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Improving I/O Complexity of Triangle Enumeration
Yi Cui, Di Xiao, Daren B.H. Cline, and Dmitri Loguinov

Abstract—In the age of big data, many graph algorithms
are now required to operate in external memory and deliver
performance that does not significantly degrade with the scale
of the problem. One particular area that frequently deals with
graphs larger than RAM is triangle listing, where the algorithms
must carefully piece together edges from multiple partitions to
detect cycles. In recent literature, two competing proposals (i.e.,
Pagh and PCF) have emerged; however, neither one is universally
better than the other. Since little is known about the I/O cost of
PCF or how these methods compare to each other, we undertake
an investigation into the properties of these algorithms, model
their I/O cost, understand their shortcomings, and shed light on
the conditions under which each method defeats the other. This
insight leads us to develop a novel framework we call Trigon
that surpasses the I/O performance of both previous techniques
in all graphs and under all RAM conditions.

I. INTRODUCTION

Triangle listing is a field of graph mining that aims to
identify all three-node cycles in undirected graphs G. This
problem has many applications in theory and practice [2], [3],
[4], [5], [8], [11], [26], [35], [36], [39], [42], including areas
outside of computer science [14], [15], [17], [23], [25], [34],
[38]. Due to the scale of modern graphs (i.e., billions/trillions
of edges) and anticipated emergence of even bigger datasets in
the future, reducing I/O complexity during graph manipulation
has become an important topic.

Triangle listing involves two components – in-memory
search, whose purpose is to find all relevant motifs (i.e.,
triangles) within portions of the graph loaded in RAM, and
graph partitioning, whose responsibility is to chunk G into
such pieces that ensure no triangle is missed or discovered
more than once. In-memory search entails verification of
neighboring relationships between all pairs of candidate nodes.
The majority of these solutions [1], [6], [7], [12], [16], [18],
[21], [29], [30], [31], [32], [33] can be expressed under the
umbrella of 18 vertex/edge-iterator algorithms [9], [40], where
a single method E1 has emerged as a clear winner.

In graph partitioning, however, the situation is more inter-
esting. As of this writing, the two most-efficient approaches
to splitting the graph are a coloring scheme called Pagh [27]
and the PCF framework from [9]. The main caveat is that
the former has lower I/O bounds on complete graphs, while
the latter on sparse, i.e., neither one is better than the other.
Besides I/O, execution time also depends on the amount of
hash-table lookups, which is a function of the partitioning
algorithm. This raises a possibility that some methods might
exhibit less I/O, but require more CPU cost.
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It currently remains unclear under what specific conditions
Pagh is better than PCF in terms of I/O, which of them should
be chosen for a particular G, why one approach may have
inherent advantages over the other, and whether it is possible to
design a single algorithm that can perform better than both of
these techniques. If so, how does one decide on its parameters
in order to achieve the smallest runtime? Our goal in the paper
is to address these questions.

A. Overview of Results
We start by analyzing the asymptotics of I/O in Pagh and

PCF, aiming to achieve an understanding of their strengths
and weaknesses. While the former has a simple model, the
overhead of the latter is a complex function of the acyclic
orientation θ, the resulting directed graph Gθ, and specific
traversal order of nodes in each triangle. We derive the exact
overhead of PCF; however, this formula proves difficult for
closed-form analysis. We therefore obtain tight upper/lower
bounds on its growth rate, which are then used in the com-
parison against Pagh.

This analysis shows how the scaling rate of average degree,
memory size, and variance of out-degree affect which method
is better. In general, PCF has the highest advantage when the
graph is sparse, the variance of out-degree is small, and RAM
is growing slowly with the number of edges m. Pagh wins
when these conditions are reversed. As the number of nodes
n → ∞, our results demonstrate that under the best scenario
for PCF, it beats Pagh by a factor of n. In the worst case, it
loses by a factor of

√
n. We also prove existence of graphs

where PCF scales I/O no faster than Pagh for all memory
sizes; however, the opposite is possible as well.

Our investigation reveals that each method brings a sig-
nificant amount of redundant edges into RAM, but they do
so under different conditions. This gives hope that a single
method can combine the strengths of these techniques and
simultaneously avoid their individual drawbacks. To this end,
we first generalize graph partitioning to cover all possible
ways to execute vertex/edge iterators in external memory.
Not surprisingly, both Pagh and PCF, as well as previous
techniques based on MGT [12], [16], are all special cases of
this unifying framework. Under its umbrella, we then create
a particular scheme, which we call Trigon, that leverages the
lessons learned from the preceding analysis. We show that
Trigon’s I/O is never worse, and in many cases much better,
than either of its predecessors. Not only that, but it is also the
first method that allows balancing between I/O and CPU cost
in order to achieve the smallest runtime.

II. RELATED WORK

The issue of optimal speed for in-memory algorithms ap-
pears to be settled. In the last decade, the fastest techniques
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have come from the family of vertex/edge iterators [1], [12],
[16], [18], [21], [30], [31], [32], [33]. The former methods
typically rely on hash tables to perform neighbor checks,
where the speed is limited by that of random memory access.
On the other hand, scanning edge iterators can be implemented
using vectorized CPU intrinsics, which are not bottlenecked by
RAM latency. With 128-bit SIMD and list compression, it is
feasible to achieve two orders of magnitude faster neighbor
verification [9]. In the taxonomy of 18 vertex/edge iterators,
method E1 [1], [12], [32] is by far the best technique [9], [40].

In external memory, early methods used a variety of tech-
niques, including disk seeking [10], [24], MapReduce [8],
[28], [33], general graph libraries [13], [20], and iterative
graph shrinkage [7], which are difficult to summarize here
analytically. Due to their low efficiency, however, these ap-
proaches are not considered competitive today. In more recent
development, algorithms have been streamlined to access the
disk only sequentially, allowing comparison using just the
amount of edges read from disk and RAM size M . In MGT
[16], the graph is split into equal-size chunks. After each is
loaded into RAM, the graph is scanned again to discover the
missing edges that complete triangles with the portion already
in RAM. Ignoring small terms, MGT reads m2/M edges.

