Around the Web in Six Weeks: Documenting a Large-Scale Crawl

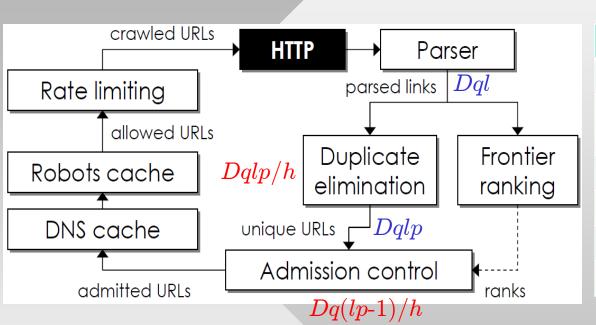
Sarker Tanzir Ahmed, Clint Sparkman, Hsin-Tsang Lee, and Dmitri Loguinov

Internet Research Lab
Department of Computer Science and Engineering
Texas A&M University

April 29, 2015

- Introduction
- Background
- Crawl Analysis
 - Page-Level
 - Server-Level
- Internet Coverage
- Extrapolation
- Conclusion

Introduction


- Web crawling is a challenging experiment
 - Its perceived difficulty hinders non-commercial endeavors
- Industry has been the major player
 - Reluctant to disclose actual methodology
- Academic endeavors are limited
 - Popular belief that a Internet-wide requires huge hardware setup
 - Most published crawls are rather limited in size and span in the Internet and lack useful details about the crawl
 - No standard methodology to compare different crawls

Introduction (2)

- Our IRLbot crawl experiment in 2007 is the largest non-commercial crawl of the Internet to this date
 - Collected 7.3B pages in 41 days using a single crawler node
- Here the objective is to dissect the collected data
 - Analyze Internet wide coverage, spam avoidance etc
 - Compare to commercial search engines using a novel method

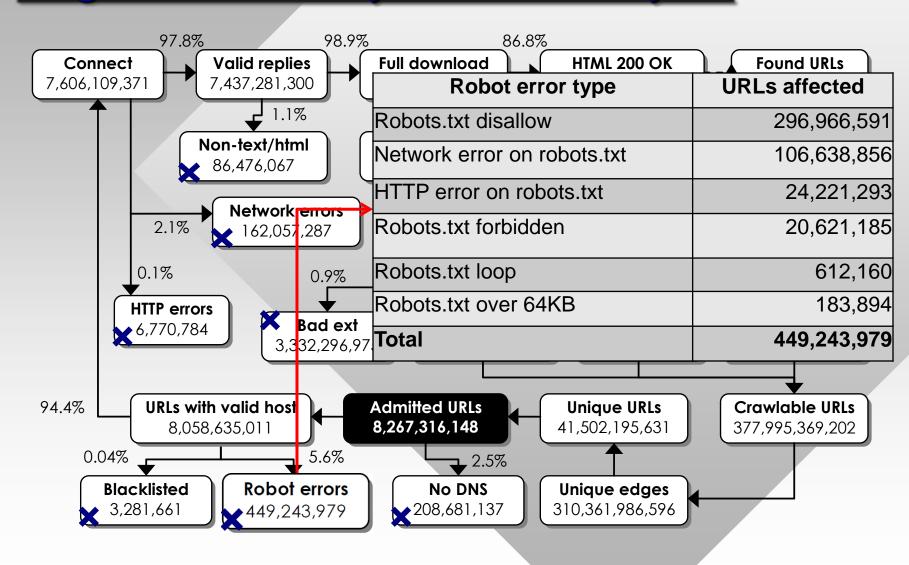
- Introduction
- Background
- Crawl Analysis
 - Page-Level
 - Server-Level
- Internet Coverage
- Extrapolation
- Conclusion

