-fairness line (i.e., points along the line have the
same fairness fi = xi/yi = 1/m). Furthermore, we define efficiency ei of point Pi as the com-
bined rate of both flows in that point, i.e., ei = xi + yi.

101

efficiency line

fairness line

equi-fairness line

xi

yi

C

Pi

sending rate of flow X

sending rate of flow Y

C

Figure 36. Two-flow I-D control system.

5.3.1 Decrease Function

To ensure monotonic convergence and proper response to congestion signals, the
following four conditions must hold during each decrease step assuming that the system
is in some point Pi just before the decrease step.

First, the efficiency in the new state must be strictly less than that in the old state,
i.e., ei+1 < ei. This condition ensures that flows backoff during congestion. Second, the
fairness must not decrease in the new state, i.e., fi+1 ≥ fi. This condition guarantees mono-
tonic convergence to fairness, and as pointed out before, although desired, it is often not
available in practice. Consequently, we will relax this condition later in the chapter.
Third, to properly maintain convergence, the system must not arbitrarily cross or oscillate
around the fairness line, i.e., it must stay on the same side of the fairness line at all times.
For the case in Figure 36, we can write: (yi > xi) ⇒ (yi+1 > xi+1). Finally, the system must
not allow rates below or equal to zero, i.e., given an arbitrary state with xi > 0 and yi > 0,
we must guarantee that yi+1 > 0 and xi+1 > 0.

The first condition is equivalent to:

 0)()(11 <−−=−+− ++ iDiDiiii yRxRyyxx , (35)

which can be satisfied with any positive function RD(x) > 0, ∀x > 0. The second
condition is equivalent to:

i

i

i

i

y
x

y
x

≥
+

+

1

1 , xi > 0, yi > 0. (36)

102

Expanding the last inequality using (1) and generalizing by dropping the indexes
(the inequality depends only on xi and yi), we get:

 0)()(≥− xyRyxR DD , for all x > 0, y > 0, x < y. (37)

Writing y = x + ∆x, for ∆x > 0:

 () 0)()()(≥∆−−∆+ xxRxRxxRx DDD , (38)

x

xR
x

xRxxR DDD)()()(
≥

∆
−∆+ , for x > 0, ∆x > 0. (39)

Restricting RD(x) to be a differentiable function for all x > 0, (39) is equivalent to:

x

xRxR D
D

)()(≥′ , for all x > 0. (40)

Bringing RD(x) to the left and taking the integral (both x and RD(x) are known to
be positive):

 ∫∫ ≥
x

dx
xR
xdR

D

D

)(
)(, for all x > 0. (41)

 1ln)(ln mxxRD +≥ , for all x > 0. (42)

 xmxRD 2)(≥ , for all x > 0. (43)

The result in (43) shows that the original condition (40) restricts RD(x) to grow no
slower than some linear function m2x.

Using similar derivations, we find that the third condition (i.e., the non-cross-over
condition) results in:

 1)(<′ xRD , for all x > 0, (44)

which means that RD(x) must grow slower than function x (i.e., the slope of RD(x)
in all points x > 0 must be less than 1). Finally, the fourth condition

 0)(>− xRx D , for all x > 0 (45)

is automatically satisfied by combining (40) and (44) above.

103

To summarize by combining (43) and (44), function RD(x) must be positive and
differentiable for all values of x > 0, and must be an asymptotically (i.e., for substantially
large x) linear function of x, with the slope strictly less than 1. For example, AIMD func-
tion RD(x) = σx clearly satisfies these conditions for 0 < σ < 1.

5.3.2 Increase Function

The analysis of increase function RI(x) is similar to the above. This time, instead
of four conditions, we have only three. First, the efficiency in the new state must increase
(i.e., ei+1 > ei), which guarantees that flows will probe for new bandwidth in the absence
of congestion. Second, the fairness must not decrease (i.e., fi+1 ≥ fi), which is the result of
the same monotonicity requirement as before. And third, the system must not cross the
fairness line (i.e., yi+1 > xi+1). Crossing the fairness line violates monotonic converge to
fairness and, as we will see later, never happens in practice (i.e., among binomial
schemes).

The first condition is satisfied with any positive function RI(x), i.e., RI(x) > 0,
∀x > 0. The second condition is the opposite of (40) due to a different sign in (1):

x

xRxR I
I

)()(≤′ , for all x > 0. (46)

Finally, the third condition is similar to (44), but assumes the following shape:

 1)(−>′ xRI , for all x > 0. (47)

Using (46), we find that RI must grow no faster than some linear function m3x and
using (47), RI cannot decay quicker than –x. For example, AIMD increase function
RI(x) = λ again satisfies all conditions of monotonic convergence for λ > 0. We will look
at other examples in the next section while studying binomial congestion control methods
[13].

5.3.3 Convergence

Note that the above conditions still do not guarantee convergence to fairness. In
other words, the conditions guarantee that if the system converges, it will do so mono-
tonically, but the fact of convergence has not been established yet. Hence, we impose a
final restriction on RD and RI – either the decrease or the increase step must strictly im-
prove fairness, i.e., one of (40), (46) must be a strict inequality. If (40) is made into a
strict inequality, we can no longer satisfy the condition in (44). Consequently, (40) must
remain in its present form, and (46) must become a strict inequality.

104

5.4 Properties of Binomial Algorithms
5.4.1 Overview

Consider binomial algorithms in (30). Clearly, both functions RI and RD are posi-
tive for x > 0 and therefore, satisfy the first condition. The second condition (i.e., mono-
tonically non-decreasing fairness) results in the following restrictions on k and l from ap-
plying (40) and the strict form of (46):





≥
−>

⇒




σ≥σ

λ<λ−
−

−+−

1
1

/
/

1

)1(

l
k

xxlx
xxkx

ll

kk

. (48)

The third (i.e., non-cross-over) condition derived from (44) and (47) restricts l
even further, but does not impose any limit on k (assuming sufficiently large x):





≤
=

⇒




<σ

<λ
−

+

11

1

l
anythingk

xl
xk

l

k

. (49)

Note that restriction on l in (49) is dictated by the fact that sending rate x of a flow
is not limited a-priori and the selection of a positive constant σ such that it is less than
expression x1–l/l, for substantially large x > 0, is feasible only when power 1–l is strictly
non-negative.31 Later in this chapter, we will show how restriction l ≤ 1 can be lifted and
what kind of advantages such schemes bring to congestion control protocols.

Consequently, assuming that the upper limit on x is not known, for a binomial al-
gorithm to possess monotonic convergence to fairness, both (48) and (49) must be satis-
fied. In practice, this means that l must be strictly 1. Knowing that for TCP-friendly bi-
nomial congestion control k + l must be one [13], we arrive at the fact that AIMD is the
only TCP-friendly binomial algorithm with monotonic convergence to fairness. Hence,
for the rest of the chapter, we will study schemes with non-monotonic convergence to
fairness, because we want to go beyond what AIMD has to offer.

In the absence of monotonic convergence, [13] shows that the necessary condition
for convergence is k + l > 0 (i.e., flows make due progress towards the fairness line not
necessarily at every step, but between every two consecutive decrease steps). Hence,
dropping the monotonicity requirement and combining (49) with the convergence rule
k + l > 0, we notice that the necessary restrictions on k and l for convergence of non-
monotonic binomial algorithms are: k > –1 and l ≤ 1.

31 Note that we implicitly assume that x is limited from below by some constant xmin. In window-based con-
gestion control, xmin is equivalent to one unit of cwnd (i.e., MTU/RTT), and in rate-based congestion
control, xmin is the minimum rate at which real-time material can be received (e.g., the rate of the base video
layer).

105

5.4.2 Efficiency

The average efficiency is an important property of a congestion control scheme,
which reflects how well the scheme utilizes the bottleneck bandwidth in the stable state.
Clearly, higher efficiency is more desirable (but not necessarily at the expense of other
properties of the scheme, such as packet loss or convergence speed). Formulas derived in
this section not only help us study the efficiency of binomial schemes, but also are a nec-
essary background for our packet-loss scalability analysis in the next section.

We define the average efficiency of a scheme as the percentage of the bottleneck
link utilized by the scheme over a long period of time once the scheme has reached its
stable state. In the stable state, each flow’s sending rate will oscillate between two points,
which we call the upper point (U) and the lower point (L) as shown in Figure 37. When a
single flow is present in the network, U equals the capacity of the bottleneck link C.
When n flows compete over a shared link of capacity C, U equals C/n for each flow (be-
cause the flows have reached fairness by this time). In both cases, L = U – σU l according
to (30). In addition, since the pattern in Figure 37 is repetitive, it is sufficient to deter-
mine the average throughput of a flow during a single oscillation (i.e., between points A
and B) rather than over a longer period of time. Note that in the window-based notation
of congestion control, the maximum capacity of the link is given by W = C⋅RTT/MTU.

U

L

time t

flow’s sending rate x(t)

A

B

∆t

Figure 37. Oscillation of the sending rate in the stable state.

Using a continuous fluid approximation and results from [13], each flow’s rate
x(t) during the increase phase (i.e., between points A and B) is given by:

1

1

)1()(
+







 +λ

=
k

R
tktx , (50)

106

where R is a fixed duration of the control interval (which is typically equal to the
value of the RTT). Following [13], the duration between points A and B in Figure 37 is:

 ()()
)1(

11 111

+λ
σ−−

=∆
+−+

k
RUUt

klk

, (51)

and the total amount of bits transmitted during the same interval is:

 ()()
)2(

11 212

+λ
σ−−

=
+−+

k
RUUX

klk

. (52)

Consequently, we derive that the flow’s average sending rate during the interval
is X/∆t and the average efficiency (i.e., percent utilization) of a binomial congestion con-
trol scheme is:

 ()()
()()11

21

11)2(
11)1(

+−

+−

σ−−+

σ−−+
=

∆
= kl

kl

Uk
Uk

tU
Xe . (53)

Note that (53) can be converted to the window-based notation by replacing σ with
β and rate U with its window equivalent. We also note that for large n, the exact model of
efficiency e in (53) becomes inapplicable when U = C/n drops below σ1/(1–l). We can no
longer use any of the above derivations due to the fact that 1–σ(C/n)l–1 becomes negative,
which is caused by the “drop-below-zero” effect (i.e., rate x(t) becomes negative) that we
tried to avoid before in (45). This condition was automatically satisfied given monotonic
convergence to fairness in (40), but in the absence of monotonicity, we must explicitly
restrict n to the following:

)1/(1)1/(1 ll
WCn −− β

=
σ

< . (54)

We next focus on simplifying the expression in (53). Equation (53) contains two
terms of the form 1–(1–z)q, which can be expanded using Taylor series to:

 





 −−

+
−

−=−− ...
6

)2)(1(
2

11)1(1 2zqqzqqzz q . (55)

Note that for l < 1, the value of z is less than 1, which means that the higher order
terms in (55) get progressively smaller. Hence, by keeping the first two terms32 in (55),
we arrive at the following approximation to the exact formula in (53):

32 A one-term approximation used in [13] typically possesses an insufficient accuracy.

107

 1

1

2
1 −

−

σ−
σ

−= l

l

Uk
Ue . (56)

To perform a self-check, we plug AIMD parameters (l = 1, k = 0) into (56) and
get the familiar (and exact) formula of the average efficiency of an AIMD scheme: e =
(2–β)/2 (recall that σ = β in AIMD).

5.4.3 Packet Loss

The amount of packet loss during the stable state is another important property of
a congestion control scheme. Consider one oscillation cycle between points A and B in
Figure 37 and the case of a single flow. The maximum amount of overshoot under non-
ideal (i.e., non-continuous) conditions will be the value of the increase function just be-
fore the flow reaches its upper boundary C in point B. Hence, the amount of the maxi-
mum overshoot for a single flow is given by λC–kR, where R is the fixed duration be-
tween control actions. Knowing how many bits X were sent by the flow during the same
interval of duration ∆t, we can write the average percentage of lost data p1 using (52) and
assuming the worst case of the maximum overshoot as:

 ()()

()(),11
)2(

)2(11
)2(

2122

2

22122

2

1

+−+

+−+

−

−

σ−−

+λ
≈

+λ+σ−−

+λ
=

λ+
λ

=

klk

klk

k

k

CC
k

kCC
k

RCX
RCp

 (57)

when λC–kR << X. In particular, for AIMD schemes, the packet loss rate in the
worst case is given by:

 () () ()β−β
α

=
σ−σ

λ
≈

λ+σ−σ
λ

=
1

2
1

2
21

2
2

2

2

2

22

2

1 WCC
p . (58)

A close look at the last equation reveals that as the number of flows increases
(i.e., C is replaced by C/n), AIMD’s packet loss rate will also increase. Furthermore, the
amount of increase is proportional to n2, where n is the number of flows. This confirms a
well-known fact that AIMD scales as n2 when it comes to packet loss [186]. Note that as
n→∞, the amount of overshoot λC–kR will become large compared to the value of X, and
the approximations above will no longer work. However, the exact formulas in (57) and
(58) will asymptotically approach the correct value of 100%.

Consider a simple explanation of why AIMD scales quadratically. In AIMD, the
increase in packet loss by a factor of n2 comes from two places – from the reduction in

108

the number of discrete increase steps N during interval ∆t by a factor of n (because the
increase distance U–L becomes n times smaller), and from the reduction of duration ∆t by
the same factor of n (due to the same reason). As a result, the number of bits sent during
the interval (which is proportional to N∆t) is reduced by a factor of n2, and the amount of
overshoot is unchanged (i.e., λR). Consequently, the total amount of lost packets relative
to the number of sent packets is increased by a factor of n2.

There are two reasons why we do not see this kind of performance degradation in
practice. First, our results in (58) are based on a continuous fluid model, which assumes
that packets are infinitely divisible. However, in practice, this approximation is true only
when the amount of increase λR is negligible compared to the difference between the up-
per and lower limits, i.e., U–L in Figure 37. Hence, when the number of discrete increase
steps N becomes equal to 1 (or approaches 1), it can no longer be reduced by a factor of
n, because it must remain an integer. Taking into account a fixed value of N = 1, the in-
crease in packet loss becomes a linear rather than a quadratic function of n.

Second, most protocols employing AIMD rely on positive ACKs in implementing
congestion control. This “self-clocking” [110], or “packet conservation,” is capable of
significantly improving the scalability aspects of AIMD, because the sender does not in-
ject more packets into the network than the network can handle at any given time. “Open-
loop” congestion control (i.e., NACK-based flow control) does not have this nice cushion
to fall back on, and NACK-based AIMD schemes suffer a higher packet loss increase
than equivalent ACK-based schemes. In the next section, we will look at the scalability
of general binomial algorithms and study how we can reduce the amount of packet loss as
the number of flows increases.

5.5 Packet-loss Scalability of Congestion Control
5.5.1 Overview

Suppose the average packet loss when n flows share a link of capacity C is given
by pn. Let packet loss increase factor sn be the ratio of pn to p1. Parameter sn specifies
how fast packet loss increases when more flows share a common link and directly relates
to the ability of the scheme to support a large number of flows (i.e., schemes with lower
sn scale better). Using (57), we derive:

()()()2122

222

/11
)2(

+−+

+

σ−−

+λ
≈ klk

k

n
nCC

nkp , (59)

and using a two-term approximation from (55):

 ()).(
)/()1(2

)1(2 12
1

112
++

−

−++

=
σ+−

σ+−
≈ kl

l

lkl

n nO
nCk
Ckns (60)

109

Hence, packet loss increase factor sn of binomial algorithms is proportional to
nl+2k+1 for small n and grows no faster than nl+2k+1 for the rest of n. For AIMD, we get the
familiar scalability formula of n2, whereas the IIAD (i.e., k = 1, l = 0) and SQRT (i.e., k =
l = ½) algorithms scale as n3 and n2.5, respectively. Furthermore, among all TCP-friendly
schemes (i.e., k + l = 1), packet loss increase sn is proportional to n3–l, which means that
TCP-friendly schemes with the largest l scale best. Since we already established that l
must be no more than 1 (the non-cross-over condition), we arrive at our first major con-
clusion – among TCP-friendly binomial schemes, AIMD scales best.

We should make several observations about the applicability of (60) in practice.
First, we assumed in (57) that the overshoot will be as large as possible, i.e., λU–kR.
However, in many cases the actual overshoot will be some random value distributed be-
tween zero and λU–kR. Second, recall our discussion of AIMD’s scalability in the previ-
ous section. When the increase distance U–L becomes small compared to the value of the
increase step, AIMD starts scaling as a linear function rather than a quadratic function.
Hence, (60) is accurate only when the increase steps are small compared to C/n. The re-
sults based on the above model can be further skewed, if λU–kR becomes large compared
to X, in which case we must use the exact formula in (57).

5.5.2 Simulation

To verify these theoretical results and show some examples, we present simula-
tion results of AIMD(1,½) and IIAD(1,½) schemes over a T1 link (i.e., C = 1,544 kb/s).
For AIMD, we set MTU/RTT at two constant values of 5,000 and 50,000 bps (the corre-
sponding schemes will be called AIMD1 and AIMD2) to show how their scalability
changes when λ becomes large compared to the upper boundary U = C/n. For IIAD we
selected MTU/RTT = 10,000 bps to allow the scheme to maintain pn << 100% (otherwise,
IIAD loses its n3 packet loss increase). We used a discrete event simulation, in which n
flows of the same type shared a common link. We used our prior assumption of immedi-
ate and synchronized feedback, as well as the assumption that the flows employed a
NACK-based protocol.

Figure 38 shows the variation of parameter sn (based on the actual, rather than the
maximum overshoot) during the simulation as a function of n for the three flows. In
AIMD1, packet loss increase ratio s100 reaches a factor of 6,755, which is equivalent to
scalability of n1.91 (just below the predicted n2). On the other hand, AIMD2 maintains its
quadratic packet-loss increase only until n = 7, at which time it switches to a linear in-
crease. The AIMD2 scheme reaches an increase factor of s100 = 352, which is equivalent
to an overall scalability of n1.27. It may seem at first that the larger increase step λ of the
AIMD2 scheme is better; however, due to larger λ, AIMD2 is much more aggressive in
searching for bandwidth and suffers a lot more packet loss than AIMD1 for all values of n.
Thus, for example, for n = 100, AIMD2 loses 55% of all sent packets, while AIMD1 loses
only 10%.