This result was superseded by a method we call Pagh
[27], which achieves a strictly better asymptotic bound
O(m1.5/

√
M). We review its operation in more detail below.

A different approach is proposed in [9], where a set of six
PCF algorithms covers all 18 vertex/edge iterators in external
memory. While there is no model for PCF I/O, upper bounds
show that it is currently the only method that can achieve
linear complexity under constant M .

III. PRELIMINARIES

Assume a simple undirected graph G = (V,E) with n
nodes and m edges. Detection of triangles requires a large
number of neighbor checks, whose complexity is normally a
quadratic function of undirected degree. This overhead can be
substantially reduced by performing an acyclic orientation on
G, which makes cost depend on the much-smaller directed
degree. In recent literature [40], orientation is modeled as
some permutation θ that decides the direction of each edge.
Specifically, each node u is placed into a new location θ(u),
the permuted sequence of nodes is relabeled from 1 to n, and
all edges are directed from larger to smaller node IDs. This
splits each neighbor list Nu into out-neighbors N+

u and in-
neighbors N−

u , with the corresponding graphs G+
θ and G−

θ .
Note that adjacency lists are sorted by the new node label.

Throughout the paper, we use orientation θD that arranges
the nodes in descending order of undirected degree du. This
permutation, also known as largest-first in graph theory [22],
[37], is optimal for both the fastest edge iterator E1 and
its corresponding PCF algorithms in [9], [40]. Since Pagh’s
performance is independent of θ, this choice does not affect
its I/O. Letting Yu = |N−

u | and Xu = |N+
u | be the re-

spective in/out-degrees of u in directed Gθ, it follows that
Xu + Yu = du and

∑n
u=1 Xu =

∑n
u=1 Yu = m.

After orientation, E1 searches for all directed triangles
△uvw, where u > v > w. This is done by calling Algorithm

Algorithm 1: Method E1 processing source node u in memory

1 foreach v ∈ N+
u do ▹ visit all out-neighbors

2 find N+
v using a hash table

3 W = Intersect(N+
u , N+

v ) ▹ intersect two sorted out-lists
4 foreach w ∈ W do report ∆uvw

1 for each source node u in G+
θ . The CPU cost consists of the

number of hash-table lookups to retrieve N+
v and the size of

intersection in Line 3. For in-memory operation, the former is
just γ(n) = m− n, while the latter is given by [40]

ρ(n) =
n∑

u=1

(Xu(Xu − 1)

2
+XuYu

)
. (1)

To emphasized the importance of keeping track of lookups,
consider the example of Twitter [19]. With m = 1.2B edges,
Algorithm 1 requires 60 seconds worth of lookups using one
core of an Intel i7. The time to perform 511B intersections is
an additional 250 seconds. Increasing the lookup cost just 5
times shifts the bottleneck to the hash table and causes triangle
search to increase the runtime from 310 to 550 seconds.

When E1 is used in external memory, the partitioning
scheme must ensure that all three edges of a triangle are
eventually present in RAM at the same time. This can be
accomplished by holding one of them in RAM and streaming
the other two from disk (e.g., MGT [16], PCF-1B [9]), keeping
two in RAM and streaming the third one (e.g., PCF-1A [9]),
or loading all three simultaneously [27], [29]. Because of the
random lookup needed to obtain N+

v , it does not currently
appear feasible to stream all three edges.

Note that all methods require the same amount of I/O to
store the found triangles. We therefore focus on the cost
needed to create this list, which is what differentiates the
various approaches.

IV. ANALYSIS OF PAGH

The original Pagh algorithm [27] has certain details omitted
from the paper, while others are sketched at a high level. While
I/O complexity of this method has known bounds in the O(.)
notation [27], numerical comparison between the algorithms,
as well as implementation, both require the missing constants.
Additionally, since coupling of Pagh to E1 has not been
discussed before, we perform this extension as well.

A. Algorithm

Pagh assigns to each node u a uniformly random color ϕu

drawn from a set 1, 2, . . . , c, where c =
√

m/M and M is
RAM size in edges. Then, all nodes are split into c subsets
V1, . . . , Vc such that

Vi = {u ∈ V | ϕu = i}. (2)

This can be visualized with the help of Fig. 1. Part (a) shows
a directed triangle (uvw), as seen by Algorithm 1, with three
uniquely-identifiable edges. While they have several different
names in previous literature, we follow the notation of [9]
for compatibility with E1.From u’s perspective, edge (uv)
results in a hit on the hash table, (uw) participates in local
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Fig. 1. Directed triangle (u > v > w).

Algorithm 2: Graph partitioning in Pagh

1 for u = 1 to n do
2 i = ϕu ▹ color of source node
3 for j = 1 to c do ▹ color of destination nodes
4 N+

uj = N+
u ∩ Vj ▹ out-neighbors of color j

5 write (u,N+
uj) to subgraph E+

ij

intersection at u, and (vw) is part of remote intersection. The
mapping to colors is shown in part (b) of the figure, where i
refers to the color of the largest node, j to that of the middle,
and k to that of the smallest.

The edges of G+
θ = (V,E+

θ ) are partitioned into c2 subsets
{E+

ij} according to the color of source/destination nodes, i.e.,

E+
ij = {(u, v) ∈ E+

θ | ϕu = i, ϕv = j}. (3)

This is demonstrated in Algorithm 2, which splits the
out-graph into tuples (u,N+

uj), where N+
uj contains u’s out-

neighbors of color j. Note that the expected size of each Vi is
n/c and that of E+

ij is m/c2 edges. After this preprocessing
step, Pagh suggests using MGT [16] to find triangles in
each of the c3 triples (E+

ij , E
+
jk, E

+
ik), where the remote edge

belongs to E+
jk. MGT relies on vertex iterator T1 [9], which

is 15− 80 times slower than E1 on real graphs. Additionally,
it does not by default handle heterogeneous partitions (i.e.,
hit/remote/local edges all being stored separately). To create a
fully working system, we need a few refinements.

