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Characterizing user churn has become an important research area of networks and distributed systems, both

in theoretical analysis and system design. A realistic churn model, often measured using periodic observation,

should replicate two key properties of deployed systems – (1) the arrival process and (2) the lifetime distri-

bution of participating agents. Because users can be sampled only by sending packets to them and eliciting

responses, there is an inherent tradeoff between overhead (i.e., bandwidth needed to perform the measure-

ment) and accuracy of obtained results. Furthermore, all observations are censored, i.e., rounded up or down

to a multiple of Δ, where Δ is the minimum delay between repeat visits to the same user. Assuming a sta-

tionary arrival process, previous work shows that consistent (i.e., asymptotically accurate) estimation of the

lifetime distribution is possible; however, the problem remains open for non-stationary cases. Questions in-

clude what distributions these methods sample when the assumptions on the arrival process are violated,

under what conditions consistency is possible with existing techniques, and what avenues exist for improv-

ing their accuracy and overhead. To investigate these issues, we first use random-measure theory to develop

a novel churn model that allows rather general non-stationary scenarios and even synchronized joins (e.g.,

flash crowds). We not only dispose with common assumptions, such as existence of arrival rate and ergodicity,

but also show that this model can produce all metrics of interest (e.g., sampled lifetime distributions, band-

width overhead) using simple expressions. We apply these results to study the accuracy of prior techniques

and discover that they are biased unless user lifetimes are exponential or the arrival measure is stationary. To

overcome these limitations, we then create a new lifetime-sampling technique that remains asymptotically

robust under all periodic arrival measures and provide a methodology for undoing the bias in the sampled

arrival rate created by missed users. We demonstrate that the proposed approach exhibits accuracy advan-

tages and 1-2 orders of magnitude less bandwidth consumption compared to the alternatives. We finish by

implementing the proposed framework and applying it to experimental data from massive crawls of Gnutella.

CCS Concepts: • Networks → Network performance modeling;

Additional Key Words and Phrases: Network sampling, stochastic analysis, lifetime estimation

An earlier version of the paper appeared in IEEE P2P 2009.

Authors’ addresses: X. Wang, Facebook, Seattle, WA, 98109; email: xmwang@gmail.com; D. Xiao, Texas A&M University,

Department of Computer Science and Engineering, College Station, TX, 77843; email: di@cse.tamu.edu; X. Li, Nvidia, Santa

Clara, CA, 95050; email: xiaoyong@cse.tamu.edu; D. B. H. Cline and D. Loguinov, Texas A&M University, Department of

Statistics, College Station, TX, 77843; emails: dcline@stat.tamu.edu, dmitri@cse.tamu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2376-3639/2019/12-ART22 $15.00

https://doi.org/10.1145/3368510

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 4, No. 4, Article 22. Publication date: December 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3368510


22:2 X. Wang et al.

ACM Reference format:

Xiaoming Wang, Di Xiao, Xiaoyong Li, Daren B. H. Cline, and Dmitri Loguinov. 2019. Consistent Sampling

of Churn Under Periodic Non-Stationary Arrivals in Distributed Systems. ACM Trans. Model. Perform. Eval.

Comput. Syst. 4, 4, Article 22 (December 2019), 33 pages.

https://doi.org/10.1145/3368510

1 INTRODUCTION

The problem of sampling temporal and topological characteristics of large-scale decentralized net-
works (such as Gnutella [12] and KaZaA [16]) has received considerable attention [2], [3], [8], [24],
[33], [35], [38]. Capturing the dynamics of these systems entails measuring churn, which consists
of the arrival process and lifetime distribution FL (x ) of its participants. These parameters provide
valuable input to throughput models [11], [29], resilience analysis [20], [44], [45], and system de-
sign [13], [21], [33]. Besides P2P, other research fields (e.g., social networks, Internet measurement,
security, distributed systems) face similar problems. For example, during Internet scanning, it may
be beneficial to obtain the distribution of lifetime that individual IPs stay visible offering a partic-
ular service (e.g., DNS, HTTP). Each IP is an ON/OFF process, largely dependent on user actions
controlling the specific device. The average IP lifetime was estimated in [19], but no systematic
algorithms for sampling FL (x ) have been proposed in that context. Another application is deter-
mining the lifetime of botnet nodes and C&C (command & control) hosts using active probing.
This may be done by scanning the IP space to identify all live hosts running a particular botnet
and issuing periodic connection attempts to track node departures, which occur due to computers
being shut down, devices moved to another network, or infections cured. Yet another application
are search engines, where web crawlers have to maintain up-to-date snapshots of billions of pages
across the Internet. Estimating the distribution of page lifetime (i.e., delay between updates) allows
scheduling of future visits, which is done by solving various optimization problems that involve
bandwidth-staleness tradeoffs [5], [22], [27], [43]. In fact, any system that can be remotely ob-
served over the Internet falls under the umbrella of our framework. We thus keep our discussion
general, where terms “user,” “entity,” “participant,” and “host” are applied interchangeably.

For all studied methods, each contact with a user carries unit bandwidth cost, which consists
of sending packets to the target host, performing a handshake using a particular protocol, and
shutting down the connection. The measurement cannot proceed at infinitely fast rates to prevent
crashing the targets and overloading the observation facility. Thus, there exists a lower-bound
Δ > 0 on the delay between contacts with each participant. As a result, all time-related samples
are censored, i.e., rounded up or down to a multiple of Δ. Combining this with the fact that some
users are completely missed (i.e., they join and depart between adjacent observation snapshots),
estimation of FL (x ) and the arrival process becomes challenging. The first direction for sampling
churn is called direct [3], [33], [35], where the observer performs periodic crawls of the system to
monitor new arrivals, detect departure of existing users, and infer their lifetimes. Unfortunately,
direct sampling misses users that join/depart in between consecutive crawls, which leads to under-
estimation of the arrival rate and bias in the lifetime distribution towards longer-lived users [23],
[38]. The second direction is called indirect [38], where the system is scanned only once and all
discovered entities are monitored until departure. The obtained residual session lengths are then
converted into a lifetime distribution using numerical methods. While this approach requires or-
ders of magnitude less bandwidth than direct sampling, it fails to observe any parameters of the
arrival process and is proven to be consistent only in stationary networks [38]. For non-stationary
cases commonly found on the Internet [14], [33], [34], [37], it thus remains unknown whether un-
biased sampling of churn is actually possible and if consistency under more challenging conditions
inherently requires higher overhead. We focus on these issues below.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 4, No. 4, Article 22. Publication date: December 2019.

https://doi.org/10.1145/3368510


Consistent Sampling of Churn Under Periodic Non-Stationary Arrivals 22:3

1.1 Overview of Results

All traditional models of churn assume stationarity [17], [20], [25], [28], [36], [38], [44], [45]. In
fact, they either directly use a Poisson arrival process of some constant rate or rely on superpo-
sition of renewal processes that can be reduced to Poisson through scaling. For some research
problems, simplicity of modeling may be more important than capturing the nuances of diurnal
human activity; however, our problem requires explicitly dealing with non-stationarity.

While there are many ways to generalize stationary processes, we are interested in the small-
est set of abstractions that allow churn to be measurable. To this end, our first contribution is to
propose usage of random measures for modeling user lifecycles. Suppose n is the number of users
known to the system, out of which only a small fraction are alive at any given time. Informally
speaking, we call a sequence of distributed systems well-behaved if the fraction of hosts that join
in each interval (a,b] converges to a deterministic value as n → ∞. The well-behaved property
subsumes all known efforts related to churn and is necessary for the sampling problem to be solv-
able. Furthermore, this modeling approach not only allows us to relax such common assumptions
as ergodicity, existence of arrival rate, and independence between individual users, but also leads
to simple closed-form analysis of accuracy and measurement cost.

Equipped with the new arrival model, our second contribution is to examine the existing al-
gorithms in non-stationary conditions. We first model the family of direct-sampling techniques,
which are exemplified by Create-Based Method (CBM) [32] and its variations [3], [8], [33], [35].
Under non-stationary churn, we discover that the bias in CBM is a complex function of the ar-
rival process, sampling rate, and lifetime distribution FL (x ). Consistency is achievable, but only
when the observation rate tends to infinity or FL (x ) is exponential. For indirect methods, where
the main representative is ResIDual-based Estimator (RIDE) [38], we show that bias cannot be elim-
inated even with infinite sampling rates; instead, asymptotic accuracy is possible only when the
arrival measure is stationary or lifetimes are exponential, neither of which is realistic in practice
[14], [33], [34], [37].

Based on this analysis, the issue of designing a low-overhead and robust churn estimator for
non-stationary distributed systems remains open; however, unless additional assumptions are
made, this is likely an unsolvable problem. Leveraging the fact that the arrival measure of real
networks is often periodic, our fourth contribution is to create a novel algorithm we call Uniform

RIDE (U-RIDE) that samples the system in random points scattered within the observation win-
dow. The naive approach would be run RIDE several times and average the result; however, this
does not allow reconstruction of user lifetimes. Instead, we derive a different estimator and show
that it is consistent under all well-behaved, periodic arrival measures.

Our last contribution is to derive the bandwidth overhead of the three studied methods, compare
them in simulations, and apply them to a Gnutella dataset with 408M user lifetimes. We estab-
lish that RIDE is highly sensitive to non-stationarity effects and demonstrate existence of lifetime
distributions where it produces completely unusable results (i.e., non-monotonic CDF curves).
CBM generally exhibits less bias; however, this comes at an increased bandwidth cost compared to
RIDE. In contrast, U-RIDE achieves the best of both worlds—it keeps estimation consistent under
all conditions and reduces the overhead of CBM by two orders of magnitude. Since the proposed
churn-sampling technique is not limited to Gnutella, it is suitable for other periodic non-stationary
distributed systems in today’s Internet.