Background - Inside a Web Crawler

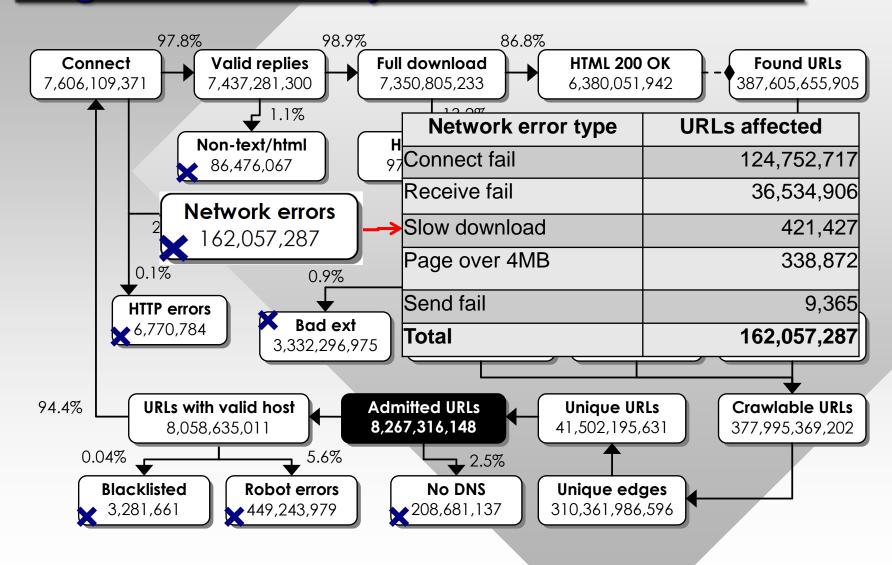
Term	Description
\mathcal{D}	# of downloaded pages
q	Fraction of HTML pages
l	Links/page
p	Fraction of unseen links
h	# of crawler nodes
\mathcal{S}	Crawl rate (pages/sec)

- Forms a cycle where each component has to keep up to persist the crawl rate S
- Example: IRLbot's duplicate elimination rate was over 100K/s with peak rate S=3K pps, m=h=1

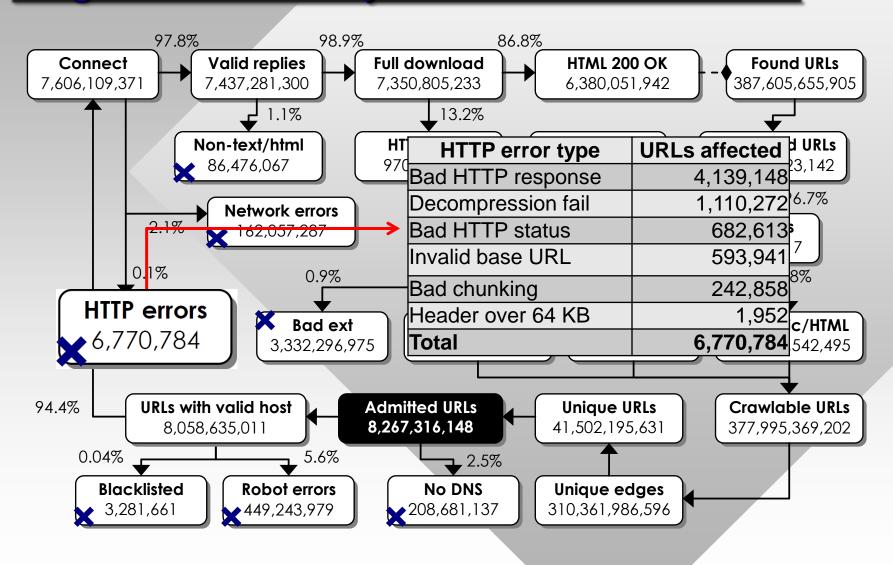
Background - Crawler Design (2)