B. Pagh+

Assuming partitions are well-balanced, i.e., all have size
M within some tolerance, MGT can be combined with E1

to efficiently solve the problem. Algorithm 3, which we call
Pagh+, loads remote edges E+

jk into RAM and then scans the
other two subgraphs. Since Algorithm 2 writes source nodes in
the same order for all subgraphs, Pagh+ can obtain both hit and
local lists of each u by concurrently reading E+

ij and E+
ik. The

resulting system detects each triangle once and performs no
more intersections than in-memory E1. Note that we skipped
discussing cases when some of the colors are duplicate;
however, our implementation handles them efficiently (i.e.,
without reading unnecessary files).

Theorem 1. Pagh+ needs IP (n) = (2c− 1)m edges of I/O.

Proof: First notice that Algorithm 3 loads each remote
subgraph once, for a total I/O cost of m. The remaining
overhead comes from hit/local edges, which we consider next.
While there are c3 possible triples (ijk), there are three special
cases. The first one is shown in Fig. 2(a), where all three edges
are in RAM. This results in no additional cost beyond E+

jj .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j 

j 

j 

RAM 

RAM 

RAM 

(a) case 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i≠j 

j 

j 

RAM 

Eij 

Eij 

(b) case 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j 

j 

k≠j RAM 

RAM 

Ejj 

(c) case 3

Fig. 2. Special cases in Pagh.

Algorithm 3: Pagh+ handling one remote graph

1 load E+
jk = {(v,N+

vk)} in RAM; set up hash table to source nodes
2 for i = 1 to c do
3 while file E+

ij not empty do
4 load (u,N+

uj) from E+
ij and (u,N+

uk) from E+
ik

5 foreach v ∈ N+
uj do ▹ visit all neighbors in the hist list

6 find remote list N+
vk using the hash table

7 W = Intersect(N+
uk, N+

vk) ▹ local/remote lists
8 foreach w ∈ W do report ∆uvw

The second configuration in Fig. 2(b) has file E+
jj loaded in

RAM and the remaining color i is not equal to j. There are
c(c− 1) such cases, each requiring |E+

ij | I/O. The last special
case in Fig. 2(c) involves c(c − 1) files E+

jk, each producing
|E+

jj | I/O. The remaining scenarios are outside the scope of
Fig. 2. There are c(c− 1) files E+

jk such that j ̸= k, each of
which can be coupled with c− 1 values of i ̸= j. This yields
c(c− 1)(c− 1) cases that load 2m/c2 edges each.

Combining the various terms, we get

m+
m

c2
(0 + 2c(c− 1) + 2c(c− 1)(c− 1)), (4)

which simplifies to 2cm−m = (2c− 1)m.
Since (2c − 1)m = 2m1.5/

√
M − m, Pagh+ has the best

multiplicative constant in the literature. The closest alternative
[29] uses the undirected graph G, assigns direction to colors
rather than edges, and increases c to

√
5m/M such that

certain combinations of subgraphs fit in RAM. This leads
to

√
5m1.5/

√
M ≈ 2.2m1.5/

√
M total I/O, which is worse

than the result above. Another potential drawback to this
approach is usage of undirected graphs, where E1 has to
perform unnecessary intersections [40].

It is also simple to obtain the number of hash-table lookups
in Pagh+. When they become a CPU bottleneck, E1 may
essentially deteriorate into T1 and lose its advantages. The
next result shows that this value is linear in c.

Theorem 2. Pagh+ performs γP (n) = cm lookups.

Proof: Denote by Xuj = |N+
uj | the out-degree of u with

respect to neighbors of color j. Now, notice that the size of
hit lists processed by Algorithm 3 for all (j, k) equals

c∑
k=1

c∑
j=1

c∑
i=1

( n∑
u=1

1ϕu=i Xuj

)
, (5)

where 1A is an indicator of event A. Swapping the order of
summations, this becomes

c∑
k=1

c∑
j=1

n∑
u=1

( c∑
i=1

1ϕu=i Xuj

)
=

c∑
k=1

c∑
j=1

n∑
u=1

Xuj
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Algorithm 4: PCF-1A graph partitioning

1 for u = 1 to n do ▹ iterate over all nodes
2 for i = 1 to p do ▹ go through each partition
3 Hui = N+

u ∩ [ai+1, n] ▹ pruned hit list
4 Lui = N+

u ∩ [ai, ai+1) ▹ local/remote list
5 if Lui ̸= ∅ then
6 write (u, Lui) to Gr

θ(i) ▹ remote file i
7 if Hui ̸= ∅ then
8 write (u,Hui) to Gc

θ(i) ▹ companion file i

=

c∑
k=1

n∑
u=1

Xu. (6)

Leveraging the fact that
∑n

u=1 Xu = m, we get the
statement of the theorem.

C. Discussion

Slightly unbalanced partition sizes |E+
ij | due to randomness

of color assignment are a minor issue in practice. However,
when the graph contains nodes with large degree, Pagh re-
quires a different algorithm. One example is the star graph,
where all nodes connect to a center node of some color
k. To avoid optimizations that discard (ijk) if any of the
subgraphs is empty, the star graph can be augmented with
c2 random edges between the leaf nodes. Neglecting small
terms, Algorithm 2 produces c partitions of size m/c ≫ M .
In fact, two of the three subgraphs involving color k have
size m/c. Pagh+ cannot be applied here, but MGT can be
modified to handle any triple (ijk) with I/O complexity
2(m/c)2/M = 2m. Repeating this c2 times for all (ij)
produces a total of 2m2/M . Depending on m and M , this
result can be significantly worse than in Theorem 1.

Pagh [27] handles this case by isolating nodes of degree
larger than

√
mM into a separate category. Each of them

requires sorting up to m edges on disk. Since there are
no more than c such nodes, the I/O can be bounded by
c · sort(m) ∼ cm logm/ logM edges. If RAM scales as
some power of m, as assumed in [27], we get the usual
O(m1.5/

√
M); however, the hidden constants may be non-

negligible. But more importantly, the CPU cost for sorting the
graph c times may be quite hefty.