This article is organized as follows: Section 2 overviews related work. Section 3 proposes our
general churn model and establishes its measure-theoretic properties. Section 4 explains our ob-
jectives in measuring churn, while Section 5 studies the accuracy of previous estimation meth-
ods. Section 6 proposes our sampling algorithm and derives its model. Section 7 characterizes the
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Fig. 1. Process Zi (t ) under stationary ON/OFF user behavior.

overhead of the studied methods, Section 8 performs simulations and Internet experiments, and
Section 9 concludes the article.

2 BACKGROUND

2.1 Lifetime Sampling

Early techniques for measuring user lifetimes have emerged from operating-systems literature,
where the main issue was to determine the duration for which the various objects existed in the file
system. In the Delete-Based Method (DBM) [1], lifetime samples were collected upon file deletion
by subtracting the creation timestamp from that of each delete request. This process built a dis-
tribution of lifetimes conditioned on the corresponding files being deleted within the observation
window. In distributed systems, however, this approach is difficult to apply since join timestamps
may not be publicly available and departures may not be globally monitored. Thus, a more com-
monly used technique is the Create-Based Method (CBM) [32], which collects lifetime samples only
from those users that join and disappear within a given window. To work around the uncertainty
in exact arrival/departure times, the sampling process visit the entire system every Δ time units
and verifies liveness of each user [3], [8], [33], [35], which creates a step-function approximation
to the CDF of user lifetimes.

CBM was analyzed in [38], which found that it suffered from bias related to the missed samples
(i.e., users with lifetimes smaller than Δ) and inconsistent round-offs (i.e., some samples rounded
up, while others down), which led to potential deviation of the sampled distribution from the true
lifetime CDF. To overcome this problem, [38] proposed to measure remaining lifetimes of the users
seen in a single system-wide crawl, which were then used to recover the lifetime distribution using
renewal theory. The paper showed that its proposed method RIDE provided unbiased estimation
and exhibited orders of magnitude lower overhead than CBM.

2.2 Churn

Most existing churn models [17], [20], [25], [28], [36], [38], [45] either assume stationary Pois-
son arrivals from an unspecified number of users or fall under the umbrella of the alternating
renewal process of [44], the latter of which we briefly review here. At time t , assume that each
user i = 1, 2, . . . ,n is either online (alive) or offline (dead). This behavior can be described by a set
of independent alternating renewal processes {Zi (t )}, where

Zi (t ) =

{
1 user i is alive at t (ON)

0 otherwise (OFF)
. (1)

In the illustration of Figure 1, {Li j }∞j=1 and {Di j }∞j=1 are sequences of independent and identically

distributed (iid) ON/OFF durations, respectively. Variables {τi j }∞j=1 specify arrival times of user i ,

where τi, j+1 = τi j + Li j + Di j . The renewal nature of this model makes eachZi (t ) a stationary point
process of constant rate as t → ∞. As a result, superposition of n such arrival processes converges
to a stationary point process with constant rate λ(t ) = λ. Since this stationarity does not match

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 4, No. 4, Article 22. Publication date: December 2019.



Consistent Sampling of Churn Under Periodic Non-Stationary Arrivals 22:5

churn characteristics observed in user-driven systems [14], [33], [34], [37], one requires a more
general approach.

Our previous work [39], an earlier version of the current article, offers an initial investigation
into building such a framework. That model still equips each user i with an ON/OFF process Zi (t ),
but the OFF state now consists of two substates. The first one randomly delays user join within a
given day and the other one keeps the user offline until the midnight of the next day following a
departure. Note that [39] assumes homogeneous users and requires them to follow a rigid struc-
ture of the corresponding Zi (t ). This makes derivations for the general case difficult and imposes
certain unnecessary restrictions (e.g., one join of user i per day, all peers follow the same arrival
process, existence of arrival rate λ(t )). On the other hand, the methodology offered below is far
more general, i.e., no weaker assumptions can be made. The model of [39] does get used in Sec-
tion 6.4, but this is a special case needed only for replicating the observed measure in simulations.

3 GENERAL CHURN MODEL

In this section, we cover definitions, present our model of non-stationary arrivals, and derive its
main properties.

3.1 Non-Stationary Arrivals

Our first goal is to develop the minimum set of conditions under which both the lifetime distribu-
tion and arrival process are measurable. Assume a system of n ≥ 1 users. For each user i , denote
by {τi j }∞j=1 a monotonically increasing sequence of its arrival times. The corresponding departure

times are given by {τi j + Li j }∞j=1, where Li j ∼ FL (x ) is the lifetime of user i during its jth visit into

the system, which is independent of all other lifetimes. It should also be noted that certain scenar-
ios where i draws its lifetimes from a separate distribution Fi (x ) can be reduced to the homogenous
case above by using FL (x ) that is a weighted mixture of individual lifetime CDFs [44].

To aid with the explanation that follows, we next review several definitions from measure the-
ory. Suppose R is the set of real numbers. Recall that a measurem on R is a function that (a) maps
Borel subsets S ⊆ R to non-negative real numbers; (b) equals zero for the empty set; and (c) sat-
isfies countable additivity [7]. Measures are called Radon if they are finite on bounded intervals
and trivial if they map all sets to zero [30]. Ifm(S ) is a non-degenerate random variable for at least
some S , we call the measure random; otherwise, deterministic. Given a stochastic point process, its
random counting measure is the number of events (e.g., arrivals) in each S . In many cases, point
processes and their counting measures are used interchangeably [30].

Let 1A be an indicator of event A and

Mi (S ) :=

∞∑
j=1

1τi j ∈S (2)

be the random arrival measure of user i , i.e., the number of times it joins the system in S . We use
Mi (a,b) to represent the measure of interval (a,b]. Then, a common assumption for non-stationary
point processes is the existence of arrival rate, or intensity, λi (t ) such that for all a < b

E[Mi (a,b)] =

∫ b

a

λi (t )dt . (3)

However, there are several drawbacks to using (3). First, it fails to model deterministic (synchro-
nized) arrivals. For example, suppose a flash crowd of k users joins every day at 7 am. This makes
both Mi (0, t ) and E[Mi (0, t )] a step-function, which precludes existence of λi (t ) in (3) since the
left side of the equation cannot be discontinuous. Second, real systems can only be measured in
one sample path. Therefore, unless each Mi is ergodic, knowledge of λi (t ) and other expectations
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computed over multiple realizations provides no useful information. Ergodicity is a difficult con-
dition to verify in practice and an unnecessary constraint in our context. Finally, even if the arrival
rate exists for each individual user, consistent lifetime estimation requires n → ∞ and application
of the law of large numbers to observed lifetimes. Thus, for the problem to be solvable, additional
constraints must be placed not only on the limiting rate

λ(t ) := lim
n→∞

1

n

n∑
i=1

λi (t ), (4)

but also the aggregate point process
∑n

i=1 Mi . Since these conditions are no simpler to handle than
those introduced below, reliance on rates {λi (t )} does not simplify any of the derivations for our
problem and perhaps only obscures the solution.

As a better alternative, we offer a novel way to model churn using random measures. Define the
average arrival measure of the system

mn :=
1

n

n∑
i=1

Mi (5)

to count the number of per-user appearances in each interval. We are now interested in systems
with sufficiently largen such thatmn approaches a sensible limit. To understand the next definition,
note that all integrals in this article are Lebesgue, i.e., taken with respect to some measure. For
counting measures, these integrals are summations of the function being integrated over all arrival
points in the range of interest, i.e.,∫

S

f (t )dMi (t ) =
∞∑

j=1

1τi j ∈S f (τi j ), (6)

Note that (6) is a random variable for each S .

Definition 1 ([30]). Suppose there exists a Radon measure m on R such that for all Borel S ⊆ R
and all continuous functions f (t ) with compact support on S∫

S

f (t )dmn (t ) →
∫

S

f (t )dm(t ) (7)

almost surely (i.e., with probability 1). Then, the sequence of measures {mn } is called vaguely

convergent tom.

Another way to explain the vague limit is to require that the number of per-user arrivalsmn (a,b)
converge tom(a,b) for all a,b in some dense subset ofR [30]. It should also be noted that (7) cannot
be replaced with a simpler condition unless a specific type of process (e.g., Poisson) is assumed for
each Mi . Besides existence of limiting measure, consistent estimation of FL (x ) requires that m be
non-zero and the same in all sample paths. This leads to the following.

Definition 2. As n → ∞, a sequence of systems is called well-behaved if mn converges vaguely
to a non-trivial deterministic measurem.

The simplest way to construct a well-behaved network is to use iid point processes, which gives
m = E[M1] from the law of large numbers. If additionally M1 is stationary, the resulting model is
equivalent to those in previous work [17], [20], [25], [28], [36], [38], [45] [44]. However, signifi-
cantly more interesting cases are possible with our formulation, including all users deterministi-
cally synchronized in their arrival and various non-iid cases. Usage of Definition 2 removes the
need for stationarity, independence between users, and necessity for multiple sample paths.
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One obvious counter-example that fail to produce a well-behaved network requires users to
change their arrival rate based on population size, e.g., Mi (a,b) = 1 for odd n and Mi (a,b) = 2
for even n. In such cases, the limit measure m would not exist and estimation of FL (x ) would be
impossible; however, since users are neither aware of n nor particularly sensitive to its value, such
scenarios, as well as those even more esoteric, are not of practical interest.

3.2 Convergence of Arrival Rewards

As it turns out, a variety of metrics that depend on the arrival process of the whole system can be
easily expressed using m. Specifically, suppose a user arrives at time τ and its lifetime is x . Then,
let this arrival carry some random reward ζ (τ ,x ) ≥ 0, where ζ does not depend on n or measures
{Mi }ni=1. This allows us to define the per-user arrival reward as a random measure on Borel sets S

Rn (ζ , S ) :=
1

n

n∑
i=1

∞∑
j=1

1τi j ∈S ζ (τi j ,Li j ), (8)

whose asymptotic behavior we study next.