110

1

10

100

1000

10000

100000

1000000

0 10 20 30 40 50 60 70 80 90 100
the number of flows n

lo
ss

 in
cr

ea
se

 s
n

AIMD1 AIMD2 IIAD

Figure 38. Parameter sn (i.e., packet-loss scalability) of AIMD and IIAD in simulation
based on actual packet loss.

Finally, IIAD’s scalability performance is much worse than that of either of
AIMD schemes as can be seen in the figure. The packet loss with 100 flows (i.e., p100) is
219,889 times larger than the packet loss with one flow (i.e., p1). Hence, under the given
conditions, the overall scalability of IIAD is approximately n2.67 (again slightly less than
the predicted n3).

As pointed out before and as shown in Figure 38, the actual increase in packet
loss under non-ideal (i.e., discrete) conditions may be lower than that predicted by (60).
Nevertheless, the theoretical result in (60) can be used as a good performance measure in
comparing the scalability of different binomial schemes (e.g., as predicted, AIMD scales
much better than IIAD).

5.5.3 Feasibility of Ideal Scalability

We next examine the “ideal scalability” of binomial schemes and derive its neces-
sary conditions. We define a scheme to have ideal scalability, if sn is constant for all n.
This definition is driven by the fact that no matter how small packet loss p1 can be made
in a non-scalable scheme (i.e., a scheme with quickly-growing sn), there will be a link of
sufficient capacity that will accommodate such large number of concurrent flows n that
pn will be unacceptably high. This is especially true given the no-better-than-quadratic
scalability of binomial congestion control. Consequently, the ideal situation would be to
have a scheme that maintains a consistent packet loss rate regardless of the number of
flows utilizing the scheme over a shared link, i.e., pn = p1 for all n. Furthermore, we
would like to have a scheme that maintains the same packet loss over links of different
capacity C.

111

To solve the above problem, we examine (60) again in order to find congestion
control schemes that allow sn to remain constant. Clearly, the necessary conditions for
this ideal scalability are (the second condition is needed for convergence):





>
−<

⇒




>+
=++

1
1

0
012

l
k

lk
kl

. (61)

The l > 1 condition means that if we plan to satisfy the non-cross-over conditions
(44), (49), or prevent the scheme from reducing its rate below zero, ideal scalability re-
quires the knowledge of some tight upper limit on sending rate x (see discussion follow-
ing (49) earlier). Consequently, only assuming that x is limited by a constant (i.e., C), is it
possible to find such σ that will satisfy the necessary condition σ < 1/(lxl–1) in (49) for all
rates 0 < x ≤ C. Hence, we come to our second major conclusion – among I-D congestion
control schemes, ideal scalability is possible only when sending rates x are limited from
above by a constant, i.e., when flows have the knowledge of the bottleneck capacity.

There are two simple ways how an application can learn the value of C – by using
real-time end-to-end measurements or by asking the network to provide an explicit feed-
back with the value of C. In the next section, we will examine the viability of applying
the former method to sampling the capacity of the bottleneck link and the possibility of
using such estimates in ideally-scalable congestion control.

Note that all flows sharing a single link must receive an estimate of C that is
fairly close to the true capacity of the link33. A major drawback of employing congestion
control that relies on real-time estimates of C is that different flows may form a different
estimate, which may result in poor convergence and/or scalability depending on the
amount of error. Hence, our approach in this section relaxes one condition (i.e., l ≤ 1), but
imposes a new one – all flows must measure the bottleneck capacity with high consis-
tency. Note that a thorough evaluation of various bandwidth estimation methods for the
purpose of ideally-scalable congestion control is beyond the scope of this chapter.

We also speculate that schemes with ideal scalability may be somewhat difficult
to use in practice due to two factors – errors in measuring capacity C [66] and typically
slower convergence to fairness due to less-aggressive probing for bandwidth. Neverthe-
less, we investigated ideally-scalable congestion control until we established a working
version of the algorithm, which we will present in the remainder of the chapter. Note that
much more work in this area is required before we can recommend an I-D congestion
control method other than AIMD for practical use over the Internet.

5.5.4 Ideally-Scalable Congestion Control

In this section, we introduce a new method, called Ideally-Scalable Congestion
Control (ISCC), and show how values of the bottleneck capacity can be used to select the

33 The more the error, the slower will the convergence be.

112

values of (λ,σ). Note that other ways of selecting (λ,σ) may be possible to achieve the
same goal of constant sn. We use notation ISCC(x) to refer to the ideally-scalable scheme
described in this section with parameter l equal to x and parameter k equal to –(l+1)/2.

Assuming that C is known and assuming that x(t) ≤ C at all times t (i.e., each ap-
plication will limit its sending rate to be no higher than C), we can satisfy σ < 1/(lxl–1) in
(49) by choosing the following σ:

 1
1

−=σ l
DCm

, (62)

where l > 1 and mD is some constant greater than or equal to l. It is easy to show
that the decrease step of schemes with σ according to (62) is no more than x/mD for any
given state x > 0. Hence, rate x is guaranteed to stay positive at all times. By varying con-
stant mD, the scheme can adjust its average efficiency, where larger values of mD mean
higher efficiency.

In addition, we must carefully select the value of λ so that the negative value of
power k is not allowed to cause uncontrollably-high increase steps. One way to attempt to
achieve this is to select a fixed value α and then multiply it by (MTU/RTT)k+1 as shown in
(31). However, the increase steps will still remain virtually unlimited, because the value
of MTU/RTT has little relationship to the value of C (which is needed to effectively limit
λx–k). In addition, different flows may use different multiplicative factors in (31) due to
the differences in the RTT or the MTU. An alternative approach is to apply a similar
thinking to that used before in selecting σ – choose λ so that the increase step is always
no more than x/mI for any given rate x, where mI is some constant greater than or equal to
one. This can be written as:

 1,/ ≥≤λ −
II

k mmxx , (63)

which is satisfied with the following choice of λ:

 1,
1

≥=λ
+

I
I

k

m
m

C . (64)

Parameter mI can be used to vary the aggressiveness of the scheme in searching
for new bandwidth, where larger values of mI result in less aggressive behavior of the
scheme.

Furthermore, the above selection of λ and σ allows us to separate the value of
packet loss p1 from the capacity of the bottleneck link C. Combining (57), (62) and (64),
we get that packet loss of ISCC schemes is link-independent:

()() 2/111

2
221 ++−−

+
= + kmm

kp k
DI

 (65)

113

In the next section, we compare the performance of one particular ISCC conges-
tion control scheme in a NACK-based real-time streaming application with that of IIAD,
AIMD, and TFRC (TCP-Friendly Rate Control) [86].

5.6 Experiments
5.6.1 Choice of Powers Functions

We start with an observation that if l becomes much larger than 1.0 in an ISCC
scheme and sending rate x is much smaller than capacity C (e.g., when n is large), such
congestion control becomes less responsive to packet loss. Being less responsive usually
results in very small rate reductions that often cannot elevate congestion in a single step.
Thus, schemes with large l usually need multiple back-to-back decrease steps to move the
system below the efficiency line in Figure 36. Our assumptions above do not model this
behavior and the actual resulting packet loss in these schemes turns out to be higher than
predicted by (60) and the convergence time is sometimes substantially increased.

Hence, from this perspective, larger values of l are not desirable. The only value
of l that guarantees ideal scalability among TCP-friendly schemes (i.e., k + l = 1 and
l + 2k + 1 = 0) is quite high and, specifically, equals 3. In practice, this scheme converges
very slowly34 and may not be a feasible solution for the real Internet. Among non-TCP-
friendly schemes, values of l close to 1.0 force k to come close to –1.0 (because l+2k+1
must still remain zero), which also results in slower convergence to fairness as sum k + l
approaches zero35.

Among an infinite number of ISCC schemes, we arbitrarily selected a scheme
with l = 2 (k = –1.5), which achieves reasonable performance in terms of both packet loss
and convergence, and show its performance in this chapter. Note that this particular
scheme is somewhat less aggressive that TCP and typically would yield bandwidth to
TCP, if employed over a shared path (however, this effect becomes noticeable only when
the number of flows n is large). Hence, the practical application of this ISCC scheme in
the Internet would require the use of new QoS methods in routers (i.e., DiffServ) as dis-
cussed in the introduction. Alternatively, it may be possible to use other ISCC schemes
(with a different l), which are not penalized by TCP and which do not suffer from much
slower convergence. We consider finding the best ISCC scheme to be beyond the scope
of this thesis.

34 Slow convergence was found experimentally.
35 Values of k + l close to zero mean that the system makes very small steps toward the fairness line and
thus, converges very slowly.

114

5.6.2 Real-time Bandwidth Estimation

In this section, we briefly examine the accuracy of real-time bandwidth estimation
in our NACK-based streaming application and in the next section, we show the perform-
ance of ISCC(2), which relies on these real-time estimates for computing the values of λ
and σ.

We used a Cisco network depicted in Figure 39 for all real-life experiments in this
chapter. During the experiment, we disabled WRED and WFQ on all T1 interfaces to re-
flect the current setup of backbone routers. The server supplied real-time bandwidth-
scalable MPEG-4 video, which included the FGS (Fine-Granular Scalable) enhancement
layer [225], [226] and the regular base layer, to the client. Consequently, at any time t,
the server was able to adapt its streaming rate to the rate x(t) requested by the client, as
long as x(t) was no less than the rate of the base layer b0 and no more than the combined
rate of both layers.

Cisco
3620

Cisco
3620

Cisco
3660 Catalyst

2912

Client Server

Catalyst
2912

T1 T1
10 mb/s 10 mb/s

100 mb/s 100 mb/s

Figure 39. Setup of the experiment.

We used a 10-minute MPEG-4 video sequence with the base layer coded at b0 =
14 kb/s and the enhancement layer coded up to the maximum rate of 1,190 kb/s. Note
that two concurrent flows were needed to fully load the bottleneck link. Hence, our
experiments below do not cover the case of n = 1, and sn is defined as the ratio of pn to p2.

During the experiment, the client applied a simple packet-bunch estimation tech-
nique [44], [209] to server’s video packets. To simplify the estimation of the bottleneck
bandwidth, the server sent its packets in bursts of a pre-defined length. A bandwidth
sample was derived from each burst that contained at least three packets.

To establish a baseline performance, Figure 40 (left) plots the PDFs of IP band-
width estimates36 obtained by two AIMD(1,½) flows over the T1 link in Figure 39 (both
flows used a fixed value of MTU/RTT equal to 30 kb/s). As the figure shows, the flows

36 Note that bandwidth estimates were derived from bandwidth samples by using the median of the past 20-
seconds worth of samples.

115

measured the IP bottleneck bandwidth to be 1,510 kb/s, which is very close to the actual
T1 rate of 1,544 kb/s (the discrepancy is easily explained by the data-link/physical layer
overhead on the T1 line). Furthermore, both flows were in perfect agreement, and 99.5%
of estimates of each flow were between 1,500 and 1,520 kb/s.

Figure 40 (right) shows the PDFs of bandwidth estimates obtained by 32 simulta-
neous AIMD(1,½) flows running over the same topology in Figure 39 and with the same
value of MTU/RTT. This time, the majority of estimates lie in the proximity of 1,490
kb/s, and 95.5% of estimates are contained between 1,400 and 1,620 kb/s (i.e., within 7%
of 1,510 kb/s). The lower accuracy of bandwidth estimation in the second case is ex-
plained by the lower average sending rate of each flow (i.e., 36 kb/s compared to 559
kb/s in the first case).

0%

20%

40%

60%

80%

100%

0 500 1000 1500 2000

estimated bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

5%

10%

15%

20%

25%

30%

35%

0 500 1000 1500 2000

estimated bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 40. The PDFs of bandwidth estimates with 2 (left) and 32 (right) AIMD(1,½)
flows over a shared T1 link.

Nevertheless, what matters most to the ISCC congestion control is the ability of
flows to establish consistent estimates, rather than accurate estimates. To this extent, we
found that the actual disagreement between the flows during the experiment was negligi-
ble and did not noticeably impact packet loss rates or fairness.

5.6.3 Scalability Results

We extensively tested ISCC in simulation and found that it performed very well,
in fact achieving virtually constant packet loss. Below, we focus on more interesting re-
sults obtained over an experimental Cisco network. Recall that both the theoretical model
and the simulation assumed immediate and simultaneous feedback from the network.

116

These two conditions often do not hold in practice. Consequently, a real test of our re-
sults can only be obtained over a real network where receiver feedback can be arbitrarily
delayed and flows are not equally notified about packet loss (i.e., packets from different
flows are dropped randomly without any fairness).

In our application with NACK-based congestion control, all methods used slow
start at the beginning of each transfer; however, the results below exclude the behavior of
the network during slow start and focus on the performance of the schemes in the interval
starting 5 seconds after the last flow finished its slow start and ending when the first flow
terminated.37 This interval was 520 to 600 seconds long (depending on the number of
flows) and included a combined transfer of approximately 60,000 packets.

During the experiment, we tried to select the parameters of the schemes so that
the average packet loss of two competing flows using each scheme was between 0.3%
and 0.6%. This constraint resulted in selecting MTU/RTT equal to 30 kb/s for
AIMD(1,½), and 50 kb/s for IIAD(½,2). The value of the MTU variable in TFRC’s equa-
tion [86] was selected to be 180 bytes, whereas the actual MTU used during the experi-
ment was 1,500 bytes for all schemes. Note that TFRC was the only protocol, which used
real-time measurements of the RTT in its computation of the rate.

The efficiency and aggressiveness parameters of the ISCC(2) scheme were set
with the same goal in mind to maintain low initial packet loss p2: mD = 2 and mI = 20.
These parameters guarantee that each flow does not decrease its rate by more than ½ and
does not probe for new bandwidth more aggressively that by 5% (i.e., 1/20) of the current
sending rate.

The results of the experiment are summarized in Figure 41, which shows packet-
loss increase factor sn for four different schemes and values of n between 2 and 50. The
results of the experiment show that all non-scalable schemes maintained a steady packet-
loss increase to well over 15%. For example, IIAD reached p50 = 45% (p2 = 0.29%),
AIMD 22% (p2 = 0.38%), and TFRC 20% (p2 = 0.26%).

On the other hand, the packet loss of the ISCC(2) scheme climbed only to 3.1%
over the same range of flows n (p2 = 0.57%). A least-squares fit suggests that the increase
in ISCC’s packet loss is very slow, but noticeable (i.e., n0.47). Thus, even though the
ISCC scheme was not able to achieve constant packet loss in practice, it did show a sub-
stantially better performance than any other scheme.

37 Flows were started with a 1.5-second delay.

117

1

10

100

1000

0 5 10 15 20 25 30 35 40 45 50

the number of flows n

sc
al

ab
ili

ty
 s

n

AIMD IIAD TFRC ISCC

Figure 41. Packet-loss increase factor sn for the Cisco experiment.

In addition, under the worst conditions (i.e., n ≈ 50), our data show that the non-
scalable protocols maintained a “frozen” picture between 11% and 42% of the corre-
sponding session due to underflow events (which are produced when a frame is missing
from the decoder buffer at the time of its decoding). Clearly, these results indicate that
high packet loss is very harmful, even in the presence of low RTTs (50-200 ms), large
startup delays (3 seconds in our case), and an efficient packet loss recovery mechanism
(our retransmission scheme were able to recover all base-layer packets before their dead-
lines until loss rates exceeded approximately 15%).

At the same time, the ISCC(2) scheme was able to recover all frames (including
base and enhancement layer) before their decoding deadlines, representing an ideal
streaming situation for an end-user.

Therefore, we come to the conclusion that non-scalable schemes are poorly suited
for rate-based protocols that do not utilize self-clocking, and that ideally-scalable
schemes promise to provide a constant packet-loss scalability not only in simulation, but
also in practice. Nevertheless, further study is required in this area to understand the
tradeoffs between the different values of l and k, as well as establish whether slower con-
vergence to fairness found in simulation has any strong implications in large networks
(i.e., in the real Internet).

118

Chapter Six

6 Real-time Estimation of the Bottle-
neck Bandwidth

This chapter examines the problem of real-time estimation of the capacity of a
network path using end-to-end measurements applied to the application traffic (i.e., spe-
cial bandwidth probes are not allowed). We start with two basic packet-pair bandwidth
sampling methods and show how they can be applied in real-time to the application traf-
fic. We then show how these two methods fail over multi-channel links and develop a
new sampling method that remains robust over such links. We then examine the perform-
ance of the three sampling methods in a number of tests conducted using an MPEG-4
congestion-controlled streaming application over a Cisco network under a variety of con-
ditions (including high link utilization scenarios). In addition, we study three estimation
techniques, which can be applied in real-time to the collected samples, and show their
performance in the same Cisco network with each of the sampling methods. We find that
two of the sampling methods combined with the best estimator maintain very accurate
estimates for the majority of the corresponding session in a variety of scenarios and could
in fact be used by the application for congestion control or other purposes.

6.1 Introduction

Several studies [2], [4], [44], [67], [68], [132], [133], [172], [209] focused on the
problem of estimating the bottleneck bandwidth of an Internet path using end-to-end
measurements. However, the majority of these studies targeted off-line estimation of the
bottleneck bandwidth, where each estimation technique was applied to all collected
bandwidth samples at the end of the actual experiment. Furthermore, even though a few

119

studies (such as [270]) proposed the use of real-time estimates of the bottleneck band-
width in end-to-end protocols, they did not report the performance of the proposed meth-
ods over real networks.

In addition, all of the above studies except [209] utilized special end-to-end
probes (often of a fixed pre-defined size) and specific inter-packet transmission delays to
sample the bandwidth. The use of additional probes typically required sending a reasona-
bly large amount of probe traffic and involved a time-consuming sampling process before
a reliable estimate could be established. Note that extensions of some of these methods to
multicast applications can be found, e.g., in [231], [255].

In this chapter, we study the problem of estimating the bottleneck bandwidth in a
unicast application both in real-time and using only intrinsic application traffic. New
emerging real-time streaming applications are a prime candidate for utilizing such real-
time estimation techniques, which they can use in several ways. The first and most obvi-
ous use of a bottleneck bandwidth estimate is to limit the sending rate of the application
during the congestion avoidance or slow start phases (i.e., while searching for new band-
width) to be no higher than the estimate of the bottleneck bandwidth (thus resulting in
less severe overshoot and lower packet loss38 during these phases).

The second use, in applications like RealPlayer [232], is to avoid asking the user
to set the speed of the bottleneck bandwidth in the preferences dialog. Real-time estima-
tion of the bottleneck bandwidth (assuming it is sufficiently reliable) allows streaming
applications to bypass this step and compute the initial streaming rate with more accuracy
(especially, when the user has no idea about their bottleneck bandwidth). In addition, in
file-sharing applications like Napster [187], the application will be more likely to report
correct user connection bandwidth by not allowing the user to intentionally misrepresent
his or her connection rate (which apparently happens quite often [94]).