On the bright side, Pagh does not impose much restriction
on minimum RAM or disk size. Setting c = n, it is possible
to create subgraphs that contain just one edge each, resulting
in O(1) memory consumption. Furthermore, its disk-space
requirement is only m edges. However, when c3 is large, Pagh
has to read many small files and its I/O speed may be adversely
affected by disk seeking.

V. ANALYSIS OF PCF

The I/O complexity of PCF is quite peculiar due to the
dependency on the underlying graph. This section develops
the methodology and insight that not only sheds light on PCF,
but also helps later with comparison against Pagh+ and design
of our new method.

Algorithm 5: PCF-1B graph partitioning

1 for u = 1 to n do ▹ iterate over all nodes
2 for i = 1 to ϕu − 1 do ▹ go through each partition below u

3 Hui = N+
u ∩ [ai, ai+1) ▹ hit list

4 Lui = N+
u ∩ [1, ai+1) ▹ local list

5 if Hui ̸= ∅ and |Lui| ≥ 2 then
6 write (u,Lui) to Gc

θ(i) ▹ save to companion file i

7 if N+
u ̸= ∅ then ▹ out-degree non-zero?

8 write (u,N+
u ) to Gr

θ(ϕu) ▹ remote file of u’s color

A. Operation

PCF [9] is a suite of six algorithms 1A, 1B, 2A, 2B, 6A,
6B. All of them partition the graph along the remote edge of
the corresponding in-memory algorithm (i.e., E1, E2, and E6).
In the notation of Fig. 1(a), these are (vw) for 1A/1B, (uw)
for 2A/2B, and (uv) for 6A/6B. The A variants split based on
the destination node of the remote edge, while the B versions
do the same on the source node. After preprocessing, PCF
sequentially loads chunks of G+

θ in RAM and scans so-called
pruned companion files to obtain the missing edges.

Method E1 requires PCF-1A/1B, which we review and
analyze next. Both of them start by dividing the set of
nodes V into p = m/M non-overlapping subsets V1, . . . , Vp.
PCF utilizes sequential partitions such that u ∈ Vi iff u ∈
[ai, ai+1), where boundaries {ai} are determined by load-
balancing either the in-degree (1A) or out-degree (1B) of each
partition to equal memory size M . To be consistent with other
parts of the paper, we say that nodes in Vi have color i. We
also use the same function ϕu to map u to its color.

File G+
θ is split into p disjoint subgraphs Gr

θ(1), . . . , G
r
θ(p)

that contain all remote edges (vw) matching the corresponding
color. Specifically, (vw) is written into Gr

θ(i) iff w ∈ Vi in
PCF-1A and v ∈ Vi in PCF-1B. The corresponding companion
files Gc

θ(i) contain nodes u and their hit/local lists, but only
if they are relevant to partition i. For example, PCF-1B skips
node u unless it has at least one neighbor of color i and another
neighbor with a smaller ID. While [9] has a comprehensive
algorithm that covers all six methods, it may be difficult to
parse. We therefore find it useful to show the minimal versions
of PCF-1A and 1B using Algorithms 4-5.

B. Model

Since
∑p

i=1 |Gr
θ(i)| = m is fixed, the main open question

is companion I/O, i.e.,
∑p

i=1 |Gc
θ(i)|. For a source node u,

suppose ϕus is the color of its s-th out-neighbor in sorted
order. For a given list N+

u , denote by Rus the number of
colors to the left of position s, excluding the color of s, and
by R′

us the number to the right, but not counting u’s own color

Rus = |{ϕut | t < s, ϕut ̸= ϕus}|, (7)
R′

us = |{ϕut | t > s, ϕut ̸= ϕu}|. (8)

With this in mind, consider the next result.

Theorem 3. The companion I/O of PCF-1A is given by

IA(n) =

n∑
u=1

Xu∑
s=1

Rus (9)
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Fig. 3. Colors among N+
u in PCF.

and that of PCF-1B by

IB(n) =
n∑

u=1

[
R′

u1 +

Xu∑
s=1

R′
us

]
. (10)

Proof: In PCF-1A, consider some source node u and
color i. As long as the local list Lui = N+

u ∩ Vi ̸= ∅, all
out-neighbors with labels at least ai+1 are saved to disk in
Algorithm 4. Therefore, from a perspective of some fixed
position s ∈ [1, Xu] in the out-list N+

u , the number of times
this node is written to disk equals the number of non-empty
local lists in positions [1, s− 1], excluding those that contain
s. An example is shown in Fig. 3(a), where s is written twice.
This happens to be the number of distinct colors, except ϕus,
among the nodes preceding s, which equals Rus in (7). Taking
a summation over all u and s yields (9).

For PCF-1B, we first have to remove neighbors of color
ϕu from consideration since these edges are found in RAM
(i.e., included in the remote graph). Once this is done, notice
that Algorithm 5 writes a node in position s into R′

us files
as part of some local list. Fig. 3(b) shows one such example.
However, there is one exception for s ≥ 2. The last node of
each color (within u’s neighbor list) has overhead R′

us + 1,
where the extra 1 accounts for s being included in the hit list
of companion file Gr

θ(ϕus). The affected neighbors are shown
in Fig. 3 using shading. Putting the pieces together,

IB(n) =
n∑

u=1

[
R′

u1 +

Xu∑
s=2

(
R′

us + 1ϕu,s+1 ̸=ϕus

)]
, (11)

where condition ϕu,Xu+1 ̸= ϕu,Xu is always true (i.e., we
always count an extra 1 for the very last node in N+

u ).
Rearranging the terms, we get

IB(n) =
n∑

u=1

[Xu∑
s=1

R′
us +

Xu∑
s=2

1ϕu,s+1 ̸=ϕus

]
. (12)

Now notice that the sum of indicator variables yields the
number of unique colors in positions [2, Xu]. Since this value
is R′

u1, we obtain (10).
Note that (9)-(10) are exact. While Rus and R′

us appear
symmetric to each other, there is a subtle difference. PCF-
1A load-balances using in-degree, while PCF-1B using out-
degree. Hence, their color assignments are not directly com-
parable to each other. However, on real graphs, PCF-1B
commonly demands less I/O [9]. Additionally, it requires a
lot fewer lookups. For the next result that shows this, define
Ru = Ru,Xu + 1 to be number of colors in N+

u .