Theorem 1. Suppose L ∼ FL (x ) is a random lifetime and the reward function ζ is bounded. Fur-

thermore, assume f (t ) = E[ζ (t ,L)] has compact support and its set of discontinuity points has zero

m-measure. If a sequence of networks is well-behaved, its per-user reward in S converges almost surely

to a constant as n → ∞

R (ζ , S ) := lim
n→∞

Rn (ζ , S ) =

∫
S

E[ζ (t ,L)]dm(t ). (9)

Proof. We assume without loss of generality thatm(S ) > 0 and S is a bounded set due to com-
pact support of f (t ) = E[ζ (t ,L)]. Since f (t ) is bounded, has compact support, and its set of dis-
continuity points has zerom-measure, vague convergence in (7) implies

E[Rn (ζ , S ) |{τi j }] =
∫

S

E[ζ (t ,L)]dmn (t ) → R (ζ , S ). (10)

Next, observe that

nRn (ζ , S ) =
n∑

i=1

∞∑
j=1

1τi j ∈S ζ (τi j ,Li j ) (11)

is a sum of nmn (S ) =
∑n

i=1 Mi (S ) independent bounded random variables, where nmn (S ) → ∞
because m is non-trivial. By the strong law of large numbers for independent random variables
with bounded variance [7], it follows that

Rn (ζ , S ) − E[Rn (ζ , S ) |{τi j }]
mn (S )

→ 0 (12)

almost surely. From vague convergence, we get that mn (S ) →m(S ) and the limit is finite since m
is Radon. Combining this with (10) and (12), we conclude that

Rn (ζ , S ) =mn (S )
Rn (ζ , S ) − E[Rn (ζ , S ) |{τi j }]

mn (S )
+ E[Rn (ζ , S ) |{τi j }]→ R (ζ , S )

almost surely. �

Theorem 1 is the most general result that can be obtained under the circumstances. While it has
several technical conditions to ensure mathematical integrity, they may be automatically satisfied
in certain applications. For example, continuity of eitherm or f (t ) disposes with the need to verify
whether the two share any jump points. While we may not want to relax the general shape of m,
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rewards ζ used later in this article ensure that f (t ) is continuous as long as FL (x ) is. Thus, it
is sufficient to assume a continuous lifetime distribution for one of the more tricky conditions
in Theorem 1 to disappear. Additionally, since users cannot have unbounded lifetimes, we lose
nothing by truncating FL (x ) at some sufficiently large value, which guarantees compact support
for f (t ) throughout this article. For the same reason, the reward functions used below are always
bounded, which means all three conditions of Theorem 1 trivially hold in our problem.

To appreciate the usefulness of the framework introduced in this section and understand the
types of rewards we will be using, consider several examples. Suppose t is some observation time
and define S = (−∞, t]. One important parameter is the fraction of users alive at t , as a function
of FL (x ) andm. Setting ζ1 (τ ,x ) = 1x>t−τ , Theorem 1 yields

R (ζ1, S ) =

∫ t

−∞
F̄L (t − y)dm(y), (13)

where F̄L (x ) = 1 − FL (x ) is the complementary lifetime CDF. This example illustrates a case where
an infinite sets S requires a truncated FL (x ) to guarantee compact support in Theorem 1. For finite
S , there is no such restriction. Next, suppose we are interested in the combined age of live users
at t , normalized by n. This metric can be computed using ζ2 (τ ,x ) = (t − τ )1x>t−τ as

R (ζ2, S ) =

∫ t

−∞
(t − y)F̄L (t − y)dm(y). (14)

Finally, the average age of a live host at time t can be obtained using R (ζ2, S )/R (ζ1, S ). Of course,
real networks cannot have an infinite number of participants, which means that our models should
be viewed as approximations to actual systems with a sufficient user base. In such cases, scaling
the limiting reward by n yields an estimated count of participants that satisfy a given condition.
For example, the average population size of a finite network at time t is approximately nR (ζ1, S ).

Note that for systems that fail to be well-behaved (i.e., Theorem 1 does not hold), it is impossible
to not only perform unbiased estimation of FL (x ), but also determine such basic metrics as the
expected number of arrivals in S or the overhead needed to crawl these users. Therefore, the well-
behaved property is both sufficient and necessary for the main objective of this article to be feasible,
i.e., no weaker assumptions can be made.

3.3 Periodic Churn

Many distributed systems in the Internet are driven by diurnal human activity and thus exhibit
periodicity in the arrival process. The next two definitions formalize this notion.

Definition 3. An arrival process is stationary if for all δ > 0 its measure satisfies

∀t ∈ R : m(t , t + δ ) =m(0,δ ), (15)

and non-stationary otherwise.

Note that stationary processes have linearm(a,b) = μ (b − a), where μ > 0 is the per-user arrival
rate. When μ = 1, this becomes the well-known Lebesgue measure [30].

Definition 4. A non-stationary arrival process is periodic if (15) holds for some δ > 0, where the
smallest such value is the period of the system. Otherwise, the process is aperiodic.

For human-driven systems, δ = 24 hours is the most commonly considered period. When it is
important to take weekends into account, δ = 7 days is also appropriate.
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4 OBJECTIVES

We now explain the goals of this article, the measured parameters, and the conditions under which
estimation can be considered successful.

4.1 Lifetimes

Suppose that the target networked system is fully decentralized and that the sampling process has
only recurrent access to information about which hosts are currently alive (i.e., continuous ob-
servation is impossible). Two sampling activities are possible – discovery of the entire population
(e.g., using crawls or scanning) and verification whether one of the previously-seen entities is still
online. Due to bandwidth and politeness restrictions on how frequently users can be probed, the
sampling process cannot query the system more frequently than one full snapshot per Δ interval,
where Δ usually varies from minutes to hours depending on the speed of the measurement facility
and network size [2], [3], [8], [10], [14], [15], [19], [24], [31], [33], [34], [35], [37], [38]. Additionally,
the sampling process must terminate within some finite windowW (e.g., a few days) and operate
on a single sample path (i.e., the network cannot be restarted). As a result, all measured lifetimes
are discrete (i.e., rounded to a multiple of Δ) and no larger than W . For the problem to be inter-
esting, additionally assume FL (x ) has some mass in [0,W ]. With this in mind, consider the next
definition.

Definition 5. An estimation algorithm Q is asymptotically Δ-consistent with respect to a target
random variable L ∼ FL (x ) if it produces a CDF function FQ (x ) that matches the distribution of L
in all discrete points x j = jΔ, for j = 0, 1, . . . ,W /Δ, as sample size scales to infinity.

Note that empirical distributions based on finite averaging will likely deviate from the target
distribution FL (x ), which is not a source of bias but rather a limitation of the finite measurement
process. Definition 5 instead refers to errors that cannot be eliminated even after obtaining a suf-
ficient number of observations. Additionally, since Δ-sampling cannot produce any observations
between points x j and x j+1, we require that the two CDFs match only in points for which the
lifetime samples are available, i.e., FQ (x j ) = FL (x j ).

4.2 Arrival Process

Besides estimation of FL (x ), our second goal is to replicate the arrival measure of actual networks
using a standalone model with n′ point processes {τ ′i j }. This entails creating a simulated system

that is statistically indistinguishable from the real one when sampled by a scanner. In other words,
an observer with a given inter-snapshot delay Δ would sample in both cases the same lifetime
distribution FL (x ) and see an identical rate of arrival in all intervals (x j ,x j+1] as n,n′ → ∞.

It should be noted that repeat visits of the same user into the network may be accompanied
by different identities (e.g., IPs, ports) due to NAT, DHCP, and general mobility. As a result, the
crawler may not always be able to differentiate new users from those previously seen. This implies
that any network with twice as many users, each joining at half the frequency, appears equivalent
to the original. Consequently, any n′ that is appropriately matched with the corresponding {τ ′i j }
yields consistent estimation.

5 UNDERSTANDING EXISTING METHODS

Our next step is to characterize the accuracy of current lifetime-estimation techniques under non-
stationary arrivals. Note that this section works with generic m and is not limited to periodic
behavior.
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Fig. 2. Illustration of CBM (squares are arrivals, hollow circles are detections during crawls, crosses are

departures, and solid circles are liveness checks).

5.1 CBM Estimator

Denote by t1 the start time of the algorithm and recall from [32] that CBM uses an observation
window of size 2W , which is split into small intervals of size Δ. Within the first half [t1, t1 +W ],
as illustrated in Figure 2, the algorithm takes snapshots of the system at points t1 + jΔ, i.e., at the
beginning of each interval. If a user is observed k times, its lifetime is recorded as kΔ. To avoid
sampling bias, Roselli et al. [32] suggests considering only users that appear in the first half of the
window [t1, t1 +W ], disappear before t1 + 2W , and whose recorded lifetimes are no larger than
W . Observations that comply with all three rules are called valid.

There are two causes of bias in CBM sampling [38]—missed users (i.e., those joining/departing
between consecutive crawls) and random direction of round-offs (i.e., some samples rounded up
and others down). Define x j = jΔ for integer j ≥ 0 and let a user’s lifetime L ∈ [x j ,x j+1) be incon-

sistently sampled if it is rounded down to x j and consistently sampled otherwise (i.e., recorded as
x j+1). These concepts are covered by Figure 2 using six different scenarios. The first case produces
an invalid sample because user departure does not belong to the window. The second lifetime
is missed entirely. The third sample is consistent because its value 1.3Δ is rounded up to 2Δ. The
fourth observation is invalid due to its being larger thanW . The fifth one is inconsistently sampled
because its lifetime 2.7Δ is rounded down to 2Δ. Finally, the sixth user is ignored because it arrives
in the second half of the window. As a result, only two valid samples (both 2Δ) are produced.

Let NC (x j ,n) be number of valid CBM lifetimes no larger than x j from a measurement that
started at time t1 and J (n) be the total number of user joins observed in [t1, t1 +W ]. Then, the
CBM estimator of lifetime distribution FL (x ) is given by

FC (x j ) := lim
n→∞

NC (x j ,n)

J (n)
, (16)

where j = 0, 1, . . . ,W /Δ. Note that the normalization factor J (n) includes all users that appear in
the first half, not just those with lifetimes smaller thanW . Now suppose ρ j is the fraction of users
whose lifetimes are inconsistently rounded-off to x j , where ρ0 refers to the probability of missing a
user. To make the integrals below more readable, define a = t1,b = t1 +W , and t∗ = (t − t1) mod Δ
to be the offset of t from the initial crawl point. The next theorem indicates that the bias in CBM
is determined not only by Δ and lifetime distribution FL (x ), but also by the crawl start time t1,
arrival measurem, and window sizeW .