Finally, several new increase-decrease congestion control methods [157] can take
advantage of bottleneck bandwidth estimates (by adapting the constants of the control
equations based on the bottleneck bandwidth) and can significantly increase the scalabil-
ity of congestion control in rate-based protocols (which are the predominant type of pro-
tocols used in real-time streaming today [173], [232]).

In this chapter, we first define the problem of estimating the bottleneck bandwidth
in real-time in section 6.2 and show how an existing method called Receiver-Based
Packet Pair (RBPP) can be adapted to work in real time. In addition, we show how a sim-
ple extension of RBPP to several packets can be used in real-time to sample the bottle-
neck bandwidth and explain why it should perform better than RBPP. In section 6.3, we
develop a new sampling method, which can be used over multi-channel bottleneck links
(such as ISDN or several parallel T1 lines) and verify its performance in a large number
of tests over the Internet. In section 6.4, we study the performance of all three real-time
sampling methods using a congestion-controlled MPEG-4 streaming application over a

38 Note that even though the bottleneck bandwidth in the core Internet rarely equals the available band-
width, many home users are limited by the speed of their access link. Therefore, in cases when a single
application runs over the access link, the bottleneck bandwidth will often equal the available bandwidth.

120

Cisco testbed. In section 6.5, we examine three estimation techniques and compare their
performance in the same datasets. We find that two of the methods perform equally well
in a wide range of scenarios, while the third method possesses a much lower accuracy.
We also find that estimates based on RBPP samples are often quite inaccurate, because
they are affected by random scheduling delays introduced by the operating system (OS)
of the client machine (i.e., in real networks, RBPP’s performance is inadequate for fast
bottleneck links).

6.2 Background
6.2.1 Packet Pair Concept

In this section, we formulate the problem of estimating capacity C of the bottle-
neck link of an end-to-end path using real-time end-to-end measurements. The estimation
involves two steps – the collection of bandwidth samples and the actual estimation of C
based on the collected samples. In addition, note that we restrict the application to use
only packets that are being sent by the sender as part of the application’s normal opera-
tion (i.e., out-of-band probe traffic is not allowed).

The central principle used in all packet-pair bandwidth sampling methods [44],
[67], [209] is the premise that if two (or more) packets leave the sender with spacing
smaller than the transmission delay τ of the packets over the bottleneck link, this spacing
will be expanded by the bottleneck link to a value, which can be used by the receiver to
reconstruct the speed of the bottleneck link. This concept (assuming ideal conditions and
a single-channel bottleneck link) is illustrated in Figure 42, which was modified from
[110]. The sender injects two packets at high speed into the path, and the small spacing
between the packets is expanded by the bottleneck link. Hence, assuming no interfering
traffic before or after the bottleneck link, the receiver is able to compute the value of the
bottleneck link by inverting spacing ∆T = τ between the arriving packets. Since the re-
ceiver (rather than the sender) computes the bandwidth, the method is called Receiver-
Based Packet Pair (RBPP) [209].

121

Sender Receiver

Bottleneck link R1-R2

packet pair at
high speed

packet pair at
low speed

packet pair at
high speed

∆T=τ ∆T=τ
Compute
bottleneck
bandwidth

s2/∆T

R3R4

R2R1

Figure 42. Receiver-Based Packet Pair.

In practice, however, the second packet may suffer large queuing delays before or
after the bottleneck link due to interfering traffic, in which case, the packet pair may suf-
fer an expansion event (i.e., spacing ∆T is larger than the transmission delay τ of the
packets over the bottleneck link). In addition, if the first packet is delayed after it passes
the bottleneck link and the second packet “catches up” with it, the packet pair may suffer
a compression event (i.e., spacing ∆T is less than τ). Expansion events result in under-
estimation, and compression events result in over-estimation of the actual bandwidth C.
Therefore, in real-life situations, a great deal of samples will be inaccurate, and an esti-
mation technique will be required to extract the most likely value of C from the collected
samples (more on this in section 6.5).

6.2.2 Sampling

Assuming each packet can be of a different size (because the size of each packet
is determined by the application), we use the following methodology for computing
bandwidth samples in RBPP. Suppose the distance between the two packets (of size s1
and s2, respectively) as they arrive to the application is ∆T (i.e., ∆T is the distance be-
tween the last bits of each packet, as shown in Figure 43) and suppose that ∆T is larger
than the spacing between packets when they left the sender. Consequently (assuming
ideal conditions, i.e., no expansion or compression events), distance ∆T is equal to the
transmission delay of the second packet over the bottleneck link. Therefore, the receiver
in RBPP computes its bandwidth samples for each pair of eligible packets as following:

T

sb
∆

= 2 . (66)

122

Note that it is the responsibility of the application to identify which packet pairs
comply with the above requirement (i.e., transmission spacing is smaller than the receipt
spacing). In protocols like TCP, it is necessary to use timestamps in each packet to make
sure that packets were in fact expanded along the path to the receiver [209]. However, in
rate-based streaming applications, it is possible to send packets in bursts (which is cur-
rently the most popular way of sending real-time traffic [173]) and compute bandwidth
samples based on packets within each burst (i.e., knowing that each burst left the server
at a higher rate that then bottleneck link39). Regardless of the actual implementation, we
assume that the receiver can reliably detect back-to-back packets that were expanded by
the network.

s2 s1

∆T

bit 0 bit 0

Figure 43. Computing bandwidth from inter-packet spacing.

Since many protocols send bursty traffic (including TCP), it often happens that
several packets leave the sender back-to-back and are expanded by the end-to-end path.
Hence, in such cases, a straightforward extension of the RBPP concept is to use the spac-
ing between the first and the last packets of the burst in computing the bandwidth (e.g.,
similar methods were used in [67], [172], [209]). Suppose si is the size of packet i in the
burst, n is the number of packets in the burst, and ∆T is the distance between packet p1
and packet pn. We call this scheme Extended RBPP (ERBPP) and compute bandwidth
samples as follows:

 ∑
=∆

=
n

i
is

T
b

2

1 . (67)

Note that the transmission delay of the first packet is not included in spacing ∆T,
and therefore, the size of packet p1 is not included in the sum in (67). The apparent bene-
fit of using ERBPP over RBPP is the longer duration ∆T, which can be measured with
higher accuracy in the presence of low-resolution clocks and random OS scheduling de-
lays. However, as pointed out in [66], longer bursts of packets in ERBPP are more likely
to be delayed by cross-traffic at the bottleneck router, thus resulting in under-estimation
of capacity C (i.e., due to burst-expansion events). We evaluate these tradeoffs in section
6.4.

39 If this is not the case, the server itself is the bottleneck.

123

Furthermore, instead of computing a single ERBPP sample for each burst, the ap-
plication may decide to compute n–1 RBPP samples using the spacing between each two
consecutive packets within the burst. As suggested in [66], RBPP samples may provide
more accurate information about the true value of capacity C compared to the methods
that use multiple back-to-back packets (i.e., ERBPP). Therefore, throughout this chapter,
we will use notation RBPP to refer to n–1 samples computed using the size of the inner
packets (i.e., packets p2, …, pn) of each burst. Note that we apply both RBPP and ERBPP
only to bursts that contain no lost packets, reordered packets, or retransmissions arriving
in the middle of the burst.

We delay the performance study of RBPP and ERBPP until section 6.4. Next, we
show how both of these methods fail over multi-channel links and develop a new band-
width sampling technique that remains robust over N-channel (N ≥ 2) links.

6.3 Multi-channel Links
6.3.1 Introduction

In this section, we analyze the problem of estimating the bottleneck bandwidth
along paths where the bottleneck link consists of multiple parallel links, along which
packets of a connection are load-balanced on the data-link layer40 by the attached routers.
Using our analysis, we develop a new sampling method called ERBPP+, which is im-
mune to problems associated with multi-channel bottleneck links. We further evaluate
our theoretical findings in tests conducted over ISDN links to two different ISPs and find
that ERBPP+ performs very well.

We study the bandwidth estimation problem using the example of ISDN; how-
ever, the formulas derived in this section apply to any two-channel link. Furthermore, at
the end of this section, we extend our results to N-channel (N ≥ 2) links while creating a
foundation for ERBPP+.

ISDN BRI (Basic-Rate Interface) is implemented as two parallel data links, where
each link is called a B-channel and has the capacity of 64 Kbps. In some data-link proto-
cols (such as multi-link PPP [254], [256]), the sending side has the option of splitting
each packet into fragments, each of which is load-balanced over the two channels.
Clearly, multi-link PPP (MLP) fragmentation involves extra overhead (i.e., splitting
packets into fragments, additional MLP headers for each fragment, reassembly, etc.), and
is often disabled in the Internet routers. Furthermore, some routers are not configured to
use or do not support MLP, and instead, always load-balance whole packets by simply
alternating packets between the available channels41 (e.g., this was the situation studied
in [209]).

40 Note that multi-path routing (i.e., load-balancing on the network layer) is not covered by our study.
41 Such as Cisco-supported Bandwidth On Demand (BOD).

124

Therefore, as we will see below, if the routers at the bottleneck link decide to
load-balance entire packets (rather than small fragments), the accuracy of both RBPP and
ERBPP sampling methods is severely reduced. Figure 44 shows a typical setup that we
will study in this section. Load-balancing routers R1 and R2 are attached to each other
with two links (each could be an ISDN B-channel, a T1 link, or any other point-to-point
link) of capacity CA each42. The second router is connected to the client through a path
with the bottleneck capacity CB, which we will consider, without loss of generality, to be
equivalent to an abstract link of rate CB directly connecting R2 to the client.

We assume that the path from the server to R1 is likely to consist of high-speed
links, which means that packets in each burst arrive to R1 almost instantaneously com-
pared to their transmission time over the ISDN link (this assumption usually holds in
practice since the ISDN link is the bottleneck in this scenario). We simplify the model
even further and assume packets of equal size.

In Figure 44, four packets p1, …, p4 simultaneously arrive to R1 and are being
transmitted across the ISDN link. Router R2 receives each pair of packets and forwards
them to the client at the maximum rate of the remaining path (i.e., CB). Consequently,
every other pair of packets (i.e., pairs (p1, p2), (p3, p4), etc.) arrives to the client at rate CB.

Clien t
rat e CB

rat e CA

rat e CA

p1

p2

p3

p4

R2 R1

Figure 44. Model of a typical two-channel ISDN link.

Furthermore, as we will see below, the remaining pairs of packets similarly pro-
duce an incorrect measurement of the bottleneck capacity 2CA. The next section will es-
tablish this result more conclusively.

6.3.2 Receiver-Based Packet Pair

Using Figure 44, we already established that the RBPP method based on packets
p2k–1 and p2k (k ≥ 1) from each burst, will measure rate CB instead of 2CA. Our analysis
above and for the rest of this section assumes that rate CB is no less than 2CA and that all
packets are of the same size, which simply means that packets in each pair arrive to R2

42 Note that many routers support load balancing over links of equal, as well as unequal capacity. In our
simplified model, we use links of the same speed.

125

simultaneously and packets from different pairs do not queue behind each other at router
R2.

The issue left to resolve is that of what measurements are produced by the RBPP
scheme based on packets p2k and p2k+1 (k ≥ 1). To simplify the explanation of our deriva-
tion, we assume that k = 1 and use the scenario in Figure 44. Hence, our goal is to deter-
mine the spacing between packets p2 and p3 when they arrive to the client. Let the time
when packets p1 and p2 arrive to router R2 be t1. Consequently, packet p1 leaves R2 at the
same time t1, packet p2 leaves R2 after p1 is fully transmitted, i.e., at time t2 = t1 + s1/CB,
and p3 leaves R2 at time t3 = t1 + s3/CA, where si is the size of packet i. The corresponding
arriving times of the packets to the client are t1 + s1/CB for packet p1, t2+s2/CB for packet
p2, and t3+s3/CB for packet p3. Therefore, assuming packets of equal size s, the distance
between packets p2 and p3 when they arrive to the client is [s/CA – s/CB] and the corre-
sponding bandwidth sample is:

AB

BA
RBPP CC

CCb
−

= . (68)

Hence, approximately half of RBPP samples collected over a path with a two-
channel ISDN bottleneck should be equal to CB and the other half are given by (68) (note
that none of the samples will be equal to the bottleneck capacity 2CA). In practice, how-
ever, this ideal scenario may be violated, if smaller packets are queued behind larger
packets at router R1 (in which case, any arbitrary bandwidth between bRBPP and CB can be
measured), or if larger packets are queued behind smaller packets (in which case, any
bandwidth between 2/3⋅CA and bRBPP can be measured)

6.3.2.1 Experimental Verification

In our experiments, we found that certain routers on the ISP’s side did not support
MLP fragmentation, and thus, the situation depicted in Figure 44 was quite common. For
example, our Cisco router was never able to connect to an ISP’s router that fully sup-
ported MLP fragmentation. In the experiments analyzed below, the Cisco router used two
different ISPs to connect to the Internet – a nationwide ISP (which we call ISPa) and a
local dialup ISP in the state of New York (which we call ISPb).

In this setup, the router connected to a local client through a 10-mb/s Ethernet
(i.e., CB was equal to 10 mb/s) as shown in Figure 45 (left). Furthermore, the path from
the server to the client consisted of 11 hops through ISPa and 13 hops through ISPb. In all
experiments, we used a Windows2000 client and a Solaris2.7 server. The two video
streams used in this experiment were coded using MPEG-4 at the IP rates of 59 kb/s
(stream S1) and 87 kb/s (stream S2). We call this dataset D1.

126

Client

Cisco

ISDN
10 mb/s
ethernet

ISP

Client

ISDN TA

ISDN USB
port

ISP

Figure 45. Setup of ISDN experiments with a Cisco router (left) and ISDN TA (right).

Another bandwidth measurement experiment over ISDN links employed a popu-
lar model of an ISDN Terminal Adapter (TA) used by Windows 95/NT/2000 users. The
TA connected to the client machine through a 12-Mbps USB interface as shown in Figure
45 (right). The experiment with the ISDN TA used ISPa and video stream S2. This ex-
periment transported over 73 million packets, whose dynamics were recorded in the sec-
ond dataset D2. We should further note that during the experiments documented in data-
sets D1 and D2, we forced the Cisco router and the TA to always bring both channels up
at the beginning of each connection (i.e., the bottleneck bandwidth was always 128
Kbps).

In our first attempt to verify the behavior of RBPP over multi-channel links, we
focus on set D1. Our analysis above predicts that the first bandwidth peak in the distribu-
tion of RBPP samples should be at 10 mb/s (i.e., CB) and the second peak should be at
64.4 kb/s (i.e., bRBPP expressed in (68)). In reality, RBPP samples in set D1 were clustered
around two slightly different values – 9.7 mb/s and 62 kb/s; however, keeping in mind
that PPP and Ethernet headers were not included in our RBPP estimates, it appears that
9.7 mb/s closely matched the rate of Ethernet excluding data-link headers and 62 kb/s
closely matched 64.4 kb/s excluding PPP headers.

Our second verification attempt is based on set D2. The USB link between the
ISDN TA and the client was no slower than 128 Kbps and, in fact, was significantly
faster. Nevertheless, we had doubts that the TA would be able to deliver packets at the
full 12 Mbps supported by the USB port. From the documentation, it was clear that the
TA supported rates above 230.4 kb/s (which is the speed of a fast asynchronous serial
port), but we were unable to find the maximum “official” supported rate CB. Hence, we
had to use our data recorded in D2 to first infer the value of CB and then apply (68) to de-
rive the value of bRBPP. The dataset showed that almost all RBPP samples were clustered
around two strong peaks – the first one at 70.9 kb/s and the second one at 461 kb/s. The
peak at 461 Kbps closely matches twice the speed of a fast serial port (230.4*2), which
tempts us to speculate that rate CB supported by the TA was in fact equal to 460.8 kb/s.
Using CB = 460.8 kb/s in (68), we derive that the bRBPP samples should have been equal
to 74.3 kb/s. Again, subtracting PPP headers from 74.3 kb/s, it appears that an IP-level
estimate of 70.9 kb/s closely matched that predicted by (68).

127

Therefore, both experiments verified our previous finding that none of RBPP
samples is likely to produce correct measurements of the bottleneck capacity of a multi-
channel link.

6.3.3 Extended Receiver-Based Packet Pair

The ISDN scenario that we study in the context of ERBPP is similar to the one
shown in Figure 44. However, this time, we use more than two packets from each burst to
compute the bandwidth. As before, suppose that CB ≥ 2CA (i.e., the first packet of each
burst encounters an idle ISDN link, and packets from different pairs do not queue behind
each other), all data packets are of the same size, and the client uses m ≥ 2 packets from
the beginning of each burst to produce bandwidth sample bm using ERBPP, as if the burst
contained exactly m packets.

Using Figure 44, we notice that for all odd values of m ≥ 2 (i.e., m = 2k+1, k ≥ 1),
bandwidth samples bm are equal to 2CA, which is the correct value of bottleneck capacity
C. For example, let us consider the case of the smallest odd value of m ≥ 2, i.e., m = 3.
Using the calculations in the previous section and assuming packets of equal size, the in-
ter-arrival distance between packets p1 and p3 at the client machine is maintained the
same as at router R2, i.e., s3/CA. Hence, the resulting ERBPP bandwidth sample is
(s2+s3)/(s3/CA) = 2CA. The formula for the rest of odd values of m is easily proven using
math induction.

On the other hand, none of the even samples bm produces the desired value of
2CA. For m = 2, we already know that b2 = CB. Consider a simple case of m = 4. Since we
established above that the distance between p1 and p3 when they arrive to the client is
s3/CA, the distance between p1 and p4 is simply s4/CB time units larger, i.e., the total dis-
tance between p1 and p4 at the client is [s3/CA+s4/CB]. Hence, ERBPP sample b4 is equal
to (s2+s3+s4)/(s3/CA+s4/CB) = 3CACB/(CB+CA). Using math induction for the rest of even
values of m, we get the resulting formula: bm = (m–1)CACB/[(m–2)/2⋅CB+CA]. Combining
both cases together, we arrive at the final formula for bm (m ≥ 2):








=
+−

−
+=

=
km

CCm
CCm

kmC
b

AB

BA

A

m 2,
2)2(

)1(2
12,2

. (69)

Analyzing our result in (69), it is easy to notice that the even values of m will
produce bandwidth samples that are always higher than the desired bandwidth 2CA. The
amount of over-estimation, bm/(2CA), is not limited by a fixed constant only when m = 2
(which argues against using RBPP), and is limited by 1.5 for all m ≥ 4 and by 1.25 for all
m ≥ 6. Furthermore, function bm for even m is monotonically decreasing and asymptoti-
cally converges to the desired estimate 2CA as m tends to infinity (which argues in favor
of using more packets per burst).