Theorem 4. The number of hash-table hits in PCF-1A is

γA(n) = IA(n) +m−
n∑

u=1

Ru, (13)

and that in PCF-1B is

γB(n) = m− n. (14)

Proof: PCF-1A writes only pruned hit-lists, which pro-
duce IA(n) lookups when they are loaded back to RAM.
Additionally, a portion of each hit list is removed by Algorithm
4 and kept in RAM as part of the local list Lui. In fact, the
entire Lui, except its first node, is part of the hit list for node
u. Adding the two terms together yields (13).

For PCF-1B, every node in N+
u is part of the hit list, except

the one in position s = 1. Writing

γB(n) =

n∑
u=1

(Xu − 1), (15)

we immediately get (14).
Note that γA(n) can be orders of magnitude larger than m,

while γB(n) is always optimal (i.e., the same as in-memory
E1). Further problems of PCF-1A include a requirement that
RAM size be no smaller than the largest in-degree maxu Yu,
which can be as large as n−1. In contrast, PCF-1B only needs
M ≥ maxu Xu, whose largest value under descending-degree
permutation θD stays bounded by

√
2m. While PCF-1A can

be dismissed for now as being inferior, we later come back to
it and explain what features the new method shares with it.

C. Bounds

Computing the exact I/O formula (10) requires processing
the entire G+

θ and splitting all m edges into colors. In certain
cases, this may be too expensive, especially if repeated many
times (e.g., in an iterative search for optimal parameters).
To overcome this issue, we derive simple upper bounds that
require one pass over the out-degree sequence {Xu}.

Theorem 5. For a given out-degree sequence {Xu}, the
expected size of companion I/O in PCF-1B is bounded by

E[IB(n)] ≤
n∑

u=a2

ζu

[
Xu − ζu + 1 + (ζu − 2)qXu−1

u

]
, (16)

where qu = 1− 1/ζu and ζu = ϕu − 1.

Proof: Note that uniformly random, rather than sequen-
tial, color assignment can only make R′

us stochastically larger.
Therefore, replacing R′

us with some other variable Qus that
uniformly draws from among ζu colors can yield only larger
I/O in expectation. Since Qus = 0 for u < a2, we get

E[IB(n)] ≤
n∑

u=a2

(
E[Qu1] +

Xu∑
s=1

E[Qus]
)
. (17)

To expand this, continue assuming random color choices
and define

Wusi =

Xu∑
t=s+1

1ϕut=i (18)

to be the number of u’s out-neighbors to the right of s that
have color i. Conditioning on the out-degree sequence, each
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Wusi is Binomial(Xu − s, 1/ζu), where E[Wusi] = Xu/ζu
and P (Wusi ≥ 1) = 1− (1− 1/ζu)

Xu−s. Then,

Qus =

ζu∑
i=1

1Wusi≥1 (19)

is the number of uniform colors to the right of s. Setting
qu = 1− 1/ζu, we get

E[Qus] = ζuP (Wusi ≥ 1) = ζu(1− qXu−s
u ). (20)

Next, observe that

Xu∑
s=1

E[Qus] = ζu

Xu∑
s=1

(1− qXu−s
u ) = ζu

(
Xu −

Xu−1∑
s=0

qsu

)
= ζu

(
Xu − 1− qXu

u

1− qu

)
= ζu

[
Xu − ζu(1− qXu

u )
]
. (21)

Adding E[Qu1] to the last result, we get

E[IB(n)] ≤
n∑

u=a2

ζu

[
Xu − ζu + ζuq

Xu
u + 1− qXu−1

u

]
≤

n∑
u=a2

ζu

[
Xu − ζu + 1 + (ζu − 2)qXu−1

u

]
, (22)

where we use the fact that ζuqu = (ζu − 1).
Bound (16) holds in expectation; however, there are ad-

versarial graphs and color assignments that may violate it.
Therefore, our second bound is deterministic, but somewhat
looser in sparse graphs. It shows a more clear dependency of
I/O on the second moment of out-degree.

Theorem 6. The companion I/O of PCF-1B is bounded by

IB(n) ≤
n∑

u=1

min
( (Xu − 1)(Xu + 2)

2
, Xuζu

)
. (23)

Proof: Trivially, R′
us ≤ min(Xu − j, ζu). Thus, we get

IB(n) ≤
n∑

u=1

[
min(Xu − 1, ζu) +

Xu∑
s=1

min(Xu − s, ζu)
]

=

n∑
u=1

[
min(Xu − 1, ζu) +

Xu−1∑
j=1

min(s, ζu)
]

≤
n∑

u=1

min
(
Xu − 1 +

Xu−1∑
s=1

s,Xuζu

)
, (24)

which becomes (23) after expanding the inner sum.
Note that [9] also obtains an upper-bound on IB(n); how-

ever, they neglect the standalone term R′
u1 in (10). This issue

notwithstanding, their bound is a special case of (23) where
ζu = ϕu − 1 is replaced by p− 1. Fig. 4 shows a comparison
between that result and our models, where we use Twitter from
[19] and IRL-domain from the authors of [9].
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Fig. 4. Model accuracy in PCF-1B.

D. Discussion

PCF-1B requires that the longest out-list fit in memory,
i.e., M ≥ maxu Xu. While much better than in PCF-1A,
this condition is stricter than in Pagh, which can work with
constant M as n → ∞. Additionally, PCF-1B needs enough
disk space to write all companion files. In some cases, the read-
only operation of Pagh may be preferable. Furthermore, it is
common to exclude the preprocessing stage from comparison,
because triangle enumeration can run multiple times over
the same input (e.g., feeding the found ∆uwv to different
consumers on the fly). However, if this is not the case, all I/O
of PCF-1B needs to be doubled. This is of no consequence to
asymptotics, but we benchmark both stages separately in the
experimental section.