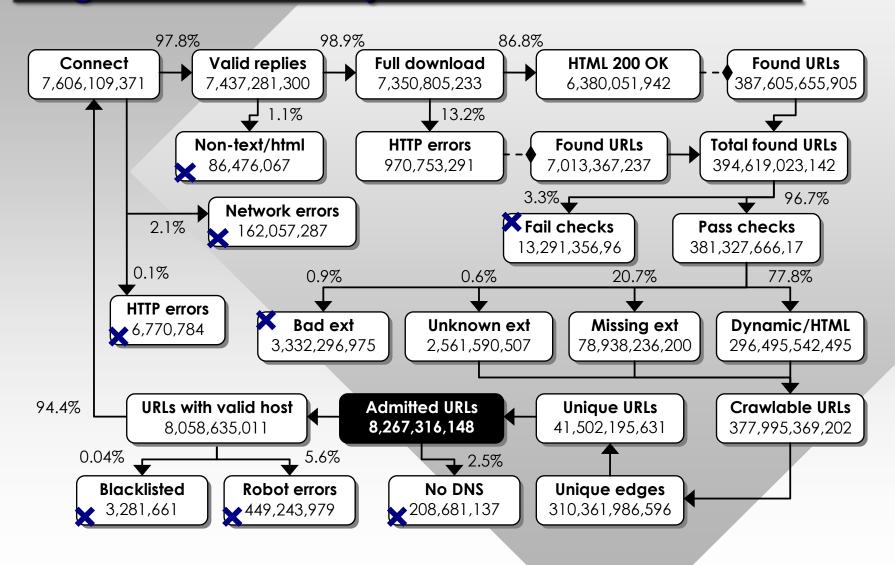

- Crawl design boils down to a trade-off $\{D/h, S/h, q, l\}$
 - Increase in one typically results in decrease in others
- Different methods of scaling S in existing literature
 - Clear trade-off between $\mathcal D$ and $\mathcal S$
 - Reduce q by crawling non-HTMLs (Mercator)
 - Eliminate dynamic URLs to reduce l (ClueWeb09)
 - Eliminate disk-based duplicate elimination by RAM-based method (UbiCrawler, WebBase), or by revisiting same pages (Internet Archive)
- None of at-least-50M page crawls have real-time spam avoidance or global frontier prioritization
 - IRLbot uses real-time frontier prioritization

Background - Crawler Design (3)


- Among distributed crawlers, one of the most prominent is ClueWeb09
 - Parallelized Apache Nutch to 1600 processors in Google-NSF-IBM cluster and discarded all dynamic links (i.e., dropping l by 84%)
 - Crawled 1B pages in 52 days at average rate 222 pps
- Some IRLbot Configuration and Features
 - Used m=h=1, (i.e., one single crawler node, seeded from only www.tamu.edu)
 - Highest q and unrestricted l
 - Used real-time frontier prioritization based on the PLD graph
 - Rate S and D determined by factors outside our control (i.e., university bandwidth)
 - Collected $\mathcal{D}{=}7.3\mathrm{B}$ pages in 41 days at average rate $2\mathrm{K}$ pps 8

- Introduction
- Background
- Crawl Analysis
 - Page-Level
 - Server-Level
- Internet Coverage
- Extrapolation
- Conclusion