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 4, No. 4, Article 22. Publication date: December 2019.



Consistent Sampling of Churn Under Periodic Non-Stationary Arrivals 22:11

Fig. 3. Inconsistent round-off to x j in CBM (shaded region).

Theorem 2. For well-behaved systems, the CBM estimator (16) produces the following distribution

as n → ∞

FC (x j ) =
FL (x j ) − ρ0 + ρ j

1 − ρ0
, (17)

where for all j ≥ 0

ρ j =

∫ b

a
FL (x j+1 − t∗)dm(t )

m(a,b)
− FL (x j ). (18)

Proof. Assume a user v joins the system at time t ∈ (a,b] = (t1, t1 +W ], i.e., in the first half
of the window. To obtain an expression for NC (x j ,n), notice from Figure 3 that v’s lifetime has to
satisfy four conditions to be valid and measured no larger than x j : (1) L ≥ Δ − t∗, i.e., seen at least
once; (2) L < x j+1 − t∗, i.e., observed no more than j times; (3) L ≤ t1 + 2W − t , i.e., the user departs
before the second half is over; and (4) L ≤W . The last two condition are automatically satisfied
as long as j ≤W /Δ, i.e., the CDF is estimated only up toW . Combining the other two, define the
reward variable for each arrival as

ζj (t ,L) =

{
1 Δ − t∗ ≤ L < x j+1 − t∗
0 otherwise

, (19)

which using (9) produces

lim
n→∞

NC (x j ,n)

n
=

∫ b

a

E[ζj (t ,L)]dm(t ) =

∫ b

a

(
F̄L (Δ − t∗) − F̄L (x j+1 − t∗)

)
dm(t ). (20)

As a special case of x j+1 = ∞, we also get the fraction of users who are seen joining in (a,b] as

lim
n→∞

J (n)

n
=

∫ b

a

F̄L (Δ − t∗)dm(t ). (21)

Dividing (20) by (21) yields the CDF measured by CBM. However, to make it more digestible and
easily comparable to previous work [38], we next express it using ρ j in (18). From Figure 3, observe
that v’s lifetime is inconsistently rounded off to x j if and only if its L ∈ [x j ,x j+1 − t∗). Applying
(9) again, the fraction of joining users whose lifetimes are inconsistently rounded-off to x j is

ρ j =

∫ b

a

(
FL (x j+1 − t∗) − FL (x j )

)
dm(t )

m(a,b)
, (22)

which is the same as (18). Since (20) simplifies to

(FL (x j ) + ρ j − ρ0)m(a,b) (23)

and (21) to (1 − ρ0)m(a,b), their ratio produces (17). �
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5.2 CBM Discussion

Note that Theorem 2 generalizes the result developed in [38] to a wider class of networks. Assume
W is a multiple of Δ. Since stationary arrivals imply dm(t ) = μdt , (18) becomes

ρ j =
μ
∫ b

a
FL (x j+1 − t∗)dt

μW
− FL (x j ) =

1

Δ

∫ x j+1

x j

FL (t )dt − FL (x j ), (24)

which together with (17) gives the same expression for the CBM estimator as [38, Theorem 1]. We
next investigate whether there exist cases that make CBM unbiased under the new churn model.

Theorem 3. For well-behaved systems, CBM is asymptotically Δ-consistent for all m iff lifetimes

are exponential or Δ→ 0.

Proof. For asymptotic Δ-consistency, FC (x j ) in (17) must be equal to FL (x j ), which is equivalent
to requiring that

ρ j = F̄L (x j )ρ0 (25)

hold simultaneously for all m and j. The first approach to achieving this is to expand (25) using
(18) and obtain ∫ b

a

[FL (x j+1 − t∗) − FL (x j )]dm(t ) = F̄L (x j )

∫ b

a

FL (x1 − t∗)dm(t ). (26)

For this to hold for allm and j, one needs to satisfy

FL (x j+1 − t∗) − FL (x j ) = F̄L (x j )FL (x1 − t∗) (27)

for all t . Writing u = x j and v = x1 − t∗, we have

FL (u +v ) − FL (u) = F̄L (u)FL (v ), (28)

which must be true for all u,v > 0. Note that (28) simplifies to the well-known functional equa-
tion F̄L (u +v ) = F̄L (u)F̄L (v ), to which the only non-trivial solution is the exponential family of
distributions F̄L (x ) = e−λx .

The second method for ensuring (25) is to force ρ j → 0 for all j. From Taylor expansion, we have

FL (x j+1 − t∗) − FL (x j ) = fL (x j ) (Δ − t∗) + Θ(Δ2) = Θ(Δ), (29)

where fL (x ) is the density of lifetimes. Recalling (22), it follows that ρ j = Θ(Δ), i.e., ρ j → 0 iff
Δ→ 0. �

Interestingly, CBM’s conditions for removing bias did not change from those under stationary
churn, although its probability of inconsistent round-offs (18) became a more complex function
compared to (24). The positive news is that with very small Δ (i.e., seconds), CBM’s bias can be
negligible in certain situations. However, this requires a substantial bandwidth investment to mas-
sively scan the system, which may not only place a non-trivial burden on the measurement facility,
but also potentially interfere with normal operation of the network.

In terms of the observed arrival measure in (a,b], CBM samples only users that survive to the
nearest crawl boundary, i.e., those with lifetimes larger than Δ − t∗ for arrivals at t . Therefore, its
observed arrival measure (i.e., number of seen users) is given by

m′(a,a + x j ) ≈ n
∫ a+x j

a

F̄L (Δ − t∗)dm(t ). (30)

Direct usage ofm′ in place of the unknown nm leads to under-estimation of the true arrival rate.
Since CBM does not propose any mechanisms for undoing this bias, we delay a more in-depth
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Fig. 4. Illustration of RIDE.

discussion until later. For now, a qualitative assessment is that larger Δ leads to more missed joins
and thus a smaller estimated arrival volume than truly present in the network.

5.3 RIDE Estimator

To overcome the bias of CBM in measuring FL (x ), Wang et al. [38] proposed to sampling remaining

lifetimes of the users seen in a single system-wide crawl, which were then used to recover the
lifetime distribution using renewal theory. This article showed that its proposed method RIDE
provided unbiased results and exhibited orders of magnitude lower overhead than CBM. While
this holds under stationary arrivals, RIDE’s performance in more general cases remains unknown.
This is our next topic.

At time t1, this method crawls the network and retains an ϵ-fraction of the discovered users. In
each of the following Δ-intervals, the algorithm probes these hosts until they either disappear or
W expires. A user seen k times yields a residual lifetime equal to kΔ. In the scenario of Figure 4,
the algorithm obtains two samples – 6Δ and 2Δ – while the third user is ignored. Suppose NR (x ,n)
is the number of acquired residuals no larger than x . After the observation window is over, the
algorithm computes the empirical CDF of residual lifetimes using

GR (x j ) := lim
n→∞

NR (x j ,n)

NR (∞,n)
. (31)

Ideally, the method expects GR (x j ) to equal the residual CDF of the lifetime distribution

G (x j ) :=
1

E[L]

∫ x j

0

(1 − FL (t ))dt . (32)

If this holds,G (x ) can yields function FL (x ) using 1 − д(x )/д(0), where д(x ) = G ′(x ) is the den-
sity of residuals. Therefore, the second step of RIDE is to numerically differentiate (31) to produce
an empirical derivative дR (x ) = G ′

R
(x ) and to estimate FL (x ) using

FR (x j ) := 1 −
дR (x j )

дR (0)
. (33)

To quantify the accuracy of (33), we must first determine how its companion function GR (x )
relates to FL (x ).

Theorem 4. For well-behaved systems, estimator (31) can be written as

GR (x j ) = 1 −

∫ ∞
0

F̄L (y + x j )dν (y)∫ ∞
0

F̄L (y)dν (y)
. (34)

where F̄L (y) = 1 − FL (y) and ν (a,b) =m(t1 − b, t1 − a) is a reverse arrival measure that starts at t1
and moves to −∞.
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Proof. Assume a user joins the system at time t ≤ t1 and is alive at time t1. Then, its residual
lifetime is sampled as no larger than x j iff its L falls into [t1 − t , t1 − t + x j ). Let the corresponding
reward at time t be

ζj (t ,L) =

{
1 t1 − t ≤ L < t1 − t + x j

0 otherwise
. (35)

Applying (9), we have

lim
n→∞

NR (x j ,n)

n
=

∫ t1

−∞
E[ζj (t ,L)]dm(t ) =

∫ t1

−∞
(FL (t1 − t + x j ) − FL (t1 − t ))dm(t )

=

∫ ∞

0

(FL (y + x j ) − FL (y))dν (y). (36)

Using x j = ∞, this also yields

lim
n→∞

NR (∞,n)

n
=

∫ ∞

0

F̄L (y)dν (y). (37)

Dividing (36) by (37), we get (34). �

Differentiating (34) and substituting the result into (33), we get that RIDE estimates FL (x ) via

FR (x j ) = 1 −

∫ ∞
0

fL (y + x j )dν (y)∫ ∞
0

fL (y)dν (y)
. (38)

5.4 RIDE Discussion

Compared to (32), the result in (38) is generally biased. But things can get worse. As examples later
in this article demonstrate, depending on the shape of lifetime density fL (x ) and measure m, (38)
may be non-monotonic. As a result, RIDE may produce output that is not only inaccurate, but also
completely nonsensical (i.e., not a CDF). Usable information can still be extracted from (38), but it
requires pretty strong assumptions, as shown next.

Theorem 5. For well-behaved systems, RIDE is asymptotically Δ-consistent for all m iff FL (x )
exponential. Furthermore, consistency holds for all FL (x ) iffm is stationary.