On the positive side, PCF achieves deterministic load-
balancing and its sequential color assignment brings many
benefits compared to random colors in Pagh. First, contiguous
coloring produces stochastically smaller R′

us because u’s
neighbors are more drawn towards colors with a large mass of
degree. Since such colors are concentrated at the start of the
range [1, n], neighbor lists contain more duplicate colors than
would be possible under uniform assignment. This effect is
most pronounced on graphs with heavy-tailed degree. Second,
due to sequential grouping of nodes into each color, splitting
of neighbor lists in Algorithm 5 does not require a hash-
table lookup for each edge. Similarly, when PCF-1B loads the
remote graph into RAM, it can use an array of offsets instead
of a hash table to perform retrieval of remote edges. Third,
placing similar node IDs into individual partitions allows better
compression of neighbor lists. This can save up to 50% on byte
I/O. Similarly, [9] shows that SIMD intersection is 80% faster
on compressed lists.

VI. ASYMPTOTIC COMPARISON

We are now interested in the conditions that cause each of
the candidate methods to be better than the other. Deciding
this for finite n requires a specific graph and computation of
the various models/bounds from the previous section. Instead,
we study cases of n → ∞, which should provide a qualitative
assessment of each method’s capabilities and types of graphs
they are most suited for.

A. Definitions

Suppose the average directed degree of the graph, i.e., m/n,
grows proportionally to na, where a ∈ [0, 1] is a constant. In
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general, we write f ∼ g to mean that f(n) = O(g(n)) and
g(n) = O(f(n)). Similarly, assume memory size Mn ∼ nr,
where r ∈ [0, 1+a] is also fixed. To ignore contribution from
constants and slowly growing terms, we have the following
definition.

Definition 1. The scaling rate of a function f(n) is given by

ω(f) = lim
n→∞

logn f(n), (25)

as long as the limit exists and is finite.

For example, f(n) = 5n2.3/ log(n) has ω(f) = 2.3. Since
the scaling rate of m is 1 + a, Pagh has a very simple result

ω(IP ) =
3(1 + a)− r

2
. (26)

However, the corresponding model for PCF is less obvious.
We therefore perform a separate investigation into it.

B. Dynamics of PCF

We start with an upper bound on ω(IB), which requires
studying the second moment of out-degree. To this end, define

πn =

n∑
u=1

X2
u (27)

and consider the next result.

Theorem 7. The scaling rate of (27) is ω(π) = 1 + 2a + ϵ,
where ϵ ∈ [0, (1− a)/2].

Proof: Suppose πn ∼ n1+2a+ϵn , where ϵn is some
unknown function. Our goal is to put bounds on it. Assuming
E[Xu] = m/n is fixed, it is obvious that minimizing the
variance of set X1, . . . , Xn yields the lowest πn. Since this is
achieved by constant Xu = m/n, we get

πn ≥ n
m2

n2
∼ n1+2a. (28)

This shows that ϵn ≥ 0 must hold. To arrive at the upper
bound on πn, first notice that Xu cannot exceed the number
of nodes preceding it (i.e., u−1). At the same time, Xu must
be no larger than 2m/u; otherwise, the degree sum

∑u
v=1 dv

of the largest u nodes would exceed 2m, which is impossible.
As a result,

πn ≤
n∑

u=1

min
(
u− 1,

2m

u

)2

≤

√
2m∑

u=1

u2 +

n∑
u=

√
2m

(2m)2

u2

∼ (2m)1.5

3
+ 4m2

( 1√
2m

− 1

n

)
∼ n3(1+a)/2. (29)

Since we assumed that πn ∼ n1+2a+ϵn , we get that ϵn ≤
(1 − a)/2. Letting ϵn → ϵ as n → ∞, the statement of the
theorem follows.

Note that regular graphs (i.e., all degree equal to each other)
yield ϵ = 0 for all a. Another well-known case follows from
[40]. Specifically, for a sequence of graphs {Gn}, define Dn to
be a random variable with the same distribution as undirected
degree in Gn. Then, assuming E[D

4/3
n ] converges to a finite

constant as n → ∞, these graphs also achieve ϵ = 0. For more

general cases, the family of dense-core graphs introduced next
allows realization of any ϵ.

Theorem 8. For any ϵ ∈ [0, (1 − a)/2], there exists a graph
with ω(π) = 1 + 2a+ ϵ.

Proof: Assume a graph where the first kn nodes, each
with degree ln ≤ kn, link to nodes with labels (1, 2, . . . , ln).
All remaining nodes have degree two and link to nodes (1, 2).
Then, assuming kn ∼ nz1 and ln ∼ nz2 , where z1 ≥ z2 and
z1 + z2 ≥ 1, we get

E[Dn] =
knln + 4(n− kn)

n
∼ nz1+z2−1 (30)

and

πn ∼
ln∑

u=1

u2 +

kn∑
u=ln

l2n + n− kn ∼ knl
2
n ∼ nz1+2z2 . (31)

Assume a is selected first and ϵ is selected second in the
range [0, (1−a)/2]. Then, we can construct the system above
using z1 = 1 − ϵ and z2 = a + 1 − z1. Note that z1 + z2 =
a+ 1 ≥ 1 is satisfied with any a ≥ 0. Furthermore, condition
z1 ≥ z2 is equivalent to 2z1 ≥ a+1, or ϵ ≤ (1−a)/2, which
is satisfied by any valid ϵ.

Leveraging the last two theorems finally produces a usable
upper bound on the scaling rate of IB(n).

Theorem 9. The rate of PCF-1B I/O is upper-bounded by

ω(IB) ≤ min(1 + 2a+ ϵ, 2 + 2a− r). (32)

Furthermore, in the worst-case of ϵ = (1 − a)/2, the graphs
built in Theorem 8 reach (32) for all a and r.

Proof: From (23), it is clear that

IB(n) ≤ min(πn, (p− 1)m) ≤ min
(
πn,

m2

M

)
. (33)

Converting this into rates yields (32).
Next, for any a and ϵ = (1 − a)/2, the graphs introduced

in Theorem 8 require z1 = z2 = (1 + a)/2. Then, we can
set kn = 2ln and obtain that out-lists of source nodes u ∈
[ln, 2ln] have Xu = ln neighbors and roughly ζu = l2n/M
colors. Converting this into asymptotics, it follows that the out-
degree of these nodes scales as z2 and the number of colors
as 2z2 − r. Therefore, when z2 < 2z2 − r, or equivalently
r < 1− ϵ = (1 + a)/2, PCF-1B has the same asymptotics as
πn. This makes ω(IB) = 1+2a+ ϵ. Otherwise, IB(n) scales
as knlnζu ∼ n2+2a−r. Both cases and the condition to switch
between them are exactly the same as in (32).