Page-Level Analysis - URL Cycle


Page-Level Analysis - URL Statistics

Page-Level Analysis - URL Statistics

Page-Level Analysis - URL Statistics

Page-Level Analysis - A Few Notes

Countering Spam

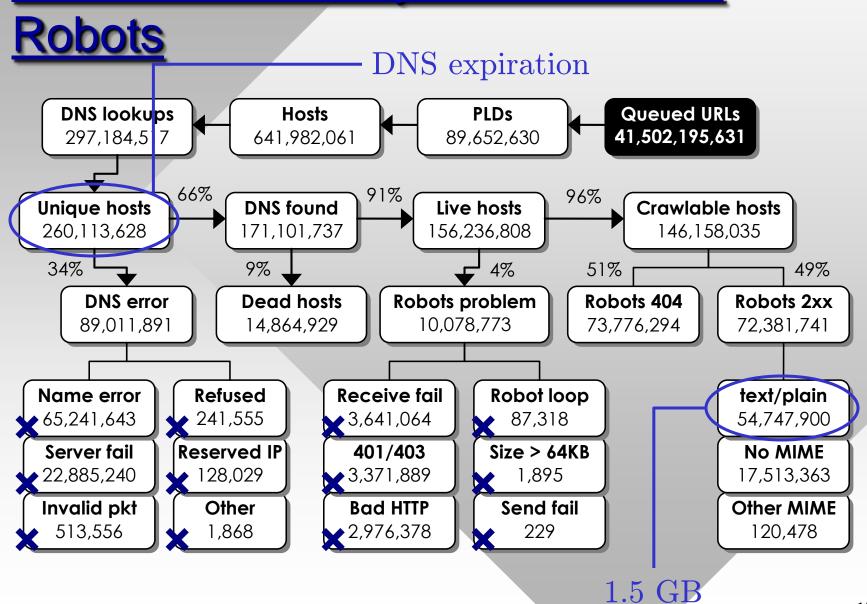
- Did real-time PLD ranking on the current web graph
- Treated 301/302 as regular links (processed through cycle)
- Detected slow downloads (no data for 60 sec or takes more than 180 sec)
- Detected infinite data stuffing and cut off after 4 MB

Avoid non-HTMLs

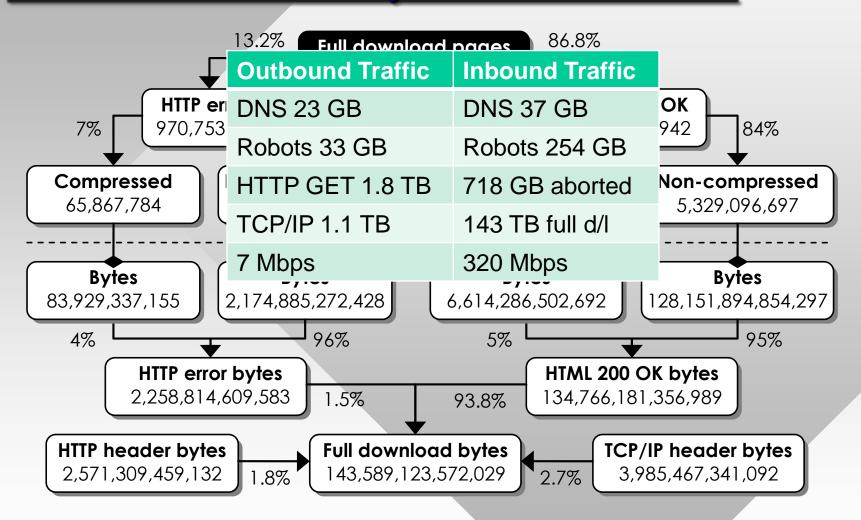
- Only processed pages with "Content-type: text/html" (86.5M discarded objects would take 346 TB in the worst case)
- Transmitted "Accept: text/html" header field, but resulted in only 6.6% reduction, while extension filtering leads to 0.37% (not very effective!)
- The result is 8.3 KB per object

A Few Notes (2)

URL Processing


- Processed a-href, frame-src and meta-refresh tags. Did not follow img tags
- Checked URLs for correctness and syntax
- Used a black list of non-HTML extensions, resulted in 0.37% saving in bandwidth (note for future crawlers)

Web graph


- Constructed a web graph with 3 TB web graph with 310B edges and 41B nodes
- Average crawl depth 12 (compare to 1.8 of ClueWeb09)
- 60% of downloaded pages were dynamic (i.e. contains "?")