128

Using simple calculation, we further establish that for an even estimate bm to con-
verge within α percent of 2CA, m has to be at least (2+1/α) (i.e., convergence is asymp-
totically linear). Finally, we should note that for higher streaming rates, longer bursts of
packets will allow ERBPP to operate over multi-channel bottlenecks with high accuracy
(i.e., both odd and even samples bm will produce values close to 2CA). For example, 12-
packet bursts generate samples within 10% of 2CA, and 102-packet bursts within 1%.

6.3.3.1 Experimental Verification

Assuming again that CA = 64 kb/s and CB = 460.8 kb/s, our goal is to compare
samples bm computed according to (69) with those derived from set D2 (set D1 produced
similar results). Suppose each burst i recorded in the dataset contains ni packets and sup-
pose that the first ei packets (2 ≤ ei ≤ ni) of the burst have the same size (which is a neces-
sary condition given variable-size packets in our experiments). Then, using burst i from
the dataset, we can compute samples bm for m = 2,…, ei.

Table III compares the predicted values of bm to those observed in dataset D2. As
the table shows, an overwhelming majority of samples bm, for each value of m, were clus-
tered around a single peak, and the peak closely matched the one predicted by (69) (as
before, data-link/physical layer headers account for the slight difference).

Consequently, our experiments confirm that the accuracy of ERBPP over multi-
channel links is reasonably low and also establish that the behavior of the majority of
ERBPP samples can be described by a simple formula in (69).

m Predicted value

of bm, kb/s
Observed peak in
bm samples, kb/s

Observed peak
range, kb/s

Percent samples
in the range

2 460.8 461 457-467 97.1%
3 128.0 122 119-127 99.5%
4 168.5 162 158-168 99.3%
5 128.0 123 121-126 99.7%
6 149.6 144 141-147 99.4%
7 128.0 123 121-126 99.9%
8 142.7 137 137-138 100%

Table III. Comparison of observed samples of bm with those predicted by the model.

6.3.4 ERBPP+

We conclude this section by deriving a simple and low-overhead bandwidth esti-
mation technique, which we call ERBPP+, from our model in (69) that remains robust
along paths with N-channel bottlenecks. Using intuition, we can extend our previous re-
sults to conclude that along a path with N parallel channels of equal bandwidth CA, sam-

129

ples bm, m = N⋅k + 1, k ≥ 1, will measure the exact (and desired) bandwidth of the path
(i.e., N⋅CA), and the remaining samples bm will measure an over-estimate of the desired
value. Therefore, if the client uses the first ei equal-size packets from each burst i to com-
pute samples bm, m = 3,…, ei, and keeps the smallest sample from each burst, it will ef-
fectively filter out over-estimates and will identify the sample closest to the desired value
of N⋅CA. Of course, this method assumes that each ei is greater than or equal to N + 1 (for
example, to handle up to 4 parallel channels of equal capacity, our method must analyze
bursts with ei at least 5 packets).

In Figure 46, we compare the performance of ERBPP (left) and ERBPP+ (right)
in dataset D2. Note that ERBPP’s peaks at 162 and 137 kb/s (produced by samples b4 and
b8) are very small due to a small number of bursts with 4 and 8 packets during the ex-
periment. However, the erroneous peak at 144 kb/s43 (due to samples b6) is quite notice-
able. In addition, the performance of ERBPP gets even worse than predicted by (69), be-
cause smaller packets queued behind larger packets (and vice versa) at the ISDN link, in
violation of our assumptions, are responsible for a large number of inaccurate samples in-
between the two strong peaks (at 123 and 144 kb/s) and as low as 96 kb/s.

On the other hand, ERBPP+ achieves almost perfect performance with 99.9% of
the samples located between 119 and 126 Kbps, and 56% of the samples between 122
and 123 Kbps. Even though ERBPP+ is much more reliable over multi-channel links than
ERBPP, the penalty in accuracy of ERBPP+ over single-channel links remains unclear.
Therefore, we will address this issue in the next section, where we compare the perform-
ance of all three sampling methods over a loaded T1 bottleneck in our experimental
Cisco network.

0%

10%

20%

30%

40%

50%

60%

96 112 128 144 160

estimated bandwidth (kb/s)

pe
rc

en
t

0%

10%

20%

30%

40%

50%

60%

96 112 128 144 160

estimated bandwidth (kb/s)

pe
rc

en
t

Figure 46. Comparison of ERBPP (left) with ERBPP+ (right) in D2.

43 Note that this bandwidth peak is completely unrelated to the 144 kb/s (i.e., channels 2B+D) physical
bandwidth of an ISDN link.

130

6.4 Sampling
6.4.1 Setup of the Experiment

We used a Cisco network depicted in Figure 47 for all experiments reported in the
remainder of the chapter. The server and the client were connected to Catalyst switches
via two 100 mb/s Ethernets. The switches in turn were connected to Cisco 3620 routers
via 10 mb/s Ethernets. The 3620 routers connected to each other via T1 links passing
through an additional Cisco 3660 router. During the experiment, we disabled both
WRED and WFQ [61] on all T1 interfaces to reflect the current setup of backbone
routers.

Cisco
3620

Catalyst
2912

Client Server

Catalyst
2912

T1 T1
10 mb/ s 10 mb/ s

100 mb/ s 100 mb/ s

Cisco
3660

Cisco
3620

Figure 47. Setup of the experiment.

The server supplied real-time bandwidth-scalable MPEG-4 video, which included
the FGS (Fine-Granular Scalable) enhancement layer [226] and the regular base layer, to
the client. Consequently, at any time t, the server was able to adapt its streaming rate to
the rate r(t) requested by the client, as long as r(t) was no less than the rate of the base
layer b0 and no more than the combined rate of both layers. In the experiments reported
in this chapter, we used a simple AIMD (Additive Increase, Multiplicative Decrease)
congestion control with parameters α and β set at 1 and ½, respectively (i.e., the parame-
ters used in TCP – the search for new bandwidth during congestion avoidance was by 1
packet per RTT and the reduction of the rate upon packet loss was by ½). Furthermore,
all clients used TCP-like slow start at the beginning of each session.

We used a 10-minute MPEG-4 video sequence with the base layer coded at b0 =
14 kb/s and the enhancement layer coded up to the maximum rate of 1,190 kb/s. Note
that two concurrent flows were needed to fully load the bottleneck link. In this chapter,
we focus on two different cases – low and high link utilization. In the former case, we
used two simultaneous AIMD flows running between the server and the client machines
(the average link utilization was 71% and the average packet loss was 0.3%). We call this
dataset Φ2. In the latter case, we used 32 simultaneous AIMD flows over the same topol-

131

ogy (the average link utilization was 90% and the average packet loss was 7.6%). We call
this dataset Φ32. In both cases, we randomly selected a single flow and focused on its
bandwidth samples (this section) and real-time estimates (next section).

6.4.2 RBPP Samples

The performance of the RBPP sampling method is shown in Figure 48. The left
chart shows the PDF of RBPP samples in Φ2 and the right chart shows the same in Φ32.
Note the different scale on the x-axis.

0%

5%

10%

15%

20%

25%

30%

35%

40%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

1%

2%

3%

4%

5%

6%

0

40
0

80
0

12
00

16
00

20
00

24
00

28
00

32
00

36
00

40
00

44
00

48
00

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 48. PDF of RBPP samples with 2 (left) and 32 AIMD (right) flows.

First, we notice that the majority of RBPP samples in Φ2 are clustered around two
peaks at 1,320 kb/s (42% of all samples) and 1,740 kb/s (39%). Furthermore, virtually
none of samples are located in the desired area of 1,500 kb/s44, and over 10% of all sam-
ples are higher than 2,000 kb/s (not shown in the figure).

We should note that in all our experiments, we used a clock with resolution 1 mi-
crosecond, which was sufficient for rates well over 1 gb/s. Therefore, clock-related
round-off errors were not a major factor in the performance of RBPP in our datasets, but
they may be in end-systems with low-resolution clocks. Furthermore, the scheduling
resolution of the OS kernel may also be an issue affecting the performance of any band-
width sampling method (e.g., the scheduling clock used in Solaris has a default resolution

44 Even though the physical speed of a T1 line is 1,544 kb/s (1,536 kb/s without the framing bits), the IP
level bandwidth given our packet sizes should be between 1,500 and 1,520 kb/s depending on the actual
packet size.

132

of 10 ms). In our case, we were unable to determine the exact scheduling resolution of
Windows2000, which appeared to deliver packets with resolution no worse than 100
microseconds. Using our packet sizes, this resolution is sufficient for rates up to 18 mb/s,
which is also much higher than the speed of the bottleneck link in our case.

Examining inter-packet arrival delays ∆T in RBPP, we found that due to random
scheduling delays in Windows 2000, delay ∆T deviated both ways from the ideal value τ
(recall that τ is the transmission delay of the second packet of each pair over the bottle-
neck link). Therefore, if a packet pair was compressed by the OS kernel (i.e., ∆T = τ–ε,
where ε is some positive error), the next pair was likely to be expanded by the same
amount (i.e., ∆T ≈ τ+ε). This is conceptually illustrated in Figure 49.

τ τ

τ +ε τ –ε

Figure 49. Compression and expansion in the OS kernel.

Since virtually none of the samples in Φ2 were located at the correct value, an es-
timation technique that extracts the mode of the PDF of the samples is destined to fail (as
we will further see in section 6.5). However, assuming that deviation ε is white Gaussian
noise and using Figure 49, it is possible to arrive at the correct value of the bottleneck
capacity by inverting each sample (which converts bandwidth units into delay units), av-
eraging all the inverted samples, and then inverting the result (to arrive back into band-
width units). In other words, if bi is the i-th estimate of RBPP bandwidth in a dataset and
n is the total number of samples, the inverted average of a dataset is given by:

∑

=

= n

i i

INV

b

nb

1

1
. (70)

Applying this methodology to the entire dataset Φ2, we find that the inverted av-
erage estimate of C was bINV = 1,569 kb/s, which is very reasonable given the scrambled
PDF in Figure 48 (left). The performance of this method on partial datasets (i.e., in real-
time) will be studied in section 6.5. We should also mention that the application of the

133

median to the entire dataset, produces an estimate of C equal to 1,715 kb/s and the appli-
cation of the mode produces an estimate equal to 1,740 kb/s (i.e., both are incorrect val-
ues).

Our second observation using Figure 48 is that the performance of RBPP in Φ32
gets significantly worse, with individual samples reaching well over 10 mb/s (the figure
stops at 5 mb/s). In addition to a large number of over-estimates (42% of the samples
above 2 mb/s and 22% above 5 mb/s), the three strong peaks in Φ32 are located at incor-
rect values of 840 kb/s, 1,100 kb/s, and 2,280 kb/s. The right half of Figure 48 shows the
effects of both OS scheduling delays, as well as interfering traffic at the bottleneck link.
In addition to a larger number of concurrent flows and hence, more interfering traffic, set
Φ32 is more difficult than Φ2 for any sampling method due to the lower average sending
rate of each flow (i.e., 42 kb/s in Φ32 compared to 538 kb/s in Φ2).

Clearly, computing the mode of the entire dataset Φ32 produces an incorrect esti-
mate, which is equal to 1,100 kb/s (i.e., the value of the tallest peak). The use of the me-
dian gives a very accurate value of C = 1,537 kb/s and the use of the inverted average
described above produces a strong under-estimate equal to 1,206 kb/s. Therefore, it ap-
pears that the inverted average is capable of effectively dealing with random OS-related
delays, however, it is not suitable for canceling out additional inter-packet queuing de-
lays introduced at the bottleneck router (possibly because these delays are not white
Gaussian noise and do not follow a symmetric distribution centered at ε = 0).

Estimation results based on RBPP samples are summarized in Table IV below.
Assuming that under-estimation is safer than over-estimation (especially for use in con-
gestion control), we note that in RBPP, the inverted average was the safest performer out
of the three estimation methods and the median was the most accurate performer.

Dataset Mode, kb/s Median, kb/s Inverted average,

kb/s
Φ2 1,740 1,715 1,569
Φ32 1,100 1,537 1,206

Table IV. Estimation based on RBPP samples and entire datasets.

6.4.3 ERBPP Samples

In the previous section, we discovered that RBPP suffered a significant perform-
ance degradation from kernel-related scheduling delays (as was most evident in Φ2). The
central idea behind ERBPP is to allow the OS to balance positive and negative values of
delay error ε within each burst and let the application measure the resulting delay of the
entire burst. In other words, burst delay ∆T equals the sum of inter-packet delays within
the burst, and a single ERBPP bandwidth estimate derived from ∆T simply equals bINV
applied to the entire burst (assuming all packets in the burst have the same size). In addi-

134

tion, each ERBPP sample included some form of averaging of the queuing delays of in-
dividual packets at the bottleneck link, which was unavailable to RBPP in the previous
section.

These two types of averaging explain much better performance of ERBPP in both
datasets Φ2 and Φ32 (shown in Figure 50). Φ2 showed the strongest peak at 1,520 kb/s
and Φ32 showed one at 1,500 kb/s. A vast majority of samples (99.9% in Φ2 and 97% in
Φ32) were contained between 1 and 2 mb/s.

The results of applying the three estimation techniques to entire datasets using
ERBPP samples are shown in Table V. Since both datasets exhibited a single peak, the
mode worked very well producing both estimates in the ballpark of the correct value. The
median and the inverted average also worked well, achieving approximately the same
result as the mode. Consequently, we conclude that all three estimation methods per-
formed equally well and that the ERBPP sampling method produced a very large number
of good samples regardless of the utilization of the bottleneck link or the average sending
rate of the flow that measured the bandwidth (i.e., in both Φ2 and Φ32, ERBPP showed
excellent performance).

0%

5%

10%

15%

20%

25%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

2%

4%

6%

8%

10%

12%
0

40
0

80
0

12
00

16
00

20
00

24
00

28
00

32
00

36
00

40
00

44
00

48
00

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 50. PDF of ERBPP samples with 2 (left) and 32 AIMD (right) flows.

It is suggested in [66] that longer bursts shift the peak of the distribution to values
somewhat lower than capacity C and that shorter bursts tend to produce more-accurate
samples in a close vicinity of C. We did not observe this phenomenon in our datasets and,
in fact, found that larger bursts in ERBPP were typically more reliable, because spacing
∆T was less affected by the scheduling delays.

135

Dataset Mode, kb/s Median, kb/s Inverted average,
kb/s

Φ2 1,520 1,535 1,538
Φ32 1,500 1,499 1,484

Table V. Estimation based on ERBPP samples and entire datasets.

6.4.4 ERBPP+ Samples

It was expected that ERBPP+ would produce a larger number of under-estimates
than ERBPP, because for each burst, ERBPP+ cannot compute a sample larger than the
one computed by ERBPP. The PDF of ERBPP+ samples in both datasets is shown in
Figure 51. Both datasets exhibited the tallest peak in a close vicinity of the correct value
– 1,500 kb/s in Φ2 and 1,460 kb/s in Φ32; however, there were several additional smaller
peaks, as low as 1,160 kb/s in Φ32. Furthermore, ERBPP+ showed a visibly asymmetric
distribution in both datasets, with a heavier tail on the left side due to under-estimates. At
the same time, the clustering around 1.5 mb/s was still very good and the number of sam-
ples between 1 and 2 mb/s was the same as in ERBPP – 99.9% in Φ2 and 96.5% in Φ32.

We should note that even though our goal is to measure the capacity of the bottle-
neck link, ERBPP+ samples (which consist of many under-estimates) are much safer to
use for the purposes of congestion control, because they provide a better upper limit on
the current sending rate than ERBPP and rarely exceed the actual capacity C. Hence, for
example, we find that 44% of ERBPP samples in Φ32 were over 1,500 kb/s. At the same
time, only 13% of ERBPP+ samples in the same dataset were above 1,500 kb/s.

136

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

2%

4%

6%

8%

10%

12%

14%

0

40
0

80
0

12
00

16
00

20
00

24
00

28
00

32
00

36
00

40
00

44
00

48
00

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 51. PDF of ERBPP+ samples with 2 (left) and 32 AIMD (right) flows.

Both the mode and the median estimation methods performed reasonably well
under the circumstances, keeping the estimation error under 60 kb/s (see Table VI).
However, the inverted average was unable to recover from widely varying queuing de-
lays in Φ32 and a large number of under-estimates produced by ERBPP+, providing an
estimate almost 200 kb/s lower than the actual value of C in Φ32.

Dataset Mode, kb/s Median, kb/s Inverted average,

kb/s
Φ2 1,500 1,502 1,480
Φ32 1,460 1,442 1,331

Table VI. Estimation based on ERBPP+ samples and entire datasets.

6.5 Estimation
6.5.1 Introduction

Suppose that set B(t,k) contains k latest bandwidth samples at time t collected by
one of the three measurement methods discussed above. The estimation problem that we
address in this section is the extraction of a single estimate bEST(t,k) based on set B(t,k),
where bEST(t,k) provides the most recent estimate of capacity C. This estimation problem
is different from the one studied in the last section, because set B(t,k) at any time t con-
tains a subset of all samples in the corresponding dataset, and hence, estimates at differ-

137

ent times t may exhibit different levels of accuracy (e.g., estimates at the beginning of a
session are often less accurate due to the small number of samples in the set). For exam-
ple, even though an estimate based on the entire dataset may be exact (i.e., 1,500 kb/s),
the actual real-time estimates may be equal to 1,100 kb/s for 40% of the session and
equal to 1,500 kb/s for 60% of the session. This section will deal with this real-time per-
formance of each estimation method.

The use of only k latest samples allows the estimation technique to adapt to
changing bottlenecks, as well as discount the history of (possibly) invalid samples (e.g.,
in cases when the sending rate suddenly goes up, the new estimates generally will be
more reliable, and hence, should be allowed to force the old ones out of B(t,k)). Note that
in order to maintain a fair comparison between packet-based methods (i.e., RBPP) and
burst-based methods (i.e., ERBPP and ERBPP+), we use the following notation when
referring to k. In the latter two methods, B(t,k) in fact contains k latest samples, while in
the former method, it contains all samples from the last k bursts (i.e., this way, B(t,k) con-
tains all samples collected in the last ∆ time units, for some ∆, regardless of the sampling
method).