Proof. We start by examining what lifetime distributions can be sampled without bias under
allm. To make (38) equal to FL (x ), the following must hold

∀x , t ≥ 0 : fL (t + x ) = F̄L (x ) fL (t ). (39)

Integrating this over t from y to ∞ produces the same functional equation F̄L (y + x ) =
F̄L (x )F̄L (y) as in Theorem 3, to which the only non-trivial solution is the exponential tail.

The alternative is to investigate what measures m allow Δ-consistency for all FL (x ). It is not
difficult to see that each non-stationarym has a counter-example fL (x ) that makes (38) biased. On
the other hand, stationarym(0, t ) = μt , where μ > 0, yields dν (y) = −μdy and

FR (x j ) = 1 −
μ
∫ ∞

0
fL (t + x j )dt

μ
=

∫ x j

0

fL (t )dt , (40)

which is the same as FL (x j ). �

Interestingly, interval Δ has no impact on the amount of bias in (38). This means that no matter
how fast RIDE samples the system, the error cannot be eliminated. This is in contrast to CBM,
which gets more accurate as Δ decreases. Additionally, since RIDE takes only one snapshot, it is
unable to estimate the arrival measurem.
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Fig. 5. Illustration of U-RIDE.

5.5 Summary

Our analysis has shown that both existing families of methods (i.e., CBM and RIDE) suffer from bias
under general arrival measures m and, to be accurate, require either high overhead (i.e., Δ ≈ 0 in
CBM) or unrealistic assumptions (i.e., exponential lifetimes, stationary arrivals), neither of which
is desirable. They also fail to obtain an accurate estimate of arrival measurem.

6 CONSISTENT SAMPLING OF CHURN

This section studies how to achieve asymptotically accurate measurement of the lifetime distribu-
tion and remove the sampling bias in the observed arrival process.

6.1 U-RIDE

Our algorithm, which we call Uniform RIDE (U-RIDE), crawls the system at times t1, t2, . . . , tM ,
where M is the number of snapshots permitted by the overhead-accuracy tradeoff (see below). For
each snapshot k = 1, 2, . . . ,M , the method identifies all live users and tracks ϵ-fraction of their
residuals using recurring connection requests every Δ time units. Each user found in the system
at time tk is probed until tk +W or until it dies, whichever happens first. The measurement always
completes at tM +W . For ϵ = 1 and the example in Figure 5, the crawl at t1 yields the same residuals
6Δ and 2Δ as in RIDE. The second crawl, which starts at t2, produces sample 4Δ from user 3. Since
user 1 is alive during both crawls, it contributes a fourth residual 5Δ measured in [t2, t2 +W ]. We
explain the need for multiple counts in such cases later in this section.

Define the set of snapshot points TM = {t1, t2, . . . , tM } to be the sampling schedule of U-RIDE.
Set t∗

k
= (tk − t1) mod δ and let OM = {t∗1 , t∗2 , . . . , t∗M } be an offset schedule. When δ = 24 hours, the

offsets are times within a particular day. From this point on, we assume a periodic measurem with
a time-average rate

μ :=
1

δ

∫ δ

0

dm(t ) =
m(0,δ )

δ
. (41)

Definition 6. Schedule TM is called asymptotically uniform if the empirical distribution of its
offset schedule OM converges to that of a uniform variable in [0,δ] as M → ∞.

As we show below, uniformity of the schedule is the crux of the new method that allows it
to recover target distribution FL (x ) without bias. To see the intuition behind this result, define
measure νk to be equal to the arrival measure m shifted by tk , i.e., νk (a,b) =m(a + tk ,b + tk ).
Note that the next result holds for time-reversed shifts as well, i.e., νk (a,b) =m(tk − b, tk − a).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 4, No. 4, Article 22. Publication date: December 2019.



22:16 X. Wang et al.

Theorem 6. For an asymptotically uniform schedule and periodic m, the aggregate time-shifted

measure

θM :=
1

M

M∑
k=1

νk (42)

converges as M → ∞ to a stationary measure θ with rate μ.

Proof. Observe that for any interval [a,b],

θ (a,b) := lim
M→∞

θM (a,b) = E[m(a +T ,b +T )], (43)

where T is uniform in [0,δ]. Then, for any s and periodicm

θ (a + s,b + s ) =
1

δ

∫ δ+s

s

m(a + t ,b + t )dt =
1

δ
��
∫ δ+s

δ

m(a + t ,b + t )dt −
∫ s

δ

m(a + t ,b + t )dt��
=

1

δ
��
∫ s

0

m(a + y + δ ,b + y + δ )dy −
∫ s

δ

m(a + t ,b + t )dt��
=

1

δ
��
∫ s

0

m(a + y,b + y)dy −
∫ s

δ

m(a + t ,b + t )dt��
=

1

δ

∫ δ

0

m(a + t ,b + t )dt = θ (a,b). (44)

Recalling (15), we get that θ must be a stationary measure. Its rate μ can be determined by
noticing

θ (0,δ ) = E[m(T ,δ +T )] = E[m(0,δ )] = μδ . (45)

The logic for time-reversed measures is very similar. The corresponding manipulations are omit-
ted for brevity. �

For each k , U-RIDE counts the number of users NU (x j , tk ,n) seen at tk with residual lifetimes
no larger than x j . Note that these are the same variables introduced earlier for RIDE, but no longer
limited to snapshots at t1. U-RIDE then uses the following estimator of the residual CDF

GU (x j ) := lim
M→∞

lim
n→∞

∑M
k=1 NU (x j , tk ,n)∑M
k=1 NU (∞, tk ,n)

. (46)

We next analyze the relationship between (32) and (46).

Theorem 7. Assume a sequence of well-behaved periodic systems. Then, under any asymptotically

uniform schedule TM , the limit in (46) equals the residual CDF of FL (x ) in all points x j , i.e.,GU (x j ) =
G (x j ).

Proof. Define νk (a,b) =m(tk − b, tk − a) to be a time-reversed and shifted measure that cor-
responds to each point tk . Recalling (36), we get that

lim
M→∞

1

M

M∑
k=1

lim
n→∞

NU (x j , tk ,n)

n
= lim

M→∞

1

M

M∑
k=1

∫ ∞

0

(F̄L (y) − F̄L (x j + y))dνk (y). (47)

Due to uniformity of the schedule, Theorem 6 shows that the aggregate measure (42) converges
to a stationary measure θ with rate μ. Therefore, the limit in (47) becomes∫ ∞

0

(F̄L (y) − F̄L (x j + y))dθ (y) = μ

∫ x j

0

F̄L (y)dy. (48)
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Fig. 6. Number of arrivals in every Δ bin (Δ = 6 minutes, δ = 24 hours).

Setting x j = ∞ in (48), we obtain that the denominator of (46), normalized by Mn, converges to
μE[L]. Dividing the two, we get the desired CDF in (32). �

The lifetime estimator for U-RIDE follows the same structure as (33), i.e., uses a k-point numer-
ical derivative дU (x ) = G ′

U
(x ) and

FU (x j ) := 1 −
дU (x j )

дU (0)
, (49)

where values of k ∈ [2, 4] produce a good tradeoff between complexity, accuracy, and robustness
to measurement noise.

6.2 U-RIDE Discussion

Note that M → ∞ is only needed for the most difficult measures m, which are not likely to be
encountered in practice. In fact, periodic measures that are complement-symmetric during shifts by
δ/2 (i.e.,m(0, t ) = c −m(δ/2,δ/2 + t ) for some constant c) become stationary with justM = 2. One
example from the family of sine/cosine functions is shown in Figures 6(a)–6(b). Notice that just one
extra snapshot at midpoint t2 = δ/2 produces an aggregate measure θ2 that is stationary. A more
challenging case is shown in Figures 6(c)–6(d), where we use a measure that is not complement-
symmetric and M = 8 snapshots. Note that θM reduces peak-to-peak fluctuation of m by 81× and
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approximates stationary conditions rather well. Additionally, even if large M is needed in certain
cases, the measurement cost can be offset by reducing ϵ , i.e., retaining a smaller fraction of hosts
for monitoring purposes.

Two additional observations are in order. First, the proof of Theorem 7 shows that if a user is
alive during multiple snapshots, it must be sampled at each instance and included in the corre-
sponding totals as if they were independent users. In Figure 5, the top user survives to t2, which
indicates that U-RIDE must obtain two residuals from it. This can be explained by the fact that in-
tegration with respect to νk counts these users at each point tk . Doing otherwise leads to incorrect
estimation and bias in the result. Second, one might be tempted to simply apply RIDE at uniformly
random time points and then take an average of the resulting CDFs. This would be equivalent to

lim
M→∞

1

M

M∑
k=1

lim
n→∞

NU (x j , tk ,n)

NU (∞, tk ,n)
(50)

as a replacement for (46). However, this estimator does not converge to anything that allows re-
covery of FL (x ). As shown in the proof of Theorem 7, the numerator and denominator of (46) must
be individually totaled across all snapshots and then divided. This small, yet important, detail has
a strong impact on the accuracy.

6.3 Scheduling

The next piece of our algorithm is to find an asymptotically uniform schedule TM . If δ is known
a priori and the arrival measure is reasonably smooth, spacing M points equally in [0,δ] approx-
imates a uniform schedule rather well. For regular human activity, our experiments show that
M ∈ [2, 8] is often enough. However, when δ is unknown, the situation is more interesting. The
rest of this subsection focuses on obtaining a provably convergent schedule for such cases.

We use an approach we call Bernoulli scheduling, in which

tk+1 = tk +vk Δ + uk , k ≥ 1, (51)

wherevk is drawn from a geometric distribution with success probability p anduk is drawn from a
uniform distribution in [0,Δ]. The former variable controls how often full snapshots are taken and
determines duration of the entire measurement, which on average lasts (M − 1)Δ(1/p + 1/2) time
units. The latter variable ensures that schedule TM is asymptotically uniform. From the property of
BASTA (Bernoulli Arrivals See Time Averages) [26], it is straightforward to obtain the following:

Theorem 8. As M → ∞, Bernoulli scheduling becomes asymptotically uniform for any period δ .

