
C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

1

Enabling High-Performance 

Internet-Wide Measurements on 

Windows

Matt Smith 

Joint work with Dmitri Loguinov

Internet Research Lab

Department of Computer Science and Engineering

Texas A&M University

April 9, 2010



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

2

Agenda

• Introduction

━ Background and Motivations

• Windows / Linux Network Stacks: An Overview

• Our Approach: IRLstack

• Performance Evaluation

• Conclusion



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

3

Introduction

• As the Internet continues to grow, capturing 

accurate large-scale measurements remains an 

important research problem

━ How big is the web? Can we capture a “snapshot” of 

a P2P network? Etc.

• Distributed server clusters are often used in 

commercial applications

━ May not be available to academic researchers

• Bottlenecks in measurement projects are often 

encountered at the client-side

━ Rate at which requests can be issued



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

4

Motivations

• A few of our representative projects which require 

high sustained rates of measurement traffic:

━ P2P network analysis (Gnutella crawler)

━ IRLbot web crawler

━ DNS infrastructure traversal

━ Service discovery using horizontal scanning

• All these projects measure networks which 

constantly evolve during the measurement period

• Other applications (e.g., IDS, monitoring tools) 

also benefit from a scalable network stack



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

5

Motivations

• Our goal: wire-rate transmission and capture of 

packets of all sizes

• Similar work has been done on Linux platforms; 

however no serious efforts have used Windows 

thus far

• We show that Windows can be used as a 

platform for serious high-performance research 

as well



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

6

Agenda

• Introduction

━ Background and Motivations

• Windows / Linux Network Stacks: An Overview

• Our Approach: IRLstack

• Performance Evaluation

• Conclusion



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

7

Windows Network Stack Overview

• Three classes of drivers which implement 

different layers of functionality

━ NDIS: Network Driver Interface Specification

• Protocol drivers: accept requests from user-

space, construct link-layer frames as appropriate

• Filter drivers: receive and possibly process any 

frames sent to or from the NIC

━ Note that WinPcap is implemented as a filter driver 

with a direct interface to user-space

• Miniport drivers: specific to each NIC, directly 

interface with hardware; DMA, interrupts, etc.



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

8

Windows Network Stack Overview



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

9

Linux Network Stack Overview

• Our primary Linux comparison focuses on the 

modified stack available from the ntop project, 

which makes two main contributions

• PF_RING: uses DMA and Intel I/OAT for zero-

copy availability of kernel memory buffers in 

user-space

• TNAPI: deserializes receive operations utilizing 

multiple RX queues and making them available 

concurrently



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

10

Performance Evaluation: Winsock 

and WinPcap
• As mentioned earlier, several of our projects 

would benefit from very high send/receive rates

━ Hundreds of thousands of packets per second (pps); 

implies small packets and more overhead

━ Ideally wire rate: 1,488,095 pps for Gigabit Ethernet

• Maximum single-NIC transmit rates on our test 

system left much to be desired, despite 100% 

CPU usage

━ Winsock best case (raw IP socket, single destination): 

207 kpps

━ WinPcap: 50 kpps



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

11

Performance Evaluation: Winsock 

and WinPcap
• What bottlenecks prevent Winsock/WinPcap

from achieving wire-rate performance?

━ For Winsock, primarily IP table lookups

━ At a common lower level (NDIS), synchronization 

spinlock overhead required for every transfer

━ The amount of “overhead” work per packet 

(irrespective of length) is very high

• With these constraints we cannot achieve wire 

rate with minimum-sized packets – which 

measurement traffic tends to be



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

12

Agenda

• Introduction

━ Background and Motivations

• Windows / Linux Network Stacks: An Overview

• Our Approach: IRLstack

• Performance Evaluation

• Conclusion



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

13

Our Approach: IRLstack

• Goal: build a very high-performance interface for 

sending/receiving packets directly from a NIC

━ Applications can use this interface directly (i.e., a “raw 

socket” interface)

━ Alternately, an intermediate layer (e.g., simplified TCP 

stack) can sit between IRLstack and the user-space 

application

• Any per-packet processing that isn’t absolutely 

necessary is not included

• Batching of many packets (sending or receiving) 

maximizes useful work per request



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

14

Our Approach: IRLstack

• IRLstack is implemented as an NDIS driver 

stack with direct access from user space 

━ E.g., ReadFile/WriteFile APIs

• Two components of the stack

━ IRLstackP.sys protocol driver – user applications 

open a handle to this driver; processes send/receive 

requests

━ IRLstackF.sys filter driver – intercepts all incoming 

packets, redirects to IRLstackP.sys as appropriate

━ The filter driver uses a list of IP addresses assigned 

to IRLstack to rewrite link-layer frame headers and 

perform the redirection



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

15

Our Approach: IRLstack

• To accommodate packet batching, IRLstack

request buffers consist of a series of complete 

link-layer (usually Ethernet) frames

━ A small header specific to IRLstack precedes each 

frame

━ The same format is used on both TX and RX paths

IRLstack header

Link-layer frame

First packet Second packet, etc.



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

16

Our Approach: IRLstack

• Other design notes:

━ Multiple requests can be outstanding at a time

━ Checksums usually need not be calculated in 

software (if using a NIC with checksum offloading)

━ An entire buffer (hundreds or thousands of packets) is 

processed as a single request at all levels in the 

kernel

━ Zero-copy send path

━ IRLstack coexists with the Windows network stack on 

a single adapter; default configuration requires an 

extra IP address to be assigned to the interface



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

17

Agenda

• Introduction

━ Background and Motivations

• Windows / Linux Network Stacks: An Overview

• Our Approach: IRLstack

• Performance Evaluation

• Conclusion



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

18

Performance Evaluation

• Our testing focuses on minimum-size packets

━ Reflects the properties of much of our measurement 

traffic

━ This is the “hardest” scenario – most overhead

• Optimal transmission rate occurs around 512 

packets per call on our test setup (Intel Pro/1000 

PT network adapter)

━ Batch sizes below 100 packets are unable to fully 

utilize a gigabit link; less work is done per trip down 

the network stack

━ Large batches (thousands of packets) actually start to 

lose performance, which we attribute to the miniport



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

19

Performance Evaluation



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

20

Performance Evaluation

• Receive performance is somewhat (~20-50%) 

slower than send performance

━ Not zero-copy at the moment

━ Interrupt frequency is higher and batch size is lower 

(e.g., 64); this is out of our direct control as miniport 

drivers on Windows are typically not open-source

• For reference we look to the Linux numbers from 

the ntop project; IRLstack’s performance 

compares favorably on similar hardware



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

21

Agenda

• Introduction

━ Background and Motivations

• Windows / Linux Network Stacks: An Overview

• Our Approach: IRLstack

• Performance Evaluation

• Conclusion



C
o

m
p

u
te

r 
S
c

ie
n

c
e

, 
Te

x
a

s 
A

&
M

 U
n

iv
e

rs
it
y

22

Conclusion

• More information about latency and TCP 

performance can be found in the full paper

• Windows has traditionally been avoided as a 

research platform; however with a well-designed 

driver suite such as IRLstack this need not be 

the case

• Areas of future work:

━ Further optimization on receive path

━ Evaluation on 10 Gigabit Ethernet NICs and with 

other new hardware features (e.g., DMA remapping)