To illustrate the real-time estimation concept, Figure 52 shows a small fragment
of a 600-second session of RBPP samples in Φ2 as a function of time t. The left chart is
fitted with the median estimator bEST(t,k) and the right chart is fitted with the inverted av-
erage estimator bEST(t,k), for k = 64 in both cases. Even though the median of the entire
set produced an estimate of 1,715 kb/s, the real-time estimate bEST(t,k) exhibited a certain
degree of fluctuation between 1,500 and 1,720 kb/s in Figure 52. At the same time, the
inverted average stayed fairly constant at approximately 1,570 kb/s throughout the same
segment. However, using the figure, it is not clear how well both methods performed
elsewhere within the session, which is the topic of the remainder of the chapter.

138

1100

1300

1500

1700

1900

2100

2300

2500

2700

2900

380 385 390 395 400
time (sec)

ba
nd

w
id

th
 (k

b/
s)

1100

1300

1500

1700

1900

2100

2300

2500

2700

2900

380 385 390 395 400
time (sec)

ba
nd

w
id

th
 (k

b/
s)

Figure 52. Timeline diagram of RBPP samples in Φ2. The bold curves are median (left)
and inverted average (right) estimates bEST(t,k) for k = 64.

6.5.2 Selection of k

Clearly, the best value of k (which is a tradeoff between quickly adapting to new
bottlenecks and accuracy of estimation) depends on the end-to-end path and transmission
rates of the application (i.e., the faster the rate, the more accurate are the samples, and
hence, lower values of k are more tolerable). This chapter does not deal with selecting the
value of k in real-time, but rather shows the performance of real-time estimation methods
for one value of k that was found to be a reasonable compromise between speed of adap-
tation and accuracy in our datasets. In this section, we briefly explain how we selected
such value of k.

Recall that bEST(t,k) is the estimate of capacity C at time t. We elected to use the
absolute error criteria for assessing the quality of each estimator. Therefore, the amount
of estimation error at time t is equal to bEST(t,k)–C and the average estimation error
during a session of duration T time units is given by:

 ∫ −=
T

EST dtCktb
T

ke
0

),(1)(. (71)

By analyzing the values of e(k) for different k between 16 and 512 in our datasets,
we found that the average error curve became almost flat at k = 64 and the use of values
higher than k = 64 did not significantly improve the performance of the three estimation
methods (i.e., the median, mode, and inverted average). Hence, in the rest of the chapter,

139

we use a fixed value of k = 64, which was equivalent to 6-20 seconds worth of samples in
Φ2 and 25-30 seconds in Φ32.

6.5.3 RBPP

The PDF of RBPP estimates based on the median estimator of set B(t,k), k = 64, is
shown in Figure 53. In Φ2, the median did not perform very well and maintained an in-
correct estimate close to 1,720 kb/s for over 70% of the session. At the same time, the
vicinity (±40 kb/s) of the peak at 1,500 kb/s contains only 20% of the estimates, and the
additional 10% of the estimates are spread out in between the two peaks.

However, in Φ32, the median estimate was equal to the correct value of 1,500 kb/s
for 16% of the session (the strongest peak), and the clustering around the peak was very
good, with over 50% of the estimates between 1,460 and 1,540 kb/s. We should also note
that the average estimation error e(k) was 171 kb/s in Φ2 and 105 kb/s in Φ32.

0%

10%

20%

30%

40%

50%

60%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

10%

20%

30%

40%

50%

60%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 53. PDF of RBPP median estimates in Φ2 (left) and Φ32 (right).

Figure 54 shows the PDF of estimates based on the mode estimator in both data-
sets. In computing the mode of set B(t, k), we used the bin size equal to 20 kb/s. We
found that bin size approximately equal to 1-2% of capacity C was sufficient for identify-
ing the strongest peaks of the distribution of samples and that larger bins did not improve
the accuracy of estimation (similar observations were made in [66]).

As expected, the mode did not perform well, because none of the peaks in the dis-
tribution of the RBPP samples were located at the correct values. The average estimation
error was 250 kb/s in Φ2 and 523 kb/s in Φ32.

140

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

70
0

78
0

86
0

94
0

10
20

11
00

11
80

12
60

13
40

14
20

15
00

15
80

16
60

17
40

18
20

19
00

19
80

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

70
0

78
0

86
0

94
0

10
20

11
00

11
80

12
60

13
40

14
20

15
00

15
80

16
60

17
40

18
20

19
00

19
80

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 54. PDF of RBPP mode estimates in Φ2 (left) and Φ32 (right).

Figure 55 shows the PDF of estimates produced by the inverted average estima-
tor. Note the excellent performance of the method in dataset Φ2. The method maintained
an estimate between 1,540 and 1,620 kb/s for over 93% of the session, with only a few
under-estimates as low as 1,300 kb/s. The inverted average performed best out of all
three methods in dataset Φ2; however, it was unable to achieve similar performance in
Φ32, where it produced a substantial number of under-estimates (see the figure). In Φ32,
only 10% of the estimates were located within 40 kb/s of capacity C, 20% within 100
kb/s, and 40% within 200 kb/s. Thus, the average estimation error was only 87 kb/s in
Φ2, while it remained quite high (i.e., 260 kb/s) in Φ32.

141

0%

5%

10%

15%

20%

25%

30%

35%

40%

70
0

78
0

86
0

94
0

10
20

11
00

11
80

12
60

13
40

14
20

15
00

15
80

16
60

17
40

18
20

19
00

19
80

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

5%

10%

15%

20%

25%

30%

35%

40%

70
0

78
0

86
0

94
0

10
20

11
00

11
80

12
60

13
40

14
20

15
00

15
80

16
60

17
40

18
20

19
00

19
80

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 55. PDF of RBPP inverted average estimates in Φ2 (left) and Φ32 (right).

In summary, we find that the median performed best among all three estimation
methods, if we rely on the average estimation error e(k) and take both datasets into ac-
count (i.e., using the sum of average errors in each dataset). However, if we use estimates
bEST(t,k) for the purpose of congestion control, the situation is different. Recall that the
median maintained an estimate equal to 1,720 kb/s for over 70% of the session in Φ2.
This is very unsafe, since this estimate is 200 kb/s over the actual capacity of the link.
Therefore, assuming that the safest estimator is the best, we find that the inverted average
produced estimates that are more desirable from the point of view of a congestion control
scheme.

6.5.4 ERBPP

The performance of all three estimation methods based on ERBPP samples was
much better, because each sample was more accurate (see the PDF of ERBPP samples in
section 6.4). The PDF of median estimates is shown in Figure 56. In Φ2, the clustering of
estimates was very good – 100% of them were contained between 1,460 and 1,560 kb/s
(the average estimation error was 38 kb/s). In Φ32, the clustering was even better – 100%
of the estimates between 1,480 and 1,540 kb/s (the average error was 14 kb/s).

142

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 56. PDF of ERBPP median estimates in Φ2 (left) and Φ32 (right).

Figure 57 shows the performance of the mode estimator in the same datasets. The
performance of the mode is similar to that of the median, with the exception of a small
peak at 1,280 kb/s in Φ32. Virtually all of the remaining estimates were between 1,480
and 1,560 kb/s in both datasets. The average estimation error was 31 kb/s in Φ2 and 19
kb/s in Φ32.

0%

10%

20%

30%

40%

50%

60%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

10%

20%

30%

40%

50%

60%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 57. PDF of ERBPP mode estimates in Φ2 (left) and Φ32 (right).

143

Finally, Figure 58 shows the performance of the inverted average in ERBPP. In
Φ2, the clustering of estimates was very good (with the peak at 1,540 kb/s); however, a
small number of under-estimates as low as 1,420 kb/s inflated the average error to 42
kb/s (which is still comparable to that produced by the median). In Φ32, a relatively large
number of over-estimates skewed the average error to 83 kb/s, even though the majority
(i.e., 87%) of samples were contained between 1,440 and 1,520 kb/s.

0%

10%

20%

30%

40%

50%

60%

70%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

10%

20%

30%

40%

50%

60%

70%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 58. PDF of ERBPP inverted average estimates in Φ2 (left) and Φ32 (right).

It appears that the median and the mode both performed very well in ERBPP, and
that even the inverted average was able to achieve very good accuracy (with the maxi-
mum average error of only 83 kb/s in Φ32). Furthermore, the median was more robust to
sporadic outliers than the mode, the latter of which occasionally produced estimates as
low as 1,280 kb/s. It is possible to completely rid the mode of these invalid estimates by
increasing the number of sample k in set B(t,k); however, given a limited number of sam-
ples k, we find that the median performed somewhat better than the mode in ERBPP.

6.5.5 ERBPP+

Remarkably, the median based on ERBPP+ samples performed very well in set
Φ2 as shown in Figure 59. Over 80% of the estimates in Φ2 were approximately equal to
1,500 kb/s, and the average error was only 8.6 kb/s. However, in Φ32, the situation was
different – all estimates were below 1,500 kb/s, 60% of which were above 1,440 kb/s and
only 80% above 1,400 kb/s. The resulting average error was 76 kb/s.

144

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 59. PDF of ERBPP+ median estimates in Φ2 (left) and Φ32 (right).

The performance of the mode in ERBPP+ is shown in Figure 60. In Φ2, the mode
maintained very accurate estimates throughout 80% of the session (i.e., the peak at 1,500
kb/s in the figure). However, the remaining 20% of the session, the estimate was quite
low (i.e., 1,440 kb/s), and the average error was twice that produced by the median in the
same dataset (i.e., e(k) = 15 kb/s). In Φ32, the mode again showed susceptibility to ran-
dom outliers, producing noticeable peaks at 1,160, 1,180, and 1,340 kb/s. The rest of the
estimates were still 20-40 kb/s lower than desired value (which was due to the inherent
nature of ERBPP+ to under-estimate capacity C), and the average error was 100 kb/s.

145

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 60. PDF of ERBPP+ mode estimates in Φ2 (left) and Φ32 (right).

The inverted average did not do very well in ERBPP+ as can be seen in Figure
61. Even thought its performance is very reasonable in Φ2 (average error 18 kb/s), it was
completely confused by ERBPP+ in Φ32 (average error 406 kb/s). One reason for this
could be the fact that the samples in ERBPP+ were based on partial bursts, often of vary-
ing length (where the length refers to both the number of packets that were used to derive
partial samples bm and the corresponding delay ∆T). Hence, the averaging of the corre-
sponding partial delays (i.e., delays that produce the smallest sample bm within each
burst) may not be as meaningful as previously shown on the example of RBPP.

Additionally, the PDF of ERBPP+ samples (as shown in Figure 51, right) was al-
ready seriously skewed to the left, and the inverted averaging of such widely varying and
often far-from-accurate samples scrambled the result even further as can be seen in
Figure 61. Clearly, this effect was more noticeable in Φ32, because random queuing de-
lays played a much bigger role in distorting both inter-packet and inter-burst spacing in
ERBPP+ (as can be seen from the PDF of ERBPP+ samples in Figure 51).

146

0%

10%

20%

30%

40%

50%

60%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

10%

20%

30%

40%

50%

60%

10
00

10
80

11
60

12
40

13
20

14
00

14
80

15
60

16
40

17
20

18
00

18
80

19
60

bandwidth (kb/s)

PD
F

pe
rc

en
t

Figure 61. PDF of ERBPP+ inverted average estimates in Φ2 (left) and Φ32 (right).

Note again that ERBPP+ rarely produced samples that exceeded 1,500 kb/s,
which in turn meant that its estimates were mostly below capacity C. Thus, for example,
the median ERBPP+ estimator did not produce any estimates above 1,500 kb/s, the mode
produced only 0.3%, and the inverted average only 0.4%.

147

Chapter Seven

7 Conclusion and Future Work

In this chapter, we first summarize the major results of this thesis and then discuss
some of the directions of our future work.

7.1 Conclusion
7.1.1 Internet Performance

In Chapter 3, we conducted a large-scale performance study of real-time stream-
ing in the dialup Internet. Our study showed that approximately half of all phone calls to
ISPs’ access points were unsuccessful and that typical US users needed to re-dial
connections on average once within the same state in order to sustain the minimum
quality of service (QoS) that allowed them to receive low-bitrate Internet video. Our
study found that an overwhelming majority of failures experienced by an end-user were
caused by modem-to-modem pathologies, which included physical-layer connectivity
problems (including failed negotiations and 14.4-19.2 kb/s negotiated bitrates), modems
that did not pick up the phone, busy phone lines, failed PPP negotiation (including failed
user authentication, PPP timeouts, port disconnects by the remote modem, and various
other PPP errors), failed traceroute to the server, and various IP-level problems that pre-
vented UDP packets from bypassing the very first router in the ISP network.

Interestingly, we found that large end-to-end delays did not pose much impedi-
ment to real-time retransmission during the experiment. The majority (94%) of “recover-
able” lost packets returned to the client before their decoding deadlines. We also found
that approximately 95% of all recovered packets were recovered using a single retrans-
mission attempt (i.e., a single NACK). Nevertheless, we find that the current end-to-end

148

delays in the dialup Internet are prohibitively high to support interactive real-time appli-
cations (such as video conferencing or telephony). For non-interactive applications,
startup delays in the order of 10-15 seconds are recommended given a random access
point used in streaming; however, startup delays as low as one second were found to be
acceptable over certain paths during the night. Even using forward error correction (FEC)
coding instead of retransmission to overcome packet loss does not allow us to substan-
tially lower the startup delay, because one-way delay jitter in the dialup Internet is often
very large.

We speculate that end-to-end delays under 100 ms will be required to support in-
teractive streaming, which seems to be currently possible with DSL and certain cable
modems. Furthermore, we believe that with broadband access at home, the performance
of real-time streaming will largely depend on the end-to-end congestion control em-
ployed in the streaming protocol, rather than on the backbone Internet packet-loss rates, a
particular retransmission scheme, or delay jitter (all of which are significantly less rele-
vant given low end-to-end delays). Hence, in the future, it is very important to develop
congestion control suitable for real-time multimedia flows that scales to a large number
of concurrent users and that can be deployed incrementally with the existing TCP flows
(i.e., it should possess some form of TCP-friendliness).

Even though ACK-based congestion control [110] for TCP-like flows is under-
stood fairly well, it is still not clear whether ACK-based flow control is suitable for real-
time flows. On the other hand, even though NACK-based flow control is great for rate-
based applications, its “open-loop” operation makes it much more unstable and less scal-
able [157]. We believe that future research should first address these congestion control
issues before real-time streaming becomes widely available in the Internet.

7.1.2 Real-time Retransmission

In Chapter 4, we studied the suitability of NACK-based retransmission for recov-
ering lost packets in real-time streaming applications and examined the performance of
several classes of retransmission timeout (RTO) estimators based on the traces of our
large-scale Internet experiment. Current real-time streaming applications [232] rely on
NACK-based retransmission and often do not implement congestion control. The nature
of NACK-based retransmission and the lack of congestion control in these applications
suggest that the current RTO estimation methods implemented in TCP may not be ade-
quate for NACK-based streaming protocols. Furthermore, even the existing RTO estima-
tion methods in TCP do not have a rigorous performance evaluation model, and their per-
formance over diverse Internet paths remains unknown.

Our study introduced a novel performance measure (suitable for both NACK and
ACK-based protocols), which captures the accuracy of hypothetical RTO estimators
based on packet data traces of real Internet connections. This performance measure
shows the inherent tradeoff between the number of duplicate packets generated by an es-
timator and the amount of unnecessary waiting for timeouts given the data traces.

149

Based on our performance measure, we found that in the dialup Internet (which is
often accompanied by low packet loss [156]), TCP-like estimators were not optimal in
traditional NACK-based protocols due to the large distance between RTT samples. We
further established that in the dialup Internet, the latest RTT had the most relevance to the
future RTTs and that EWMA smoothing of either RTT samples or RTT variance did not
increase the accuracy of estimation. This result suggests that large distances between
RTT samples (in the order of 15 seconds) allow end-to-end network conditions in the
Internet to change significantly, which leads us to conclude that sampling rates of higher
frequency may be required to adequately sample the RTT in the current Internet.

Furthermore, we found that frequent delay jitter samples were very useful in fine-
tuning the RTO estimation between the measurements of the RTT. Delay-jitter estimators
were found to perform much better in the modem traces; however, their benefits were
virtually nullified when the RTT was sampled at a higher frequency.

As our results show, the performance of TCP-like estimators depends on the sam-
pling frequency of the RTT. Consequently, we conclude that there is enough evidence to
suggest that the paradigm in which NACK-based applications sample the RTT only at
times of packet loss may not be very useful. We find that higher-frequency sampling of
the RTT may be necessary for accurate RTO estimation and could be additionally used
for other purposes (such as equation-based congestion control [86]). Our experiments
with NACK-based congestion control show that RTT sampling rates of once-per-RTT
can be achieved with very little overhead (i.e., the measurement of the RTT can be incor-
porated into the congestion control feedback loop). In such scenarios, our study found
that a scaled SRTT estimator was optimal and even TCP’s RTO was sufficiently accurate.

7.1.3 Scalable Rate-based Congestion Control

In Chapter 5, we analyzed the problem of scaling rate-based (or NACK-based)
congestion control methods in streaming applications to a large number of flows. The
difficulty of rate-based congestion control stems from the fact that the sender in such
protocols is not governed by “self-clocking” of acknowledgements and typically
continues to stress the network at the same rate even in the presence of severe packet loss
and congestion. In such situations of aggravated packet loss, the main problem of NACK-
based congestion control can be narrowed down to cases when the client either does not
receive any server packets at all (which by default prohibits it from changing the server’s
rate), or takes multiple retransmissions of control messages to notify the server about the
new reduced rate.

Interestingly, these problems are only noticeable when the congestion is severe
enough to require multiple retransmissions of the client’s control messages, or when the
network encounters periods of heavily-bursty loss. Our experiments with traditional (i.e.,
non-scalable) NACK-based congestion control methods found that packet loss rates in-
creased very rapidly as the number of flows on the shared link increased.