- Introduction
- Background
- Page-Level Analysis
- Server-Level Analysis
 - DNS and Robots
 - Bandwidth
- Internet Coverage
- Extrapolation
- Conclusion

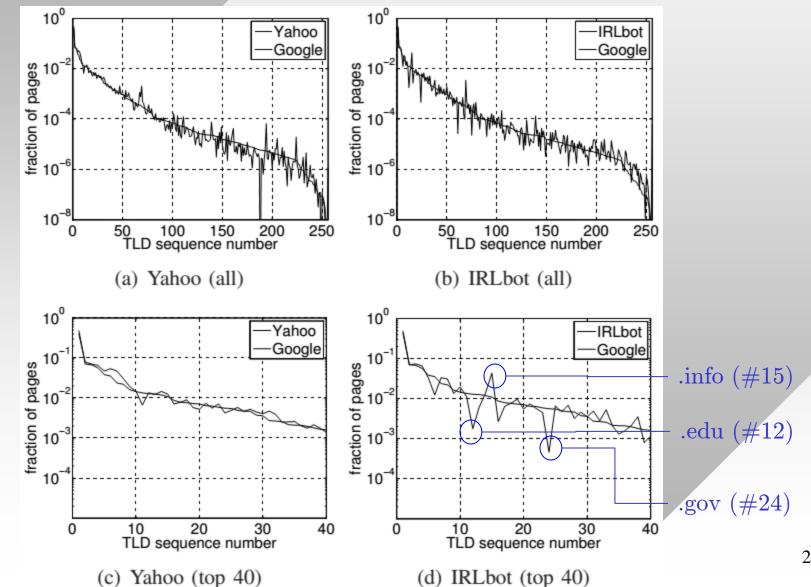
Server-Level Analysis - DNS and

Server-Level Analysis - Bandwidth

- Introduction
- Background
- Page-Level Analysis
- Server-Level Analysis
- Internet Coverage
- Extrapolation
- Conclusion

Internet Coverage

- Can use different measures
 - Collection of crawled 200 OK pages
 - Constructed web graph size
- Not much available information in standardized fashion
 - Mercator uses img tags, while UbiCrawler removes frontiers
 - WebBase considers robots.txt as crawled page

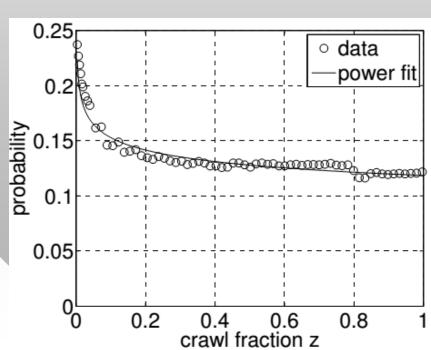

Dataset	Crawled (HTML 200 OK)			Web graph		Host graph		PLD graph		
	pages	hosts	PLDs	TLDs	nodes	edges	nodes	edges	nodes	edges
AltaVista [9]	_	_	_	_	271M	2.1B	_	_	_	_
Polybot [36]	121M	5 M	_	_	_	_	_	_	_	_
Google [6]	_	_	_	_	1.3B	19.5B	12.8M	395M	_	_
Mercator [10]	429M	$\sim 10 \mathrm{M}$	_	_	_	18.3B	_	_	_	_
WebFountain [20]	1B	_	_	_	4.75B	37B	19.7M	1.1B	_	_
WebBase [16]	98M	51K	_	_	_	4.2B	-	_	-	_
ClueWeb09 [19]	1B	_	_	_	4.8B	7.9B	_	_	_	_
IRLbot	6.3B	117M	33M	256	41B	310B	641M	6.8B	89M	1.8B
UbiCrawler .uk [7]	105M	114K	_	1	105M	3.7B	114K	_	-	_
IRLbot .uk	197M	2.8M	1.2M	1	1.3B	9.5B	5M	54M	1.5M	18M
TeaPot .cn [41]	837M	16.9M	790K	1	837M	43B	16.9M	_	790K	_
IRLbot .cn	209M	3.3M	539K	1	1.1B	11.9B	8.4M	103M	711K	19.7M