The graphs from Theorem 8 bring out the worst in PCF, to
which we come back shortly. In the mean time, we show that
it has a pretty impressive best-case as well.

Theorem 10. In bipartite graphs, PCF-1B has I/O overhead
IB(n) = m for all a and r, i.e., ω(IB) = 1 + a.

Proof: Suppose the nodes are divided into two sections,
which we call S1 and S2, of size kn and n−kn, respectively.
Each node in S1 connects to all nodes in S2. We assume that
kn < n/2, i.e., the first section is smaller, and kn ∼ na.
Notice that this graph has an average degree proportional to
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Fig. 5. Comparison of scaling rates.

na and that none of the nodes in S1 have any out-neighbors
in G+

θ . Therefore, PCF-1B assigns them the same color 1. It
then follows that the companion I/O from all nodes u ∈ S2 is
no more than m since each out-neighbor list N+

u has nodes of
one color and thus can only produce output to one companion
file Gc

θ(1). Furthermore, this result holds for all Mn.
Because PCF-1A load-balances partitions on the in-degree,

rather than the out-degree, it fails to achieve the same benefits
on bipartite graphs. Since PCF-1B cannot have less I/O than
m, Theorem 10 shows that this bound is tight.

C. Analysis

We summarize the findings of this section using Fig. 5(a).
The x-axis shows rate r at which RAM increases as n → ∞.
This value ranges from zero (i.e., constant Mn) to 1+ a (i.e.,
the entire graph fits in memory). On the y-axis, we have Pagh’s
scaling rate ω(IP ), represented by a dashed line, and the PCF-
1B rate ω(IB), given by the UY TZ trapezoid. Pagh’s curve
is a straight line that comes from (26). On the other hand,
the rate of PCF-1B is contained somewhere in the trapezoid,
with each interior point possibly corresponding to some graph
G. The upper boundary, delineated by segments UY and Y T ,
is produced by graphs from Theorem 8. The lower boundary,
shown by line ZT , is the bipartite graph from Theorem 10.

At r = 0, i.e., constant RAM, Pagh begins in point X that
is always no lower than PCF-1B’s worst initial point U . This
happens because 1.5+1.5a ≥ 1+2a+ϵ for all ϵ ≤ (1−a)/2.
As r increases, Pagh descends and eventually intersects with
the upper bound of PCF-1B in point W . Therefore, in the
range [0, 1− a− 2ϵ), Pagh has no chance of beating PCF-1B,
regardless of the actual G. Between points W and T , some of
the graphs are solved quicker by Pagh and others by PCF-1B.

It can be seen from the figure that the largest gap between
the two methods occurs at r = 0, where PCF-1B in point
Z vanquishes Pagh in point X by (1 + a)/2. Using a
complete bipartite graph with a = 1, this yields a factor of
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n improvement in favor of PCF-1B. Outside of this custom-
tailored graph, a more realistic best-case scenario for PCF-1B
consists of graphs with a constant average degree and ϵ = 0.
This is depicted in Fig. 5(b), where PCF-1B collapses the
trapezoid into a single line and defeats Pagh for all r. The
biggest gap occurs at r = 0, where PCF-1B has a factor of√
n less I/O.
On the other hand, the best case for Pagh is ϵ = (1− a)/2,

which is shown in part (c) of the figure. In this situation,
it beats the upper-bound of PCF-1B for all memory sizes.
Consequently, knowing that G has a dense core similar to
the graphs in Theorem 8, Pagh is the method of choice. The
largest improvement is achieved in r = (1+a)/2, where Pagh
undercuts the scaling rate of PCF-1B by (1 + a)/4. Since
a ≤ 1, point Y causes the most damage to PCF in complete
graphs, i.e., when a = 1. On these, Pagh has smaller cost by
a factor of

√
n.

The final caveat is shown in Fig. 5(d), where the trapezoid
has its left boundary moved forward to reflect the fact that
Mn ≥ maxu Xu must hold for PCF-1B to work. While it is
hard to predict how far point U shifts without access to the
actual graph, we know it is no further than r = (1 + a)/2
since maxu Xu ≤

√
2m. This may be to the left of W , as

show in the picture, or to the right. In either case, Pagh wins
by default for all r where PCF-1B is unable to execute.

To see some of these cases in practice, Fig. 6(a) shows
the actual I/O of the two methods in a random graph with
Pareto degree, where shape α = 1.5 and average degree is
30. As predicted by our analysis and Fig 5(b), the asymptotic
gap between the methods is n1/4. Continuing to Fig. 6(b), we
examine a dense-core graph from Theorem 8 whose average
degree scales as

√
n, RAM size Mn = n3/4, and ϵ = 1/4.

This puts the graph on the upper-bound of PCF, where the
model suggests Pagh should win by n3/8. Indeed, it does.

D. Discussion

We can now summarize the insight gained from dissecting
both methods. Pagh’s main pitfall is that it fails to exclude
nodes u that obviously cannot be in any triangles of relevant
color. For example, if u has out-neighbors of color j, but none
of color k, it should not be used in conjunction with remote
edges E+

jk. This leads to epic redundancy when the graph is
sparse, i.e., there are few colors among the neighbors. On the
other hand, this strategy works well for dense graphs where
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Fig. 7. Heterogenous 2D partitioning of remote edges.

little pruning is necessary in the first place. The number of
hash-table lookups proportional to c is also a concern.

On the other hand, the main downside of PCF lies in one-
dimensional color partitioning. This creates a large number of
colors p and causes unnecessary duplication of effort. Usage
of 2D coloring could help reduce the number of files into
which the out-neighbors must be written. This can be seen in
(10), where making R′

us pick out of
√
p colors, rather than p,

would be a noticeable improvement.