To investigate this observation further, we analyzed the class of binomial algo-
rithms and derived the formulas of packet loss increase factor sn as a function of the num-

150

number of flows: sn = O(nl+2k+1). Using our derivations we found that among all proposed
binomial schemes, AIMD had the best scalability O(n2) and the lowest packet loss. Fur-
thermore, we showed that unless the schemes had the knowledge of bottleneck capacity
C, the scalability of AIMD could not be improved, and even the performance of AIMD
was inadequate for actual use in NACK-based applications. Even though all the deriva-
tions in the chapter assumed synchronized and immediate feedback, our final formulas
were found to hold in a number of streaming experiments over a real Cisco network with
random packet loss and delayed feedback.

Given the knowledge of the bottleneck bandwidth, we showed that ideal scalabil-
ity was both theoretically and practically possible; however, the ISCC schemes were
found to be slower in their convergence to fairness when the number of flows n was
large. Even though ISCC schemes are “more careful” in probing for new bandwidth, the
average efficiency of these schemes was no worse than that of AIMD or IIAD.

Regardless of whether ISCC is a viable protocol for the current or future (i.e.,
DiffServ) Internet, Chapter 5 not only answered the question of why NACK-based con-
gestion control is “difficult,” but it also measured the exact magnitude of this “difficulty”
and provided one solution that overcomes a rapid packet-loss increase typical to “open-
loop” congestion control.

7.1.4 Real-time Estimation of the Bottleneck Bandwidth

In Chapter 6, we introduced the problem of estimating the capacity of the bottle-
neck link of an end-to-end path in real time and suggested that these estimates be used in
rate-based congestion control. We found that the sampling methods that rely on multiple
back-to-back packets (i.e., ERBPP and ERBPP+) performed significantly better than the
ones that rely on the packet-pair concept (i.e., RBPP) in a wide range of scenarios. We
tracked the problem with RBPP to random OS scheduling delays that often distorted the
spacing between arriving packets. We should further note that at higher sending rates
(i.e., T3 and up), significantly more packets will be required in each burst to reliably es-
timate transmission delay τ of the burst over the bottleneck link, and the performance of
RBPP will get progressively worse with the increase in the speed of the bottleneck capac-
ity.

In addition, we found that the ERBPP+ sampling method had clear advantages
when used over multi-channel links compared to ERBPP, but did in fact exhibit lower
accuracy over single-channel links. We also found that the majority of ERBPP+ samples
were below the actual capacity of the link and were safer to be employed in congestion
control than ERBPP samples even though they were less accurate.

Among real-time estimation methods, it appears that the median was more robust
against random outliers than the mode when used in all three sampling methods (i.e.,
RBPP, ERBPP, and ERBPP+). In addition, we found that the inverted average performed
very poorly in ERBPP+ and that its advantages were limited to RBPP in sessions with a
small number of concurrent flows (i.e., cases similar to the one in Φ2).

151

Furthermore, we noticed that the computational complexity of the median was the
highest (i.e., it involved a sorting operation of complexity O(klogk)), and that the mode
and the inverted average worked equally fast (i.e., in both cases, the complexity was a
linear function of k). However, the mode required extra memory to maintain the histo-
gram, whereas the inverted average did not require any memory overhead. Therefore, we
conclude that the performance of each estimation technique was directly related to the
cost of its implementation – the inverted average had the lowest cost and lowest perform-
ance, while the median had the highest cost and highest performance. The same observa-
tion applies to the size of set B(t,k) – larger sets typically resulted in more accurate esti-
mation and, at the same time, more computational overhead (i.e., because k was larger).
In our datasets, we found that the improvement in accuracy after k = 64 was negligible,
however, this conclusion may not hold for other network paths and/or end-to-end proto-
cols.

7.2 Future Work

In the end, we find that the fundamental question of whether ACK-based stream-
ing with extra startup delays is a better streaming solution than NACK-based congestion
control with its potential instability remains an open issue. Even though our work suc-
ceeded at designing scalable NACK-based congestion control, its performance in the
presence of heavy packet loss is still not as robust as that of its ACK-based counterparts.
Hence, we are interested in investigating the exact penalty (in terms of extra startup de-
lays or reduced video quality) that a real-time application needs to pay to run with ACK-
based congestion control. Thinking further in the same direction, it appears that some
form of hybrid ACK-NACK congestion control may be a required compromise that can
supply video applications with a rate-based flow control needed for real-time streaming
and ACK-based congestion control needed for stability.

We have further interest in studying the performance of real-time streaming in
multicast and wireless environments. In these cases, both congestion control and lost
packet recovery are very different and require future work. Congestion control in multi-
cast does not rely on a single-receiver feedback but rather depends on a set of receiver
feedbacks, which makes it difficult to decide what model of “group happiness” (e.g., sat-
isfying the slowest, or possibly the fastest, receiver) is most appropriate. Furthermore, in
certain wireless scenarios, packet loss is induced by bit errors and RF interference rather
than overflown router buffers and congestion. Hence, even in the presence of MAC-layer
forward error correction (FEC) and retransmission, congestion control over wireless links
may face additional challenges of distinguishing between congestion-related and bit-
error-related packet loss and extra delays. In addition, under high bit-error rates, MAC-
layer error recovery has the effect of clustering (i.e., compressing) the packets inside the
NIC, which presents a very difficult problem for end-to-end bandwidth estimation meth-
ods.

152

Finally, we would like to study future protocols capable of automatically distrib-
uting the streaming load between a set of servers placed at various locations in the Inter-
net and finding the nearest streaming server that matches the minimum requirements
(which could be based on the available bandwidth, packet loss, and/or end-to-end delay)
of the end-user. Ideally, this work will lead to designing a platform for large-scale real-
time video streaming in the Internet and identifying what Quality of Service (QoS)
framework is needed in the current Internet to reliably support multi-megabit per second
(i.e., broadcast-quality) streaming to home users.

153

Bibliography

[1] A. Acharya and J. Saltz, “A Study of Internet Round-trip Delay,” Technical Re-
port CS-TR-3736, University of Maryland, December 1996.

[2] B. Ahlgren, M. Björkman, and B. Melander, “Network Probing Using Packet
Trains,” Swedish Institute of Computer Science Technical Report, March 1999.

[3] J.S. Ahn, P.B. Danzig, Z. Liu, and L. Yan, “Evaluation of TCP Vegas: Emulation
and Experiment,” ACM SIGCOMM, 1995.

[4] M. Allman and V. Paxson, “On Estimating End-to-End Network Parameters,”
ACM SIGCOMM, September 1999.

[5] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” IETF RFC
2581, April 1999.

[6] P. Almquist, “Type of Service in the Internet Protocol Suite,” IETF RFC 1349,
July 1992.

[7] E. Amir, S. McCanne, and R. Katz, “Receiver-driven Bandwidth Adaptation for
Light-weight Sessions,” ACM Multimedia, 1997.

[8] E. Amir, S. McCanne, and H. Zhang, “An Application-level Video Gateway,”
ACM Multimedia, November 1995.

[9] S. Bajaj, L. Breslau, and S. Shenker, “Uniform Versus Priority Dropping for Lay-
ered Video,” ACM SIGCOMM, September 1998.

[10] F. Baker, “Requirements for IP Version 4 Routers,” IETF RFC 1812, June 1995.

[11] H. Balakrishnan, V.M. Padmanablah, S. Seshan, M. Stemm, and R.H. Katz, “TCP
Behavior of a Busy Internet Server: Analysis and Improvements,” IEEE
INFOCOM, March 1998.

154

[12] H. Balakrishnan, H.S. Rahul, and S. Seshan, “An Integrated Congestion Man-
agement Architecture for Internet Hosts,” ACM SIGCOMM, September 1999.

[13] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Algorithms,”
IEEE INFOCOM, April 2001.

[14] D. Bansal, H. Balakrishnan, S. Floyd, S. Shenker, “Dynamic Behavior of Slowly-
Responsive Congestion Control Algorithms,” ACM SIGCOMM, August 2001.

[15] S. Basu, A. Mukherjee, and S. Klivansky, “The Series Models for Internet Traf-
fic,” IEEE INFOCOM, 1996.

[16] L. Benmohamed and S.M. Meerkov, “Feedback Control of Congestion in Packet
Switching Networks: The Case of a Single Congestion Node,” IEEE/ACM Trans-
actions on Networking, vol. 1, no. 6, December 1993.

[17] J.C.R. Bennett and H. Zhang, “Hierarchical Packet Fair Queueing Algorithm,”
ACM SIGCOMM, 1996.

[18] J. Beran, “A goodness-of-fit test for time series with long-range dependence,” J.
Royal Statistical Soc. B, vol. 54, no. 3, 1992, 749-760.

[19] J. Bolliger, T. Gross, and U. Hengartner, “Bandwidth Modeling for Network-
Aware Applications,” IEEE INFOCOM, 1999.

[20] J. Bolliger, U. Hengartner, and T. Gross, “The Effectiveness of End-to-End Con-
gestion Control Mechanisms,” Technical Report #313, Department of Computer
Science, ETH Zurich, February 1999.

[21] J. Bolot, “Analysis and Control of Audio Packet Loss over Packet-Switched Net-
works,” IEEE Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV), 1995.

[22] J. Bolot, “Characterizing End-to-End Packet Delay and Loss in the Internet,”
Journal of High Speed Networks, vol. 2, no. 3, September 1993, 289-298. (also
appeared as “End-to-End Packet Delay and Loss Behavior in the Internet” in
ACM SIGCOMM, September 1993).

[23] J. Bolot, “Cost-Quality Tradeoffs in the Internet,” Computer Networks and ISDN
Systems, vol. 28, 1996, 645-651.

[24] J. Bolot and A.U. Shankar, “Optimal Least-Square Approximations to the Tran-
sient Behavior of the Stable M/M/1 Queue,” IEEE Transactions on Communica-
tions, vol. 43, no. 4, pp. 1293-1298, April 1995.

155

[25] J. Bolot and T. Turletti, “A Rate Control Mechanism for Packet Video in the
Internet,” IEEE INFOCOM, June 1994, 1216-1223.

[26] J. Bolot and T. Turletti, “Experience with Rate Control Mechanisms for Packet
Video in the Internet,” ACM Computer Communication Review, January 1998, 4-
15.

[27] J. Bolot, S. Fosse-Parisis, and D. Towsley, “Adaptive FEC-based Error Control
for Interactive Audio in the Internet,” IEEE INFOCOM, March 1999.

[28] J. Bolot, T. Turletti, and I. Wakeman, “Scalable Feedback for Multicast Video
Distribution in the Internet,” ACM SIGCOMM, August 1994.

[29] M.S. Borella, D. Swider, S. Uludag, and G.B. Brewster, “Internet Packet Loss:
Measurement and Implications for End-to-End QoS,” International Conference
on Parallel Processing, August 1998.

[30] M.S. Borella, S. Uludag, G.B. Brewster, I. Sidhu, “Self-similarity of Internet
Packet Delay,” IEEE ICC, August 1997.

[31] J.M. Boyce and R.D. Gaglianello, “Packet Loss Effects on MPEG Video Sent
Over the Public Internet,” ACM Multimedia, 1998.

[32] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V.
Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J.
Wroclawski, and L. Zhang, “Recommendations on Queue Management and Con-
gestion Avoidance in the Internet,” IETF RFC 2309, April 1998.

[33] R. Braden, editor, “Requirements for Internet Hosts -- Communication Layers,”
IETF RFC 1122, October 1989.

[34] R. Braden and J. Postel, “Requirements for Internet Gateways,” IETF RFC 1009,
June 1987.

[35] L. Brakmo and L. Peterson, “TCP Vegas: End to End Congestion Avoidance on a
Global Internet,” IEEE Journal on Selected Areas in Communications, vol. 13,
no. 8, October 1995, 1465-1480 (earlier version in ACM SIGCOMM, 1994).

[36] R.P. Brent, “Algorithms for Minimization without Derivatives,” Englewood
Cliffs, NJ, Prentice Hall, 1973.

[37] L. Breslau and S. Shenker, “Best-Effort versus Reservations: A Simple Compara-
tive Analysis,” ACM SIGCOMM, September 1998.

156

[38] R. Bruyeron, B. Hemon, and L. Zhang, “Experimentations with TCP Selective
Acknowledgment,” ACM Computer Communication Review, vol. 28, no.2, April
1998.

[39] H. Bryhni, H. Lovett, and E. Maartmann-Moe, “On-Demand Regional Television
over the Internet,” ACM Multimedia, 1996.

[40] R. Caceres, P.B. Danzig, S. Jamin, and D. Mitzel, “Characteristics of Wide-Area
TCP/IP Conversations,” ACM SIGCOMM, 1991.

[41] K.L. Calvert, M.B. Doar, and E.W. Zegura, “Modeling Internet Topology,” IEEE
Communications Magazine, June 1997.

[42] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP Latency,” IEEE
INFOCOM, March 2000.

[43] G. Carle and E.W. Biersack, “Survey of Error Recovery Techniques for IP-Based
Audio-Visual Multicast Applications,” IEEE Network, November/December
1997, 24-36.

[44] R.L. Carter, and M.E. Crovella, “Measuring Bottleneck Link Speed in Packet
Switched Networks,” International Journal on Performance Evaluation 27&28,
1996, 297-318.

[45] S. Cen, C. Pu, and J. Walpole, “Flow and Congestion Control for Internet Stream-
ing Applications,” Multimedia Computing and Networking, January 1998.

[46] V.G. Cerf, and R.E. Kahn, “A protocol for packet network interconnection,”
IEEE Transactions on Communications, vol. 22, no. 5, May 1974, pp. 637-648.

[47] L. Chiariglione, “MPEG and Multimedia Communications,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 7, no. 1, February 1997.

[48] B. Chinoy, “Dynamics of the Internet Routing Information,” ACM SIGCOMM,
September 1993.

[49] D. Chiu and R. Jain, “Analysis of the Increase/Decrease Algorithms for Conges-
tion Avoidance in Computer Networks,” Journal of Computer Networks and
ISDN Systems, vol. 17, no. 1, June 1989, 1-14.

[50] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith, “Tuning RED for Web Traf-
fic,” ACM SIGCOMM, August 2000.

[51] I. Cidon, A. Khamisy, and M. Sidi, “Analysis of Packet Loss Processes in High-
speed Networks,” IEEE Trans. Info. Theory, vol. 39, no. 1, January 1993, 98-108.

157

[52] K.C. Claffy, G. Miller, and K. Thompson, “The Nature of the Beast: Recent Traf-
fic Measurements from an Internet Backbone,” INET, Internet Society, December
1998.

[53] K.C. Claffy, G.C. Polyzos, and H-W. Braun, “Measurement Considerations for
Assessing Unidirectional Latencies,” Internetworking: Research and Experience,
vol. 4, 1993, 121-132.

[54] K.C. Claffy, G.C. Polyzos, and H-W. Braun, “Application of Sampling Method-
ologies to Network Traffic Characterization,” ACM SIGCOMM, 1993.

[55] K.C. Claffy, G.C. Polyzos, and H-W. Braun, “Traffic Characteristics of the T1
NSFNET Backbone,” IEEE INFOCOM, 1993.

[56] D.D. Clark, M.L. Lambert, and L. Zhang, “NETBLT: A Bulk Data Transfer Pro-
tocol,” IETF RFC 998, March 1987.

[57] D.D. Clark, M.L. Lambert, and L. Zhang, “NETBLT: A High Throughput Trans-
port Protocol,” ACM SIGCOMM, 1987, 353-359.

[58] D.D. Clark, S. Shenker, and L. Zhang, “Supporting Real-time Applications in an
Integrated Services Packet Network: Architecture and Mechanisms,” ACM
SIGCOMM, August 1992.

[59] M. Claypool, “The Effects of Jitter on the Perceptual Quality of Video,” ACM
Multimedia, October 1999.

[60] M. Crovella, and A. Bestavros, “Self-similarity in World Wide Web Traffic, Evi-
dence and Possible Causes,” IEEE/ACM Transactions on Networking, vol. 5, no.
6, December 1997 (earlier paper in SIGMETRICS 96).

[61] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair
Queueing Algorithm,” ACM SIGCOMM, September 1989, 1-12.

[62] B. Dempsey, J. Liebeherr, and A. Weaver, “A New Error Control Scheme for
Packetized Voice over High-Speed Local Area Networks,” 18th IEEE Local Com-
puter Networks Conference, September 1993.

[63] B. Dempsey, J. Liebeherr, and A. Weaver, “On retransmission-based error control
for continuous media traffic in packet-switching networks,” Computer Networks
and ISDN Systems, vol. 28, no. 5, March 1996, 719-736.

[64] H.R. Deng and M.L. Lin, “A type II hybrid ARQ system with adaptive code
rates,” IEEE Transactions on Communications, COM 43(2/3/4), Feb./Mar./Apr.
1995, 733-737.

158

[65] W. Ding, “Joint Encoder and Channel Rate Control of VBR Video over ATM
Networks,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 7, no. 2, April 1997.

[66] C. Dovrolis, P. Ramanathan, D. Moore, “What Do Packet Dispersion Techniques
Measure?” IEEE INFOCOM, April 2001.

[67] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional Differentiated Ser-
vices: Delay Differentiation and Packet Scheduling,” ACM SIGCOMM, Septem-
ber 1999.

[68] A.B. Downey, “Using PATHCHAR to Estimate Internet Link Characteristics,”
ACM SIGCOMM, September 1999.

[69] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK
TCP,” ACM Computer Communication Review, vol. 26, no. 3, July 1996, 5-21.

[70] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law Relationships of
the Internet Topology,” ACM SIGCOMM, September 1999.

[71] A. Feldman, A.C. Gilbert, and W. Willinger, “Data Networks as Cascades: Inves-
tigating the Multifractal Nature of Internet WAN Traffic,” ACM SIGCOMM, Sep-
tember 1998, 42-55.

[72] A. Feldman, A.C. Gilbert, P. Huang, and W. Willinger, “Dynamics of IP Traffic:
A Study of the Role of Variability and the Impact of Control,” ACM SIGCOMM,
September 1999.

[73] K.W. Fendick, M.A. Rodriguez, and A. Weiss, “Analysis of a Rate-Based Control
Strategy with Delayed Feedback,” ACM SIGCOMM, 1992.

[74] W. Feng, D. Kandlur, D. Saha, and K. Shin, “A Self-configuring RED Gateway,”
IEEE INFOCOM, 1999.

[75] W. Feng, M. Liu, B. Krishnaswami, and A. Prabhudev, “A Priority-based Tech-
nique for the Best-effort Delivery of Stored Video,” Multimedia Computing and
Networking, January 1999.