6.4 Replicating the Arrival Process

We now turn to the issue of building a simulated system ofn′ users with arrivals in points {τ ′i j } that

would appear to the sampling process indistinguishable from the original network. Our proposed
approach, shown in Figure 7, models user behavior using three states. The first one, which we
call WAIT, delays the join time τ ′i j by a random offset Ai j ∼ FA (x ) from the start of the current δ -

interval (e.g., midnight if δ = 24 hours). The wait is followed by ON cycles that last for Li j ∼ FL (x )
time units, possibly stretching into the next day. After departure, each user stays offline in the
REST state for the remainder of the current δ -cycle.

For the simulated process in Figure 7, U-RIDE already has a consistently sampled FL (x ). It thus
needs two additional parameters – distribution of wait delays FA (x ) and system size n′. This is
our next topic. Assume that m is approximately stationary on small-enough intervals. To take
advantage of this, it is beneficial for U-RIDE to minimize the inter-snapshot duration, i.e., space all
crawl points equally within the first day. Supposing that δ is known, define d = tk − tk−1 = δ/M
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Fig. 7. Simulated user arrival process under periodic churn.

to be the distance between full scans. Then, assuming d is small (i.e., M is sufficiently large), it
follows that dm(t ) ≈ μkdt for t ∈ [tk , tk+1], where {μk } are some constants. From CBM analysis
(30), the sampled arrival measure of U-RIDE is given by

m′(t1, tk ) ≈ n
∫ tk

t1

F̄L (d − t∗)dm(t ) = n
k−1∑
j=1

μ j

∫ tj+1

tj

F̄L (d − t∗)dt = n
⎡⎢⎢⎢⎢⎣
∫ d

0

F̄L (t )dt
⎤⎥⎥⎥⎥⎦

k−1∑
j=1

μ j . (52)

Note that m′ is not normalized by n, i.e., it counts the actual number of observed hosts. Similar
to (24), let the fraction of missed users in each interval be

ρ ′0 =
1

d

∫ d

0

FL (t )dt , (53)

which is available to the estimator as long as FL (x ) is. Then, (52) can be written as

m′(t1, tk ) ≈ nd (1 − ρ ′0)
k−1∑
j=1

μ j . (54)

Noticing thatm(t1, tk ) ≈ d∑k−1
j=1 μ j , we get that the observed arrival measure is a scaled version

of the unknownm

m′(t1, tk ) ≈ n(1 − ρ ′0)m(t1, tk ). (55)

Therefore, U-RIDE can recover FA (x ) directly from the observed arrivals

FA (x ) =
m(t1, t1 + x )

m(t1, t1 + δ )
≈ m′(t1, t1 + x )

m′(t1, t1 + δ )
. (56)

As a sanity check, notice that stationary m produces uniform WAIT times in (56), i.e., FA (x ) =
x/δ . To determine n′, define Zi j = τ

′
i, j+1 − τi j to be the jth inter-arrival delay of user i , where

Zi j = δ

⌈
Ai j + Li j

δ

⌉
−Ai j +Ai, j+1. (57)

Now observe that the expected number of joins per period δ can be written as n′δ/E[Zi j ] or
m′(t1, t1 + δ )/(1 − ρ ′0), where m′(t1, t1 + δ ) is the number of detected arrivals in the first day of
observation. Equating the two, we get

n′ ≈
E[Zi j ]m

′(t1, t1 + δ )

δ (1 − ρ ′0)
= E[D]

m′(t1, t1 + δ )

1 − ρ ′0
, (58)

where D = (A + L)/δ�, A ∼ FA (x ), L ∼ FL (x ). Therefore, U-RIDE can replicate churn (i.e., both
arrival process and lifetimes) of well-behaved systems using sufficiently large M .

7 OVERHEAD

We now study the connection cost of CBM and compare it to that of U-RIDE.
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7.1 CBM

Without loss of generality, we assume that start time t1 = 0 and measurement window W is a
multiple of period δ . Let each contact with a host carry unit cost. Then, we have the following
result.

Theorem 9. For well-behaved periodic systems with sufficiently large n and δ/Δ, the overhead of

CBM is

BC ≈
nE[L]

Δ

(
μW +

∫ W

0

[G (W ) −G (W − t )]dm(t )
)
, (59)

where μ is the average per-user arrival rate in (41) and G (x ) is the residual CDF from (32).

Proof. In the first half of the window [0,W ], CBM crawls the systemW /Δ times. Let B1 be the
corresponding cost. Since NU (∞, t ,n) is the number of live users at time t , each of which must be
crawled, we get

B1 =

W /Δ∑
j=1

NU (∞,x j ,n) ≈ n
W /Δ∑
j=1

∫ ∞

0

F̄L (y)dωj (y), (60)

where measure ωj (a,b) =m(x j − b,x j − a). If Δ is small compared to period δ and m is smooth,
crawl instances x j can be viewed as satisfying uniform scheduling. In that case, application of
Theorem 6 allows further simplification of B1 to nμE[L]W /Δ.

In the second half [W , 2W ], CBM tracks users who have joined in the first half. This goes on
until they die or their lifetime exceedsW . Let B2 be the corresponding overhead. Suppose t is the
arrival time of a user in the first half. To remain alive at W , its lifetime must satisfy L >W − t ,
while the cost of tracking this user in the second half is given by

c (t ,L) ≈ t +min(L,W ) −W
Δ

, (61)

where the approximation arises from omission of rounding to an integer. Note that c (L, t ) over-
estimates the overhead for some users and underestimates for others, depending on the value of
t∗. Since Δ is small and t∗ of arriving users is roughly uniform in [0,Δ], the positive and negative
errors tend to cancel each other out. Next, defining reward function

ζ (t ,L) =

{
c (t ,L) L >W − t
0 otherwise

, (62)

we get from (9) that

B2 ≈ n
∫ W

0

E[ζ (t ,L)]dm(t ). (63)

For constants a,b > 0 and non-negative L, note that

E[min(L − b,a)1L>b ] =

∫ a

0

F̄L (x + b)dx = E[L](G (a + b) −G (b)). (64)

Setting b =W − t and a = t , this result yields

E[ζ (t ,L)] =
E[L]

Δ
(G (W ) −G (W − t )). (65)

Therefore,

B2 =
nE[L]

Δ

∫ W

0

[G (W ) −G (W − t )]dm(t ). (66)

Combining B1 and B2 gives the result in (59). �
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In the stationary case, i.e.,m(a,b) = μ (b − a), Theorem 9 reduces to [38, Theorem 8], i.e.,

BC =
nE[L]μ

Δ

(
W +

∫ W

0

[G (W ) −G (y)]dy
)
. (67)

7.2 U-RIDE

Recall that U-RIDE crawls the system M times. For each snapshot k , a fraction ϵ of live users
is selected and then checked until they disappear or window [tk , tk +W ] expires. Note that users
alive at tk and tk+1 produce two independent samples of residual lifetime, but the network overhead
is still that of one user. Therefore, it is beneficial for U-RIDE to cluster its snapshots as close as
possible, creating the largest overlap between the live users in adjacent crawls. As a result, the
cost-optimal schedule places all M points uniformly within the first day, which also happens to be
the best strategy for samplingm in the previous section.

Theorem 10. Assume U-RIDE with an optimal uniform schedule and a sequence of well-behaved

periodic systems. For sufficiently large n and M , the overhead of U-RIDE is

BU (ϵ ) ≈ nE[L]

Δ
��μΔM + ϵ

M∑
k=1

∫ tk

tk−1

hk (t )dm(t )��, (68)

where hk (t ) = Ḡ (tk − t ) − Ḡ (tM +W − t ) and t0 = −∞.

Proof. The first part of the overhead comes from M crawls, which can be computed using the
proof of Theorem 9

B3 :=

M∑
k=1

NU (∞, tk ,n) ≈ nMμE[L]. (69)

The second portion of the cost comes from tracking each live user. Since all crawl points are
in the first day, it follows that W is larger than tM = δ and thus each user is probed from its
first appearance in the system until tM +W or until it dies, whichever happens first. Suppose a
user arrives at time t such that tk−1 < t ≤ tk , i.e., k is the first snapshot that detects the user. For
convenience, we assume t0 = −∞. Then, recording M − k + 1 residual lifetime samples from this
user costs

ck (t ,L) =
min(t + L − tk , tM +W − tk )

Δ
, (70)

with the corresponding reward

ζk (t ,L) =

{
ck (t ,L) L > tk − t
0 otherwise

. (71)

This produces the tracking overhead as

B4 ≈ ϵn
M∑

k=1

∫ tk

tk−1

E[ζk (t ,L)]dm(t ). (72)

Setting b = tk − t and a = tM +W − tk in (64), we get

E[ζ (t ,L)] =
E[L]

Δ
(G (tM +W − t ) −G (tk − t )) (73)

and consequently

B4 ≈
ϵnE[L]

Δ

M∑
k=1

∫ tk

tk−1

[G (tM +W − t ) −G (tk − t )]dm(t ),
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which becomes (68) after combining with (69) and expressing the result via the tail distribution
Ḡ (x ). �

Two observations are in order. First, M = 1 and stationary dm(t ) = μdt yield the overhead of
RIDE in (68), i.e.,

BU (ϵ ) =
nE[L]μ

Δ

(
Δ + ϵ

∫ W

0

Ḡ (t )dt
)
, (74)

which matches [38, Theorem 9]. Second, defineN = 1/M
∑M

k=1 NU (∞, tk ,n) to be the average num-
ber of observed users per crawl. From (69), we get a variation of Little’s Law in application to N
– the average number of live entities in the system is the arrival rate μn times the expected delay
each user spends online, i.e., N ≈ μnE[L]. Using the observed arrival rate μ ′ =m′(0,δ )/δ , this can
be also written as N ≈ μ ′E[L]/(1 − ρ ′0).