Internet Coverage - TLD Level

- A novel method of comparing crawls
 - Reveals crawler budget on different parts of the Internet
- Use site queries (i.e., "site:domain") to obtain Google and Yahoo's (now part of Bing) index size
 - In 1/2008, they contained 30B and 37B pages, respectively

TLD	Google	Yahoo	IRLbot	WebBase	ClueWeb
.com	46.7%	38.3%	43.3%	31.2%	54.8%
.net	6.9%	7.7%	6.9%	2.2%	-6.7%
.de	6.6%	6.8%	7.4%	3.8%	3.8%
.org	5.5%	6.3%	6.6%	17.8%	-6.6%
.cn	3.7%	4.6%	3.3%	0.2%	5.6%
.jp	3.4%	5.2%	1.2%	1.7%	-3.2%
.ru	2.3%	4.6%	3.3%	0.6%	0.1%
.uk	2.2%	3.0%	3.1%	4.9%	1.7%
.pl	1.6%	1.9%	1.3%	0.2%	0.3%
.nl	1.4%	1.4%	2.0%	0.5%	0.1%
TLDs	255	256	256	174	254

TLD Coverage - Google Order



- Introduction
- Background
- Page-Level Analysis
- Server-Level Analysis
- Internet Coverage
- Extrapolation
- Conclusion

Extrapolation

- Assume that the crawl is stochastic process $\{(X_t,Y_t)\}$ on the Internet, a web graph G(V,E), where the process terminates at $t=N \le |E|$ edges
- Define p(t) as the probability that URL Y_t has not been seen before
- Objective: In a larger crawl, can we estimate number of
 - Unique URLs ${\cal L}_N$
 - Crawled pages $C_N = L_N \sqrt{D}$

.# of links/page

Extrapolation (2)

- Assume that the reference crawl (IRLbot) has \mathcal{K} links, \mathcal{U} unique links. The unknown crawl (e.g., Google) has N links $(r=N/\mathcal{K})$. What is L_N and C_N ?
- Also assume $z=t/\mathcal{K}$ and a new function $\tilde{p}(z)=p(z\mathcal{K})$. Thus, the unknown crawler has:

$$E[L_N] = \mathcal{K} \int_0^r \tilde{p}(z) dz = \mathcal{U} + \mathcal{K} \int_1^r \tilde{p}(z) dz$$

• With Pareto fit (i.e., $\tilde{p}(z) = \beta z^{-\alpha}$), we get:

$$E[L_N] \approx \mathcal{U} + \frac{\mathcal{K}\beta(r^{1-\alpha} - 1)}{1 - \alpha}$$

Extrapolation - Results

Crawl	Ratio r	Crawled Links N	$\begin{array}{c} \textbf{Crawled} \\ \textbf{Pages} \ C_N \end{array}$
IRLbot 2007	1	394B	6.3B
$egin{aligned} ext{Google 2008} \ (E[L_N] = 1 ext{T}) \end{aligned}$	40	12T	256B
$egin{aligned} ext{Google 2012} \ (E[L_N] = 30 ext{T}) \end{aligned}$	1,981	592T	12T

Using 20B pages/day (@41 Gbps), takes 50 months of crawling

- How about Hots/PLD level graphs in Google 2012?
 - With r=1981, Google has 5.2B unique hosts (IRLbot has 641M), and 90.6M unique PLDs (IRLbot has 89M)

Conclusion

- Presented IRLbot implementation and experiment in detail
 - Discussed the impact of various design choices
 - Provided guidelines for future crawlers
 - Exposed weird/effective spamming techniques
- Developed new methods for capturing crawl coverage
- Outlined a simple extrapolation mechanism to infer proprietary and undocumented crawls
 - A simple model for crawl growth rate

Thank you! Questions?