[76] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Understanding and Improving TCP
Performance Over Networks with Minimum Rate Guarantees,” IEEE/ACM
Transactions on Networking, vol. 7, no. 2, April 1999.

[77] N.R. Figueira and J. Pasquale, “Leave-in-time: A New Service Discipline for
Real-time Communications in a Packet-switching Network,” ACM SIGCOMM,
September 1995, 207-218.

159

[78] S. Floyd, “Connections with Multiple Congested Gateways in Packet Switched
Networks,” ACM Computer Communication Review, vol. 21, no. 5, October 1991,
30-47.

[79] S. Floyd, “TCP and Explicit Congestion Notification,” ACM Computer Commu-
nication Review, vol. 24, no. 5, October 1994, 10-23.

[80] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Control in
the Internet,” IEEE/ACM Transactions on Networking, vol. 7, no. 4, August 1999.

[81] S. Floyd, M. Handley, and J. Padhye, “A Comparison of Equation-Based and
AIMD Congestion Control,” ACIRI Technical Report http://www.aciri.org/tfrc/
aimd.pdf, May 2000.

[82] S. Floyd and T. Henderson, “The NewReno Modifications to TCP’s Fast Recov-
ery Algorithm,” IETF RFC 2582, April 1999.

[83] S. Floyd and V. Jacobson, “On Traffic Phase Effects in Packet-Switched Gate-
ways,” ACM Computer Communication Review, vol. 21, no. 2, April 1991.

[84] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion
Avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, August 1993,
397-413.

[85] S. Floyd and V. Paxson, “Why We Don't Know How To Simulate The Internet,”
Proceedings of the 1997 Winter Simulation Conference, December 1997.

[86] S. Floyd, M. Handley, and J. Padhye, “Equation-Based Congestion Control for
Unicast Applications,” ACM SIGCOMM, September 2000.

[87] S. Floyd, V. Jacobson, S. McCanne, C.G. Liu, and L. Zhang, “A reliable multicast
framework for lightweight sessions and application level framing,” ACM
SIGCOMM, 1995, 342-356.

[88] M.W. Garrett and M. Vetterli, “Joint Source/Channel Coding of Statistically Mul-
tiplexed Real-Time Services on Packet Networks,” IEEE/ACM Transactions on
Networking, vol. 1, no. 1, February 1993.

[89] M.W. Garrett and W. Willinger, “Analysis, Modeling, and Generation of Self-
Similar VBR Video Traffic,” ACM SIGCOMM, 1994.

[90] S.J. Golestani and S. Bhattacharyya, “A Class of End-to-End Congestion Control
Algorithms for the Internet,” IEEE International Conference on Network Proto-
cols, 1998.

160

[91] F. Gong and G.M. Parulkar, “An Application-Oriented Error Control Scheme for
High-Speed Networks,” IEEE/ACM Transactions on Networking, vol. 4, no. 5,
October 1996.

[92] R. Govindan and A. Reddy, “An Analysis of the Internet Inter-Domain Topology
and Route Stability,” IEEE INFOCOM, April 1997.

[93] M. Grossglauser and J-C. Bolot, “On the Relevance of Long-Range Dependence
in Network Traffic,” ACM SIGCOMM, 1996.

[94] P.K. Gummadi, S. Saroiu, S.D. Gribble, “A Measurement Study of Napster and
Gnutella as Examples of Peer-to-Peer File Sharing Systems,” Poster at ACM
SIGCOMM, August 2001.

[95] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,” ACM
SIGCOMM, September 1999.

[96] R. Gupta, M. Chen, S. McCanne, and J. Walrand, “WebTP: A Receiver-Driven
Web Transport,” University of California at Berkeley Technical Report, 1998.

[97] G. Hasegawa, M. Murata, and H. Miyahara, “Fairness and Stability of Congestion
Control Mechanisms of TCP,” IEEE INFOCOM, March 1999.

[98] E. Hashem, “Analysis of Random Drop for Gateway Congestion Control,” Tech-
nical Report LCS TR-465, Lab for Computer Science, MIT, 1989.

[99] J. Heidemann, K. Obraczka, and J. Touch, “Modeling the Performance of HTTP
Over Several Transport Protocols,” IEEE/ACM Transactions on Networking, vol.
5, no. 5, October 1997.

[100] M. Hemy, U. Hengartner, P. Steenkiste, and T. Gross, “MPEG System Streams in
Best-Effort Networks,” PacketVideo '99, April 1999.

[101] U. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas Revisited,” IEEE
INFOCOM, 2000.

[102] J.C. Hoe, “Improving the Start-up Behavior of a Congestion Control Scheme for
TCP,” ACM SIGCOMM, August 1996.

[103] H.W. Holbrook and D.R. Cheriton, “IP Multicast Channels: EXPRESS Support
for Large-Scale Single Source,” ACM SIGCOMM, September 1999.

[104] C-Y. Hsu, A. Ortega, and A.R. Reibman, “Joint Selection of Source and Channel
Rate for VBR Video Transmission Under ATM Policing Constraints,” IEEE

161

Journal on Selected Areas in Communications, vol. 15, no. 6, August 1997, 1016-
1028.

[105] C. Huang, M. Devetsikiotis, I. Lambadaris, and A.R. Kaye, “Modeling and Simu-
lation of Self-Similar Variable Bit Rate Compressed Video: A Unified Ap-
proach,” ACM SIGCOMM, August 1995.

[106] P. Humblet, A. Bhargava, and M.G. Hluchyj, “Ballot Theorems Applied to the
Transient Analysis of nD/D/1 Queues,” IEEE/ACM Transactions on Networking,
vol. 1, no. 1, February 1993.

[107] ISP Planet and Cahners In-Stat Group, “Dial-Up Remains ISPs' Bread and But-
ter,” http://isp-planet.com/research/2001/dialup_butter.html, 2001.

[108] ISP Planet and Telecommunications Research International, “U.S. Residential
Internet Market Grows in Second Quarter,” http://isp-planet.com/research/2001/
us_q2.html, 2001.

[109] S. Jacobs and A. Eleftheriadis, “Real-time Dynamic Rate Shaping and Control for
Internet Video Applications,” Workshop on Multimedia Signal Processing, June
1997, 23-25.

[110] V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM, 1988.

[111] V. Jacobson, “pathchar – A Tool to Infer Characteristics of Internet Paths,”
ftp://ftp.ee.lbl.gov/pathchar/.

[112] V. Jacobson, traceroute, ftp://ftp.ee.lbl.gov/traceroute.tar.gz, 1989.

[113] V. Jacobson and R. Braden, “TCP Extensions for Long-Delay Paths,” IETF RFC
1072, October 1988.

[114] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High Perform-
ance,” IETF RFC 1323, May 1992.

[115] V. Jacobson, R. Braden, and L. Zhang, “TCP Extensions for High-speed Paths,”
IETF RFC 1185, October 1990.

[116] R. Jain, “A Delay-based Approach for Congestion Avoidance in Interconnected
Heterogeneous Computer Networks,” ACM Computer Communication Review,
vol. 19, no. 5, October 1989, 56-71.

[117] R. Jain, “Congestion Control in Computer Networks: Issues and Trends,” IEEE
Network Magazine, May 1990, 24-30.

162

[118] R. Jain, “Myths about Congestion Management in High-Speed Networks,” IFIP
TC6 4th Conference on Information Networks and Data Communication, March
1992.

[119] H. Kanakia, P.P. Mishra, and A. Reibman, “An Adaptive Congestion Control
Scheme for Real-time Packet Video Transport,” IEEE/ACM Transactions on Net-
working, vol. 3, no. 6, December 1995. (also in ACM SIGCOMM, September
1993, 20-31).

[120] P. Karn and C. Partridge, “Improving round-trip time estimates in reliable proto-
cols,” ACM SIGCOMM, 1987.

[121] S. Keshav, “A Control-Theoretic Approach to Flow Control,” ACM SIGCOMM,
1991.

[122] S. Keshav, “Congestion Control in Computer Networks,” Ph.D. Thesis, Univer-
sity of California, Berkeley, September 1991.

[123] S. Keshav, “Packet-pair Flow Control,” ACM/IEEE Transactions on Networking,
1997.

[124] S. Keshav and S.P. Morgan, “SMART Retransmission: Performance with Over-
load and Random Loss,” IEEE INFOCOM, 1997.

[125] T. Kim, S. Lu, and V. Bharghavan, “Loss Proportional Decrease based Conges-
tion Control in the Future Internet,” University of Illinois Technical Report
http://timely.crhc.uiuc.edu/Drafts/tech.lipd.ps.gz, July 1999.

[126] V.P. Kompella, J.C. Pasquale, and G.C. Polyzos, “Multicast Routing for Multi-
media Communications,” IEEE/ACM Transactions on Networking, vol. 1, no. 3,
June 1993.

[127] K. Kontovasilis and N. Mitrou, “Effective Bandwidths for a Class of Non Mark-
ovian Fluid Sources,” ACM SIGCOMM, September 1997.

[128] A. Kumar, “Comparative Performance Analysis of Versions of TCP in a Local
Network with a Lossy Link,” IEEE/ACM Transactions on Networking, vol. 6, no.
4, August 1998, 485-498.

[129] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental Study of Internet Stability
and Wide-Area Network Failures,” University of Michigan Technical Report
CSE-TR-382-98, 1997.

[130] C. Labovitz, G.R. Malan, and F. Jahanian, “Internet Routing Instability,” ACM
SIGCOMM, 1997.

163

[131] C. Labovitz, G.R. Malan, and F. Jahanian, “Origins of Internet Routing Instabil-
ity," IEEE INFOCOM, 1999.

[132] K. Lai and M. Baker, “Measuring Bandwidth,” IEEE INFOCOM, March 1999.

[133] K. Lai and M. Baker, “Measuring Link Bandwidths Using a Deterministic Model
of Packet Delay,” ACM SIGCOMM, August 2000.

[134] T.V. Lakshman and U. Madhow, “Performance of TCP/IP for Networks with
High Bandwidth-Delay Products and Random Loss,” IEEE/ACM Transactions on
Networking, vol. 5, no. 3, June 1997.

[135] T.V. Lakshman, U. Madhow, and B. Suter, “Window-based Error Recovery and
Flow Control with a Slow Acknowledgement Channel: a Study of TCP/IP Per-
formance,” IEEE INFOCOM, April 1997.

[136] T.V. Lakshman, A. Ortega, and A.R. Reibman, “VBR Video: Tradeoffs and Po-
tentials,” Proceedings of the IEEE, vol. 86, no. 5, May 1998, 952-973.

[137] M. Lambert, “On Testing the NETBLT Protocol over Divers Networks,” IETF
RFC 1030, November 1987.

[138] R. Landry and I. Stavrakakis, “Study of Delay Jitter With and Without Peak Rate
Enforcement,” IEEE/ACM Transactions on Networking, vol. 5, no. 4, August
1997.

[139] K. Lee, “Performance Bounds in Communication Networks with Variable-Rate
Links,” ACM SIGCOMM, 1995.

[140] K-W. Lee, T. Kim, V. Bharghavan, “A Comparison of End-to-End Congestion
Control Algorithms: The Case of AIMD and AIPD,” University of Illinois Tech-
nical Report http://timely. crhc.uiuc.edu/~kwlee/psfiles/infocom2001.ps.gz, 2000.

[141] K-W. Lee, R. Puri, T. Kim, K. Ramchandran, V. Bharghavan, “An Integrated
Source Coding and Congestion Control Framework for Video Streaming in the
Internet,” IEEE INFOCOM, March 2000.

[142] T-H. Lee and K-C. Lai, “Characterization of Delay-Sensitive Traffic,” IEEE/ACM
Transactions on Networking, vol. 6, no. 4, August 1998.

[143] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson, “On the Self-Similar
Nature of Ethernet Traffic,” ACM/IEEE Transactions on Networking, vol. 2, no.
1, February 1994, 1-15 (earlier version in ACM SIGCOMM, 1993).

164

[144] B.N. Levine, S. Paul, and J.J. Garcia-Luna-Aceves, “Organizing Multicast Re-
ceivers Deterministically by Packet-loss Correlation,” ACM Multimedia, Septem-
ber 1998.

[145] Q. Li and D. Mills, “Investigating the Scaling Behavior, Crossover and Anti-
Persistence of the Internet Packet Delay Dynamics,” IEEE GLOBECOM, 1999.

[146] Q. Li and D. Mills, “Jitter-Based Delay-Boundary Prediction of Wide-Area Net-
works,” ACM/IEEE Transactions on Networking, vol. 9, no. 5, October 2001.

[147] Q. Li and D. Mills, “On the Long-Range Dependence of Packet Round-Trip De-
lays in Internet,” IEEE ICC, vol. 2, 1998, 1185-1191.

[148] Q. Li and D. Mills, ”The Delay Characterization of Wide-Area Networks,” Under
submission, January 26, 2000.

[149] S-Q. Li and C-L. Hwang, “Queue Response to Input Correlation Functions: Con-
tinuous Spectral Analysis,” IEEE/ACM Transactions on Networking, vol. 1, no. 6,
December 1993.

[150] S-Q. Li and J.D. Pruneski, “The Linearity of Low Frequency Traffic Flow: An
Intrinsic I/O Property in Queueing Systems,” IEEE/ACM Transactions on Net-
working, vol. 5, no. 3, June 1997.

[151] X. Li, M. Ammar, and S. Paul, “Layered video multicast with retransmission
(LVMR): Evaluation of Error Recovery Schemes,” IEEE INFOCOM, 1998.

[152] X. Li, S. Paul, P. Pancha, and M. Ammar, “Layered Video Multicast with Re-
transmission (LVMR): Evaluation of Error Recovery Schemes,” IEEE Workshop
on Network and Operating System Support for Digital Audio and Video
(NOSSDAV), May 1997.

[153] D. Lin and H.T. Kung, “TCP Fast Recovery Strategies: Analysis and Improve-
ments,“ IEEE INFOCOM, March 1998.

[154] D. Lin and R. Morris, “Dynamics of Random Early Detection,” ACM SIGCOMM,
1997.

[155] Y-D.J. Lin, T-C. Tsai, S-C. Huang, and M. Gerla, “HAP: A New Model for
Packet Arrivals,” ACM SIGCOMM, 1993.

[156] D. Loguinov and H. Radha, “End-to-End Internet Video Traffic Dynamics: Statis-
tics Study and Analysis,” IEEE INFOCOM, July 2002.

165

[157] D. Loguinov and H. Radha, “Increase-Decrease Congestion Control for Real-time
Streaming: Scalability,” IEEE INFOCOM, July 2002.

[158] D. Loguinov and H. Radha, "Large-Scale Experimental Study of Internet Per-
formance Using Video Traffic," ACM SIGCOMM Computer Communication Re-
view (CCR), vol. 32, no. 1, January 2002.

[159] D. Loguinov and H. Radha, “On Retransmission Schemes for Real-time Stream-
ing in the Internet,” IEEE INFOCOM, 2001.

[160] D. Loguinov and H. Radha, "Retransmission Schemes for Streaming Internet
Multimedia: Evaluation Model and Performance Analysis," ACM SIGCOMM
Computer Communication Review (CCR), vol. 32, no. 2, April 2002.

[161] G.R. Malan and F. Jahanian, “An Extensible Probe Architecture for Network Pro-
tocol Performance Measurement,” ACM SIGCOMM, 1998.

[162] A. Mankin and K. Ramakrishnan, “Gateway Congestion Control Survey,” RFC
1254, August 1991.

[163] R. Marasli, P.D. Amer, and P.T. Conrad, “Retransmission-based Partially Reli-
able Transport Service: An Analytic Model,” IEEE INFOCOM, 1996.

[164] M. Mathis and J. Mahdavi, “Forward Acknowledgement: Refining TCP Conges-
tion Control,” ACM SIGCOMM, August 1996.

[165] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowl-
edgment Options,” IETF RFC 2018, October 1996.

[166] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm,” ACM Computer Communication Review, vol.
27, no. 3, July 1997, 67-82.

[167] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to Deploy RED,”
IFIP/IEEE International Workshop on Quality of Service (IWQoS), 1999.

[168] S. McCanne and V. Jacobson, “Receiver-driven Layered Multicast,” ACM
SIGCOMM, August 1996.

[169] S. McCanne and V. Jacobson, “vic: A Flexible Framework for Packet Video,”
ACM Multimedia, November 1995.

[170] S. McCanne, M. Vetterli, and V. Jacobson, “Low Complexity Video Coding for
Received-Driven Layered Multicast,” IEEE Journal on Selected Areas in Com-
munications, vol. 15, no. 6, August 1997.

166

[171] P. McKenney, “Stochastic Fairness Queueing,” IEEE INFOCOM, 1990.

[172] B. Melander, M. Björkman, P. Gunningberg, “A New End-to-End Probing and
Analysis Method for Estimating Bandwidth Bottlenecks,” IEEE GLOBECOM,
November 2000.

[173] A. Mena and J. Heidemann, “An Empirical Study of Real Audio Traffic,” IEEE
INFOCOM, March 2000.

[174] Microsoft Media Player. Microsoft Corporation, http://www.microsoft.com/win-
dows/mediaplayer/en/default.asp?RLD=58.

[175] P.P. Mishra and H. Kanakia, “A Hop by Hop Rate-Based Congestion Control
Scheme,” ACM SIGCOMM, August 1992.

[176] A. Misra and T. Ott, “The Window Distribution of Idealized TCP Congestion
Avoidance with Variable Packet Loss,” IEEE INFOCOM, 1999.

[177] J. Mo, R.J. La, V. Anantharam, and J. Walrand, “Analysis and Comparison of
TCP Reno and Vegas,” IEEE INFOCOM, March 1999.

[178] J.C. Mogul, “Observing TCP Dynamics in Real Networks,” ACM SIGCOMM,
1992.

[179] R. Morris, “TCP Behavior with Many Flows,” IEEE International Conference on
Network Protocols (ICNP), October 1997.

[180] D. Mosberger, L.L. Peterson, P.G. Bridges, and S. O’Malley, “Analysis of Tech-
niques to Improve Protocol Processing Latency,” ACM SIGCOMM, 1996.

[181] MPEG-4 International Standard, Part 2: Visual. ISO/IEC FDIS 14496-2, October
1998.

[182] A. Mukherjee, “On the Dynamics and Significance of Low Frequency Compo-
nents of Internet Load,” Internetworking: Research and Experience, vol. 5, 163-
205, 1994.

[183] A. Mukherjee and J.C. Strikwerda, “Analysis of Dynamic Congestion Control
Protocols – A Fokker-Planck Approximation,“ ACM SIGCOMM, 1991.