8 SIMULATIONS AND EXPERIMENTS

This section examines the accuracy of derived results and proposed methods in finite graphs (i.e.,
without n,M → ∞).

8.1 Dataset

To obtain realistic arrival patterns and lifetimes from human-driven networks, we focus on large-
scale P2P systems in this evaluation. One of the biggest such networks amenable to measurement
was Gnutella [12], which in 2006-2007 reached a peak of 6.5M concurrent users [38]. While it has
significantly shrunk in size after legal action against Limewire and Morpheus, other P2P networks
(e.g., BitTorrent) routinely enjoy large populations of users even today; however, they are more
difficult to sample at the same scale as Gnutella due to the limitations of the protocol (i.e., no
system-wide crawl functionality). Since user behavior and period δ arguably do not change much
from year to year, it is perfectly sufficient for our evaluation to engage an older dataset.

Gnutella is an open-protocol P2P file-sharing network that organizes users into a two-tier over-
lay structure. Users, identified by (IP address, port) pairs, can serve as either ultrapeers or leaves.
The former connect to each other, establishing the Gnutella overlay graph, and route search mes-
sages to find content. The latter attach to a handful of ultrapeers and do not provide any routing
services to other members of the system. Note that Gnutella has no central administration and
its global structure at any given time is hidden from the client software. However, leveraging the
crawl option of Gnutella/0.6, it is possible to request neighbors of each visited ultrapeer and ex-
ecute a BFS-like algorithm to capture snapshots of the entire system at different times tk . Our
dataset comes from Gnutella crawls that we performed in June 2007, where a full snapshot was
taken every 3 minutes for W = 7 days. The average observed join rate was μ ′ = 675/sec, which
gave us a total of 408M instances of peer arrival. There wereU1 = 50.5M unique IPs in the dataset
andU2 = 266M unique (IP, port) combinations. Since NAT allows multiple users to share one pub-
licly visible IP, it is likely that n ≥ U1. Similarly, the same user may appear in the network with
different (IP, port) identities, which suggests n ≤ U2.

We start by replicating the arrival measure of Gnutella, which is necessary for the simulations
below that evaluate the accuracy and bandwidth cost of CBM, RIDE, and U-RIDE.

8.2 Arrival Measure

Setting the delay between snapshots d = 6 minutes in U-RIDE (i.e., by discarding half of the crawls
in the dataset), we obtain its observed arrival measure m′ (or similarly bin-discretized rate) in
Figure 8(a). The result clearly indicates periodic churn with δ = 24 hours. For simulation purposes,
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Fig. 8. Observed user arrival ratem′(id, (i + 1)d )/d .

we use Pareto FL (x ) = 1 − (1 + x/β )−α withα = 3 and β = 1 (mean lifetime 0.5 hours). Our analysis
in (53) shows that ρ ′0 = 13% of the users are missed with this choice of FL (x ) and d . Invoking (58),
we obtain n′ = 68.5M users are needed to replicate the observed measure in Figure 8(a). Using
the algorithm in Figure 7, we simulate n′ non-stationary ON/OFF processes with Ai j drawn from
the Gnutella FA (x ). We then sample this system every d time units and plot the observed join
rates in Figure 8(b). Note that the result is very similar to the one in Figure 8(a). Furthermore,
normalization by (1 − ρ ′0) = 0.87 during recovery of n′ in (58) plays an important role, which none
of the previous methods do.

The procedure outlined in this section is quite flexible as it allows usage of our trace to create
a simulated Gnutella network for any inter-snapshot delay that is a multiple of 3 minutes. This
system can then be sampled using CBM, RIDE, or U-RIDE for the various comparisons below.

8.3 Accuracy of Lifetime Estimation

Given the replica system from the previous subsection, we consider two types of lifetimes: 1)
Pareto with FL (x ) = 1 − (1 + x/β )−α , where shape α is 2 and scale β is such that E[L] = 3 hours;
and 2) mixture L = X1 + X2, where X1 is uniformly discrete among {0,δ , 2δ , 3δ } and X2 ∈ [0,δ ) is
a truncated exponential random variable with mean 2 hours. The former case models users with
heavy-tailed lifetimes, which is fairly standard in evaluating churn models [20], [44]. The latter
case covers peers that leave their computers logged in for X1 full days and then spend a random
amount of time X2 browsing the system before departure.

Using sampling interval Δ = 3 hours, we show the output of CBM in Figure 9. In both cases,
it overestimates the tail of the target distribution, which was predicted by (17). RIDE results are
plotted in Figure 10, where the Pareto case (a) exhibits a similar amount of bias as in CBM; however,
the mixture case (b) produces drastically different results. The estimated distribution is not only
inaccurate, but also non-monotonic (i.e., not a CDF). Increasing overhead (i.e., lowering Δ) has
no impact and RIDE remains biased regardless of manipulations to the sampling process. The
corresponding plots for U-RIDE under Bernoulli scheduling with p = 0.1, ϵ = 0.01, and M = 8 are
provided in Figure 11. Notice that it correctly hits all points F̄L (x j ) in both distributions.

8.4 Bandwidth Overhead

We now compare the sampling cost of CBM and U-RIDE, where the latter uses optimal schedul-
ing (i.e., points {tk } equally spaced in the first day). Simulations use Gnutella’s arrival measure,
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Fig. 9. CBM estimator (16) under Gnutellam.

Fig. 10. RIDE estimator (33) under Gnutella m.

Fig. 11. U-RIDE estimator (49) with Bernoulli scheduling and Gnutellam.
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Fig. 12. Connection overhead under Gnutella m and Pareto lifetimes (default parameters W = 48 hours,

α = 3, E[L] = 1 hour, μ ′ = 675/sec).

n′ = 68.5M non-stationary processes, Pareto lifetimes, ϵ = 1, and M = 12. Figure 12(a) shows that
both models (59) and (68) match simulations very well and that the cost is indeed a linear function
of E[L]. The two methods require between 1B and 13B connections (i.e., 1 − 13 TB of data using
1 KB per crawl request), depending on the average lifetime. Figure 12(b) confirms that CBM is
linear inW , but U-RIDE is insensitive to the observation window length. This is because it probes
users until they die, which happens well before the window expires. In Figure 12(c), both meth-
ods reduce overhead for lighter-tailed α , which comes from tracking users in proportion to their
residual lifetimes (i.e., larger α means users depart quicker). Finally, Figure 12(d) shows that both
techniques are linear in observed rate μ ′. These conclusions are consistent with (59) and (68).

Once subsampling is taken into account, U-RIDE achieves a more impressive advantage over
CBM. Table 1 shows that overhead reduction reaches 1 − 2 orders of magnitude depending on the
parameters of the network. From the proof of Theorem 10, U-RIDE obtains ϵnμE[L]M residual sam-
ples. For ϵ = 0.001 and M = 8, this translates into 22K observations, which is more than enough
to recover FL (x ) with accuracy similar to that in Figure 11. As n become larger, it is possible to
scale ϵ ∼ 1/n → 0, in which case the ratio of CBM cost to that of U-RIDE converges to a simple
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Table 1. Overhead under Gnutella Arrivals, Pareto Lifetimes,

E[L] = 1 hour, Δ = 3 minutes, and M = 8

α W Overhead ratio of CBM to U-RIDE
ϵ = 1 ϵ = 0.1 ϵ = 0.01 ϵ = 0.001

1.1 48 hrs 1.1 10 59 114
72 hrs 1.6 12 78 166
96 hrs 1.7 13 92 216

2 48 hrs 3.7 29 96 124
72 hrs 5.3 42 140 182
96 hrs 6.9 55 184 241

Table 2. Measurement Statistics in the Top-10 Subsets by Country and ISP

Country Samples Unique IPs ISP Samples Unique IPs
US 120M 48% 21M FDC Servers 21.5M 8.6% 3.6M
Brazil 36M 14% 6.4M Level 3 18.2M 7.3% 3.0M
Canada 16M 6.4% 2.6M Telecom. de Santa Catarina 11.3M 4.5% 2.1M
UK 13M 5.3% 2.0M Telecom. de Bahia 8.7M 3.5% 1.5M
Germany 6.0M 2.4% 1.0M SBC Communications 8.2M 3.3% 1.3M
Australia 5.0M 2.0% 0.9M Verizon 6.2M 2.5% 1.0M
Japan 4.6M 1.9% 0.9M Telecomunicacoes de Sao Paulo 5.5M 2.2% 1.0M
Netherlands 4.5M 1.8% 0.9M Shaw 4.8M 1.9% 9.3M
Poland 4.4M 1.7% 0.8M Cablevision 4.1M 1.6% 0.8M
Austria 4.3M 1.7% 0.7M Cox 4.0M 1.6% 0.7M

formulaW /(MΔ) ≥ 1. For a 7-day measurement in Figure 8(a), α = 2, and M = 8, this means trad-
ing 8.8 TB of bandwidth in CBM for just 21 GB in U-RIDE (i.e., a reduction by a factor of 420).

8.5 Gnutella

We now return to the Gnutella dataset and run the studied lifetime estimators over it. We split
the observations based on two criteria: geographic location and service provider. Table 2 lists the
statistics of top-10 subsets in both categories. While the collected lifetime samples concentrate in
just a few countries, with almost 50% in the US, the distribution of users among service providers
is more even, with none of the ISPs producing more than 9% of the observations.

To compare accuracy of lifetime estimation, we first need to obtain FL (x ) as ground-truth. While
this task is impossible with absolute accuracy, our earlier results (see Theorem 3) have shown that
CBM has a diminishing bias as Δ→ 0. In particular, this condition can be considered to hold if
Δ � E[L], which is satisfied given Gnutella’s E[L] on the order of hours and our Δ = 3 minutes.
Figure 13(a) plots the CBM result on a log-log scale along with a power-law fit. The curve indi-
cates that lifetimes follow a power-law distribution with shape α = 1.15 and β = 0.69 (i.e., E[L] =
4.6 hours). This value of α is consistent with application of CBM in prior work [3]. In contrast,
RIDE in Figure 13(b) produces a non-monotonic function (i.e., an invalid CDF) whose tail is sig-
nificantly more noisy than in Figure 13(a).