[184] J. Nagle, “Congestion Control in IP/TCP Internetworks,” IETF RFC 896, January
1984.

[185] J. Nagle, “On Packet Switches With Infinite Storage,” IETF RFC 970, December
1985.

167

[186] T. Nandagopal, K-W. Lee, J.R. Li, V. Bharghavan, “Scalable Service Differentia-
tion Using Purely End-to-End Mechanisms: Features and Limitations,”
IFIP/IEEE International Workshop on Quality of Service (IWQoS), June 2000.

[187] Napster, http://www.napster.com.

[188] J.A. Nelder and R. Mead, “A simplex method for function minimization,” Com-
puter Journal, vol. 7, 1965, pp. 308-313.

[189] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers,” IETF RFC 2474, De-
cember 1998.

[190] A. Orda, R. Rom, and M. Sidi, “Minimum Delay Routing in Stochastic Net-
works,” IEEE/ACM Transactions on Networking, vol. 1, no. 2, April 1993.

[191] A. Ortega, “Optimal Bit Allocation under Multiple Rate Constraints,” Data Com-
pression Conference, April 1996.

[192] A. Ortega, M.W. Garrett, and M. Vetterli, “Toward Joint Optimization of VBR
Video Coding and Packet Network Traffic Control,” Packet Video Workshop,
March 1993.

[193] A. Ortega and K. Ramchandran, “Rate Distortion Methods for Image and Video
Compression,” IEEE Signal Processing Magazine, November 1998, 23-50.

[194] T. Ott, J.H.B Kemperman, and M. Mathis, “The Stationary Behavior of Ideal TCP
Congestion Avoidance,” http://www.psc.edu/ networking/tcp_friendly.html, Au-
gust 1996.

[195] J. Padhye, V. Firoiu, and D. Towsley, “A Stochastic Model of TCP Reno Conges-
tion Avoidance and Control,” CMPSCI Technical Report 99-02, 1999.

[196] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Throughput: A
Simple Model and its Empirical Validation,” ACM SIGCOMM, September 1998.

[197] J. Padhye, J. Kurose, and D. Towsley, “A TCP-Friendly Rate Adjustment Proto-
col for Continuous Media Flows over Best Effort Networks,” ACM
SIGMETRICS, 1999.

[198] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, “A Model Based TCP-Friendly
Rate Control Protocol,” IEEE Workshop on Network and Operating System Sup-
port for Digital Audio and Video (NOSSDAV), 1999.

168

[199] C. Papadopoulos and G.M. Parulkar, “Retransmission-based Error Control for
Continuous Media Applications,” IEEE Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), 1996.

[200] A. Parekh and R.G. Gallager, “A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks: The Single-Node Case,”
IEEE/ACM Transactions on Networking, vol. 1, no. 3, June 1993, 344-357.

[201] K. Park, “Warp Control: A Dynamically Stable Congestion Protocol and its
Analysis,” ACM SIGCOMM, 1993.

[202] S. Paul, S.K. Sabnani, J.C. Lin, S. Bhattacharyya, “Reliable Multicast Transport
Protocol (RMTP),” IEEE Journal on Selected Areas in Communications, vol. 15,
no. 3, April 1997 (earlier version in IEEE INFOCOM, 1996).

[203] V. Paxson, “Automated Packet Trace Analysis of TCP Implementations,” ACM
SIGCOMM, September 1997.

[204] V. Paxson, “Empirically Derived Analytic Models of Wide-Area TCP Connec-
tions," IEEE/ACM Transactions on Networking, vol. 2, no. 4, August 1994.

[205] V. Paxson, “End-to-End Internet Packet Dynamics,” ACM SIGCOMM, Septem-
ber 1997.

[206] V. Paxson, “End-to-End Routing Behavior in the Internet,” ACM SIGCOMM,
August 1996.

[207] V. Paxson, “Fast, Approximate Synthesis of Fractional Gaussian Noise for Gen-
erating Self-Similar Network Traffic,” ACM Computer Communication Review,
vol. 27, no. 5, October 1997, 5-18.

[208] V. Paxson, “Growth Trends in Wide-Area TCP Connections,” IEEE Network, vol.
8, no. 4, July/August 1994.

[209] V. Paxson, “Measurements and Analysis of End-to-End Internet Dynamics,”
Ph.D. dissertation, Computer Science Department, University of California at
Berkeley, 1997.

[210] V. PAXSON, “On Calibrating Measurements of Packet Transit Times,” ACM
SIGMETRICS, 1998.

[211] V. Paxson, “Towards a Framework for Defining Internet Performance Metrics,”
Proceedings of the INET, 1996.

169

[212] V. Paxson and M. Allman, “Computing TCP's retransmission timer,” IETF RFC
2988, November 2000.

[213] V. Paxson and S. Floyd, “Difficulties in Simulating the Internet,” IEEE/ACM
Transactions on Networking, vol. 9, no. 4, August 2001.

[214] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson Modeling,”
IEEE/ACM Transactions on Networking, vol. 3, no. 3, 1994, 226-244 (earlier
version in ACM SIGCOMM, 1994).

[215] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An Architecture for Large-
Scale Internet Measurement,” IEEE Communications, August 1998.

[216] S. Pejhan, M. Schwartz, and D. Anastassiou, “Error control using retransmission
schemes in multicast transport protocols for real-time media,” IEEE/ACM Trans-
actions on Networking, vol. 4, no. 3, June 1996, 413-427.

[217] S.P. Pizzo, “Why Is Broadband So Narrow?” Forbes ASAP, September 2001, p.
50.

[218] M. Podolsky, C. Romer and S. McCanne, “Simulation of FEC-based error control
for packet audio on the Internet,” IEEE INFOCOM, 1998.

[219] J. Postel, “Internet Control Message Protocol,” IETF RFC 792, September 1981.

[220] J. Postel, “Internet Protocol,” IETF RFC 791, September 1981.

[221] J. Postel, “Transmission Control Protocol – DARPA Internet Program Protocol
Specification,” IETF RFC 793, September 1981.

[222] J. Postel, “User Datagram Protocol,” IETF RFC 768, August 1980.

[223] Quality of Service Configuration Guide. Cisco IOS 12.0 User's Guide, Cisco Sys-
tems, October 1999.

[224] H. Radha and Y. Chen, “Fine-Granular Scalable Video for Packet Networks,”
IEEE Packet Video, May 1999.

[225] H. Radha, Y. Chen, K. Parthasarathy, and R. Cohen, “Scalable Internet Video Us-
ing MPEG-4,” Signal Processing: Image Communications Journal, 1999.

[226] H. Radha et al. "The MPEG-4 Fine-Grained Scalable Video Coding Method for
Multimedia Streaming Over IP", IEEE Transactions on Multimedia, March 2001,
vol. 3, no. 1, pp. 53-68.

170

[227] S. Raman and S. McCanne, “A Model, Analysis, and Protocol Framework for
Soft State-based Communication,” ACM SIGCOMM, September 1999.

[228] K. Ramakrishnan and S. Floyd, “A Proposal to Add Explicit Congestion Notifica-
tion (ECN) to IP,” IETF RFC 2481, January 1999.

[229] K. Ramakrishnan and R. Jain, “A Binary Feedback Scheme for Congestion
Avoidance in Computer Networks with Connectionless Network Layer,” ACM
SIGCOMM, August 1988, 303-313.

[230] S. Ramanathan and P.V. Rangan, “Adaptive Feedback Techniques for Synchro-
nized Multimedia Retrieval over Integrated Networks,” IEEE/ACM Transactions
on Networking, vol. 1, no. 2, April 1993.

[231] S. Ratnasamy and S. McCanne, “Inference of Multicast Routing Trees and Bot-
tleneck Bandwidths using End-to-End Measurements,” IEEE INFOCOM, 1999.

[232] Real Player G2, Real Networks, http://www.real.com.

[233] I.S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” Jour-
nal of the Society of Industrial and Applied Mathematics, vol. 8, no. 2, June 1960,
300-304.

[234] A.R. Reibman and B.G. Haskell, “Constrains on Variable Bit-rate Video for ATM
Networks,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 2, no. 4, December 1992.

[235] R. Rejaie, “An End-to-End Architecture for Quality Adaptive Streaming Applica-
tions in the Internet,” Ph.D. Thesis, Computer Science Department, University of
Southern California, December 1999.

[236] R. Rejaie and M. Handley, “Quality Adaptation for Congestion Controlled Video
Playback over the Internet,” ACM SIGCOMM, September 1999.

[237] R. Rejaie, M. Handley, and D. Estrin, “Architectural Considerations for Playback
of Quality Adaptive Video over the Internet,” Technical report 98-686, Computer
Science Department, University of Southern California.

[238] R. Rejaie, M. Handley, and D. Estrin, “Multimedia Proxy Caching Mechanism for
Quality Adaptive Streaming Applications in the Internet,” IEEE INFOCOM,
March 2000.

[239] R. Rejaie, M. Handley, and D. Estrin, “RAP: An End-to-End Rate-based Conges-
tion Control Mechanism for Real-time Streams in the Internet,” IEEE INFOCOM,
March 1999.

171

[240] S.R. Resnick, “Heavy Tail Modeling and Teletraffic Data,” Annals of Statistics,
vol. 25, no. 5, 1997, 1805-1869.

[241] I. Rhee, “Error Control Techniques for Interactive Low Bitrate Video Transmis-
sion over the Internet,” ACM SIGCOMM, September 1998.

[242] V.J. Ribeiro, R.H. Reidi, M.S. Crouse, and R. Baraniuk, “Simulation of nonGaus-
sian Long-Range-Dependent Traffic using Wavelets,” ACM SIGMETRICS, 1999.

[243] A. Romanow and S. Floyd, “Dynamics of TCP Traffic over ATM Networks,”
IEEE Journal on Selected Areas in Communications (JSAC), May 1995.

[244] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP Congestion Con-
trol with a Misbehaving Receiver,” ACM Computer Communication Review, vol.
29, no. 5, October 1999, 71-78.

[245] S. Savage, A. Collins, and E. Hoffman, “The End-to-End Effects of Internet Path
Selection,” ACM SIGCOMM, September 1999.

[246] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport
Protocol for Real-Time Applications,” IETF RFC 1889, December 1996.

[247] S. Servetto and K. Nahrstedt, “Broadcast Quality Video over IP,” IEEE Transac-
tions on Multimedia, vol. 3, no. 1, March 2001.

[248] A. Shaikh, J. Rexford, and K.G. Shin, “Load-Sensitive Routing of Long-Lived IP
Flows,” ACM SIGCOMM, September 1999.

[249] J.M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet Coeffi-
cients,” IEEE Transactions on Signal Processing, vol. 41, no. 12, December
1993, 3445-3462.

[250] H-D. Sheng and S-Q. Li, “Spectral Analysis of Packet Loss Rate at a Statistical
Multiplexer for Multimedia Services,” IEEE/ACM Transactions on Networking,
vol. 2, no. 1, February 1994.

[251] S. Shenker, “A Theoretical Analysis of Feedback Flow Control,” ACM
SIGCOMM, September 1990, 156-165.

[252] S. Shenker, “Fundamental Design Issues for the Future Internet,” IEEE Journal
on Selected Areas in Communications (JSAC), vol. 13, no. 7, 1995, 1176-1188.

[253] A. Shionozaki and M. Tokoro, “Control Handling in Real-Time Communication
Protocols,” ACM SIGCOMM, 1993.

172

[254] W. Simpson, editor, “The Point-to-Point Protocol (PPP),” IETF RFC 1661, July
1994.

[255] D. Sisalem and H. Schulzrinne, “The Loss-delay Based Adjustment Algorithm: A
TCP-friendly adaptation scheme,” IEEE Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), 1998.

[256] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti, “The PPP Mul-
tilink Protocol (MP),” IETF RFC 1990, August 1996.

[257] V. Srinivasan, S. Suri, and G. Verghese, “Packet Classification using Tuple Space
Search,” ACM SIGCOMM, September 1999.

[258] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms,” IETF RFC 2001, January 1997.

[259] I. Stoica and H. Zhang, “Providing Guaranteed Services without Per Flow Man-
agement,” ACM SIGCOMM, September 1999.

[260] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless Fair Queueing: Achieving
Approximately Fair Bandwidth Allocations in High-speed Networks,” ACM
SIGCOMM, September 1998, 118-130.

[261] G. Sullivan and T. Wiegand, “Rate Distortion Optimization for Video Compres-
sion,” IEEE Signal Processing Magazine, November 1998, 74-89.

[262] R. Talluri, “Error-Resilient Video Coding in the ISO MPEG-4 Standard,” IEEE
Communications Magazine, June 1998, 112-119.

[263] W. Tan and A. Zakhor, “Real-Time Internet Video Using Error Resilient Scalable
Compression and TCP-Friendly Transport Protocol,” IEEE Transactions on Mul-
timedia, vol. 1, no. 2, June 1999 (earlier paper in IEEE ICIP, 1998).

[264] T. Turletti and G. Huitema, “Videoconferencing on the Internet,” IEEE/ACM
Transactions on Networking, vol. 4, no. 3, June 1996.

[265] UUnet Latency Statistics. http://uunet.com/network/latency.

[266] B. Vandalore, W-C. Feng, R. Jain, and S. Fahmy, “A Survey of Application Layer
Techniques for Adaptive Streaming of Multimedia,” Ohio State University Te-
chincal Report, OSU-CISRC-5/99-TR14, April 1999.

[267] N. Venkitaraman, T-E. Kim, and K-W. Lee, “Design and Evaluation of Conges-
tion Control Algorithms in the Future Internet,” ACM SIGMETRICS, 1999.

173

[268] S. Vutukury and J.J. Garcia-Luna-Aceves, “A Simple Approximation to Mini-
mum-Delay Routing,” ACM SIGCOMM, September 1999.

[269] M. Wada, “Selective recovery of video packet loss using error concealment,”
IEEE Journal on Selected Areas in Communications, vol. 7, June 1989, 807-814.

[270] R. Wade, M. Kara, and P.M. Dew, “Study of a Transport Protocol Employing
Bottleneck Probing and Token Bucket Flow Control,” 5th IEEE Symposium on
Computers and Communications, July 2000.

[271] Y. Wang and B. Sengupta, “Performance Analysis of a Feedback Congestion
Control Policy Under Non-Negligible Propagation Delay,” ACM SIGCOMM,
1991.

[272] Y. Wang and Q-F. Zhu, “Error Control and Concealment for Video Communica-
tion: Review,” Proceedings of the IEEE, vol. 86, no. 5, May 1998.

[273] Z. Wang and J. Crowcroft, “Analysis of Burstiness and Jitter in Real-Time Com-
munications,” ACM SIGCOMM, 1993.

[274] J. Widmer, “Equation-based Congestion Control,” Diploma Thesis, Department
of Mathematics and Computer Science, University of Mannheim, February 2000.

[275] C.L. Williamson, “Optimizing File Transfer Response Time Using the Loss-Load
Curve Congestion Control Mechanism,” ACM SIGCOMM, 1993.

[276] C.L. Williamson and D.R. Cheriton, “Loss-Load Curves: Support for Rate-Based
Congestion Control in High-Speed Datagram Networks,” ACM SIGCOMM, Sep-
tember 1991, 17-28.

[277] W. Willinger and V. Paxson, “Where Mathematics Meets the Internet,” Notices of
the American Mathematical Society, vol. 45, no. 8, August 1998, 961-970.

[278] W. Willinger, V. Paxson, and M.S. Taqqu, “Self-Similarity and Heavy Tails:
Structural Modeling of Network Traffic,” Appears in “A Practical Guide to
Heavy Tails: Statistical Techniques and Applications,” book by Adler, R., et al.,
Birkhauser, Boston, 1998, 27-53.

[279] W. Willinger, M.S. Taqqu, R. Sherman, and D.V. Wilson, “Self-Similarity
Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the
Source Level,” ACM SIGCOMM, 1995.

[280] D.E. Wrege, E.W. Knightly, H. Zhang, and J. Liebeherr, “Deterministic Delay
Bounds for VBR Video in Packet-Switching Networks: Fundamental Limits and

174

Practical Trade-offs,” IEEE/ACM Transactions on Networking, vol. 4, no. 3, June
1996.

[281] L. Wu, R. Sharma, and B. Smith, “Thin Streams: An Architecture for Multicast-
ing Layered Video,” Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV), May 1997.

[282] M. Yajnik, J. Kurose, and D. Towsley, “Packet Loss Correlation in the MBone
Multicast Network,” IEEE GLOBECOM, November 1996.

[283] M. Yajnik, S. Moon, J. Kurose, and D. Townsley, “Measurement and Modelling
of the Temporal Dependence in Packet Loss,” IEEE INFOCOM, 1999.

[284] C-Q. Yang and A. Reddy, “A Taxonomy for Congestion Control Algorithms in
Packet Switching Networks,” IEEE Network Magazine, vol. 9, no. 5, July/August
1995.

[285] Y.R. Yang, M.S. Kim, and S.S. Lam, “Transient Behaviors of TCP-friendly Con-
gestion Control Protocols,” IEEE INFOCOM, April 2001.

[286] Y.R. Yang and S.S. Lam, “General AIMD Congestion Control,” University of
Texas at Austin Technical Report ftp://ftp.cs.utexas.edu/pub/lam/gaimd.ps.gz,
May 2000.

[287] D. Yates, J. Kurose, D. Towsley, and M.G. Hluchyj, “On Per-Session End-to-End
delay distributions and the call admission problem for real-time applications with
QoS requirements,” ACM SIGCOMM, 1993.

[288] D.K.Y. Yau and S. Lam, “Adaptive Rate-Controlled Scheduling for Multimedia
Applications,” IEEE/ACM Transactions on Networking, vol. 5, no. 4, August
1997.

[289] E.W. Zegura, K.L. Calvert, and S. Bhattacharjee, “How to Model an Internet-
work,” IEEE INFOCOM, 1996.

[290] L. Zhang, “A New Architecture for Packet Switching Network Protocols,”
MIT/LCS/TR-455, Lab for Computer Science, MIT, August 1989.

[291] L. Zhang, S. Shenker, and D.D. Clark, “Observations on the Dynamics of a Con-
gestion Control Algorithm: The effect of two-way traffic,” ACM SIGCOMM,
September 1991.

[292] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the Constancy of Internet
Path Properties,” ACM SIGCOMM Internet Measurement Workshop (IMW), No-
vember 2001.