For U-RIDE, we use p = 1/20 and collect 24 full snapshots (approximately one for each hour)
during the first day. We then apply the corresponding estimator to the original dataset of all peers
and plot in Figure 14(a) the curves computed by U-RIDE and CBM. Observe that the two match
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Fig. 13. Estimated lifetime distribution of all observed peers.

Fig. 14. Comparison of U-RIDE with CBM with M = 24, ϵ = 1 in different datasets.
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Fig. 15. Effect of overhead reduction using ϵ .

closely, meaning that the former provides no worse estimation than the latter, but at dramatically

lower cost. Figure 14(b) shows a similar comparison among ultrapeers and leaves. We next apply
U-RIDE to four subsets from Table 2. For geographic location, we use the US and UK to contrast
their FL (x ); and for service provider, we select a US carrier SBC Communications and a Brazilian
company Telecomunicacoes de Santa Catarina SA (TELESC). Figures 14(c)–14(d) indicate solid
agreement between U-RIDE and CBM in all studied zones, as well as show that US peers exhibit
heavier tails than those in the UK and especially in Brazil. Additional results based on criteria such
as the time zone, protocol version, and software vendor also confirm accuracy of the proposed
technique.

Note that the U-RIDE results above did not use subsampling. However, Figure 15(a) shows that
other choices of M and ϵ can also produce accurate estimation. In what follows, we explore the
parameter space ofM and ϵ to strike a balance between accuracy and overhead. To assess accuracy,
we employ the Weighted Mean Relative Difference (WMRD), which is often used for comparing
distribution functions [9], [18], [23]. Given an estimated CDF FQ (x ) and a target distribution FL (x ),
the WMRD is defined as

w =

∑W /Δ
j=1 |FQ (x j ) − FL (x j ) |∑W /Δ

j=1 (FQ (x j ) + FL (x j ))/2
, (75)

where x j = jΔ. For the evaluation, let rCU be the overhead ratio between CBM and U-RIDE, while
rCR be that between CBM and RIDE. To put this in perspective, RIDE exhibitsw = 0.2 and overhead
ratio rCR = 9.8 in Figure 13(b), while U-RIDE achieves w = 0.048 and rCU = 4.6 in Figure 14(a),
where both indirect methods use their most inefficient versions with ϵ = 1. Next, we illustrate a
more useful scenario.

We run U-RIDE with a set of 72 combinations of parameters M (from 1 to 288) and ϵ (from
0.0001 to 1). To find the optimal choice for M and ϵ , we admit only such pairs that keep w <
0.1 and simultaneously rCU > 100. Among the five candidates that pass this criteria, we select
the pair with the smallest WMRD. The resulting choice is M = 8 and ϵ = 0.005, which produces
rCU = 126 andw = 0.055. Figure 15(b) plots the estimated tail using the optimized parameters. Both
numerical WMRD score and the figure indicate a very good match, despite the heavy thinning.
Since CBM does not admit similar reduction in overhead through subsampling [38, Theorem 7],
U-RIDE emerges as a significantly more efficient solution for estimating lifetime distributions in
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large, non-stationary distributed systems. Furthermore, when inter-crawl duration Δ is large, it is
also more accurate.

8.6 Wikipedia

Our second example deals with estimation of inter-update delays in web-crawling scenarios [22],
[23]. Assume a collection of web pages (i.e., sources) that need to be indexed by a search engine.
This procedure typically consists of downloading the pages, parsing their text, constructing a re-
verse index that maps keywords to pages that contain them, and performing ranking on the result-
ing database. One of the main challenges in providing useful search results is data churn, which
refers to random updates (e.g., from webmasters and/or regular users) that modify the original
content and make the index of a search engine outdated. Because HTTP is a pull-based protocol,
updates cannot be communicated directly to web crawlers, which causes an inherent delay before
they are picked up during the next re-crawl. Maintaining a perfectly fresh copy of every page
would be ideal; however, this is impossible in practice due to the enormous size of the web and
frequent change in content.

A common question in this line of work [4], [6], [22], [23] is to model the relationship between
the rate at which pages are revisited and the staleness it produces, where frequent crawls reduce
staleness, but also consume large amounts of bandwidth. While this can be formalized using a
number of different metrics [22], the most common question is how to compute the crawl rate
λ(p) that results in a given staleness probability p > 0, where p is defined as the fraction of time
that the search-engine index deviates from the source. The model for p typically assumes [4],
[6], [22] that the crawler visits pages with a known inter-download delay D ∼ FD (x ) whose rate
λ(p) = 1/E[D] needs to be decided. In the computation below, we use exponential FD (x ), which is
a common scenario of interest [4], [6], [22], [23].

In order to solve for λ(p), the crawler needs to know the inter-update distribution FL (x ), or
more specifically its residual G (x ) [22]. Unfortunately, neither function is directly available to
outside observers. Thus, the only feasible approach is to sample the update process by periodically
downloading each page and comparing its content at times t and t + Δ, where as before Δ > 0 is
a lower-bound on the return delay to the same page. If a modification is detected in the interval
[t , t + Δ], we count a new update; otherwise, we extend the previous update interval by Δ time
units. Note that updates are analogous to lifetimes in our earlier P2P examples. Likewise, CBM
can be applied to this problem by crawling each page in the set every Δ time units and directly
measuring inter-update delays, some of which are still missed and the others are rounded to a
multiple of Δ. RIDE and U-RIDE operate almost the same as before, i.e., by measuring residual
delays to the next update from some initial point t or multiple such points t1, . . . , tM . Finally,
because pages do not go offline, the arrival process here is identical to the update process.

Unlike P2P networks, which are fully decentralized and do not expose timestamps of user ar-
rival, model verification for web-crawling scenarios can be performed using certain publicly shared
traces that record all updates and thus provide ground-truth for the various estimation methods.
An excellent candidate for this type of analysis is Wikipedia [40], which is one of the most fre-
quently visited sites on the Internet, with 16B page views per month, 36M collaborating editors,
and 49M updates per month [42]. Wikipedia page modification is driven by non-stationary activity
of humans, which may be argued applies to other web resources as well (e.g., Facebook, Twitter).
As a result, our goal is to assess how accurately the three studied methods (i.e., CBM, RIDE, and
U-RIDE) can sample the Wikipedia inter-update distribution FL (x ), when used by a web-crawler
that does not have access to website internals, and use this information to compute rate λ(p). We
also examine the associated cost (i.e., number of page downloads).
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Fig. 16. Properties of Wikipedia.

We focus on the April 2019 dump of English Wikipedia [41], which contains 47M pages and 821M
updates over a period of 19 years. The distribution of inter-update delay FL (x ) across all pages is

shown in Figure 16(a). The result indicates a good match to the Weibull distribution 1 − e (−x/ν )k

with ν = 3.4 × 105 and k = 0.6. The update rate during the day is shown in Figure 16(b), which
confirms sine-like periodic behavior, where the highest and lowest rates differ by a factor of 1.8.
This is slightly less than in Gnutella’s Figure 8(a), where it was 2.1, but significant nevertheless.
We next sample the update process of Wikipedia using the three candidate methods. Considering
that the average delay between adjacent updates to the same page is E[L] = 56 days, we select
Δ = 5 days to be small enough to keep CBM accurate. The method crawls each available page in
Wikipedia every Δ time units and rounds the observed inter-update delays to the nearest multiple
of Δ. Because our target metric of staleness p requires the residual distributionG (x ) from (32), we
integrate the sampled FL (x ) to getG (x ). RIDE executes its residual sampling at one snapshot point,
which is selected randomly in December 2018, which happens to be 9:52 am on 12/6/18. It uses
subsampling probability ϵ = 0.16, i.e., 16% of the pages are monitored. U-RIDE applies Bernoulli
scheduling with M = 16 points within the observation window. To keep the number of samples
equal to that of RIDE, we set ϵ = 0.005 for U-RIDE. Since both RIDE and U-RIDE directly produce
an estimate of G (x ), no further conversion is needed to calculate p.

Comparison of the trueG (x ) against the estimates from CBM, RIDE, and U-RIDE is shown in Fig-
ures 17(a)–17(c). While the CBM and U-RIDE curves are indistinguishable from the correct result,
RIDE produces a significant deviation. This highlights the pitfalls of using a single snapshot—the
residuals at a fixed point t are not generally representative of the whole distribution G (x ) when
the underlying system is non-stationary. The tail produced by RIDE in Figure 17(b) not only is
truncated to 100 days, but also does not resemble G (x ) even in this limited range. Using a binary
search to deduce λ(p) from each estimated G (x ), we plot the model-suggested download rate of
the crawler for different levels of staleness in Figure 17(d). Compared to the correct value of λ(p),
there is a significant amount of over-estimation stemming from the RIDE result. For example, it
overshoots the correct rate by 4× at p = 10% and by 7.8× at p = 50%.

While CBM has good estimation accuracy for this choice of Δ, it requires an exorbitant amount
of download bandwidth to keep probing each page for the entire window. Our results show that
it obtains 311M inter-update delay samples, which requires 8.6B page downloads. At 3.7 KB per
page, this is equivalent to 32 TB of network traffic. In contrast, U-RIDE operates with just 515K
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Fig. 17. Estimation accuracy of the residual distribution G (x ) and resulting download rate.

samples, which are collected using 55M downloads (204 GB). The yields a reduction in sampling
cost by a factor of 156, but without affecting estimation accuracy.

9 CONCLUSION

The article studied the tradeoff between accuracy and overhead in sampling churn in dis-
tributed systems with non-stationary arrivals. We proposed a novel approach for modeling the
arrival/departure process of such systems, which was both sufficient and necessary for estima-
tion to be feasible, showed that existing methods were biased under the conditions of this model,
and introduced a sampling algorithm that achieved consistent estimation of both the lifetime dis-
tribution and the observed arrival measure, while offering a substantial reduction in bandwidth
compared to some of the best previous techniques.
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