VII. TRIGON

Our investigation discovered that an ideal algorithm should
prune unnecessary edges, be able to utilize

√
p colors, deter-

ministically load-balance partitions, leverage sequential colors
for faster compression/intersection/lookups, handle star graphs
without exorbitant overhead, operate with O(1) RAM, and
post lower I/O numbers than either of the current techniques.
We offer such an approach next.

A. Generalized Coloring

All vertex/edge iterators [9] require the remote edge of
enumerated triangles to be retrievable using random lookup
in RAM. Therefore, for such methods to operate in exter-
nal memory, the oriented graph must be split into at least
p = m/M chunks. For now, we ignore the issue of how
partitioning should be done and focus on the general concepts
that would allow the in-memory search to function properly.
The framework developed below applies to all 18 methods
from [9]; however, to keep the notation to a minimum, we
only describe how it works with E1.

Since G+
θ is oriented and without self-loops, only the lower

half of the adjacency matrix has non-zero entries. Therefore,
any edge partition can be viewed as a subset of

B = {(u, v) ∈ N2 | v < u ≤ n}, (34)

which is a collection of all integer pairs (u, v) such that u > v
and both numbers are no larger than n. Now suppose there
exist sets B1, . . . , Bp that form a partition on B, i.e., Bℓ ⊆ B
for all ℓ, Bi ∩ Bj = ∅ for i ̸= j, and ∪p

ℓ=1Bℓ = B. This is
illustrated using Fig. 7(a), where a 5× 5 adjacency matrix is
split into three subgraphs. The number in each cell specifies
the partition ℓ it belongs to.

Note that all previous methods are special cases of this
formalization. For example, Pagh uses B(j−1)c+k = {(u, v) |
u ∈ Vj , v ∈ Vk}, where c =

√
p is the number of colors. Both

PCF methods utilize contiguous partitions shown in Fig. 7(b),

Algorithm 6: UPI creating companion files

1 for u = 1 to n do
2 foreach v ∈ N+

u do ▹ iterate through all out-neighbors
3 foreach partition ℓ where v ∈ Sℓ do ▹ v is a source in Bℓ

4 Zvℓ = {w | (v, w) ∈ Bℓ} ▹ take neighbors of v in Bℓ

5 Luvℓ = N+
u ∩ Zvℓ ▹ local list for (u, v) in partition ℓ

6 if Luvℓ\{v} = ∅ then continue
7 if u ∈ Sℓ then ▹ u is also a source in partition ℓ

8 Luvℓ = ∅ ▹ all local nodes in E+
ℓ

9 if v ∈ Dℓ then continue ▹ (u, v) already in E+
ℓ

10 write (u, v, Luvℓ) to companion graph C+
ℓ

where destinations are split into c1 colors and sources nodes
into c2 = p/c1. PCF-1A uses c1 = p, while PCF-1B does the
opposite, i.e., c1 = 1.

Once partitions are decided, the edges of G+
θ must be

separated into sets E+
1 , . . . , E+

p , where E+
ℓ = E+

θ ∩ Bℓ for
ℓ = 1, 2, . . . , p and the following condition enforced.

Definition 2. A partition {Bℓ} is called admissible with
respect to G+

θ if it guarantees that |E+
ℓ | = m/p for all ℓ.

As discussed earlier, Pagh fails to produce admissible par-
titions on star graphs and similar structures. PCF-1A attempts
to split the destinations into c1 = p colors in Fig. 7(b) and
runs into the same problem. On the other hand, PCF-1B is
able to produce admissible partitions in all G as long as
maxu Xu ≤ M .

B. Unified Partitioned Iterator

Assume the edges of G+
θ have been separated into individual

files. What remains is creation of companion files, which
is done in a framework we call Unified Partitioned Iterator
(UPI). Let Sℓ = {u | (u, v) ∈ Bℓ} be the source nodes and
Dℓ = {v | (u, v) ∈ Bℓ} be the destination nodes in partition
ℓ. For the example in Fig. 7(a), S3 = {2, 5}. Operation of UPI
is summarized in Algorithm 6. For each node u and its out-
neighbor v, Line 3 finds all partitions ℓ where v is a source.
Next, recalling Fig. 1(a), observe that the local list needs to
be customized to include only those neighbors w of u that are
possibly neighbors of v in Bℓ. This is done in Lines 4-5. If
the local list is empty or contains only v, then v cannot be u’s
hit node for partition ℓ and the algorithm moves on in Line 6.

Line 7 checks if u itself participates in Bℓ as a source node.
If so, the entire local list is already included in E+

ℓ , which
Line 8 signals by emptying Luvℓ. Additionally, it is possible
that link (u, v) is also contained in the remote graph, which
happens if v is a destination node in Bℓ. Line 9 takes care of
this condition. Finally, Line 10 saves the triple (u, v, Luvℓ) into
the companion file, which is done even if Luvℓ was previously
emptied in Line 8.

Triangle search in UPI is shown in Algorithm 7. The only
difference from Pagh+ is that each partition ℓ has its own
companion file, from which nodes u, their hit neighbors v,
and local lists Luvℓ are obtained.

Theorem 11. UPI finds each triangle exactly once and ex-
hibits no more intersection overhead than in-memory E1.
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Algorithm 7: UPI processing one partition ℓ

1 load E+
ℓ = {(v,N+

vℓ)} in RAM; set up hash table to source nodes
2 while companion file C+

ℓ not empty do
3 load (u, v, Luvℓ) from C+

ℓ
4 find remote list N+

vℓ using the hash table
5 W = Intersect(Luvℓ, N+

vℓ) ▹ local/remote lists
6 foreach w ∈ W do report ∆uvw

Proof: Because the edges are partitioned into non-
overlapping and exhaustive sets, detecting the same triangle
multiple times or missing some of them is impossible. This is
a consequence of the fact that remote edge (vw) belongs to
exactly one partition ℓ.

We now consider the intersection overhead of Algorithm 6.
The local intersection cost at node u can be written as∑

v∈N+
u

p∑
ℓ=1

|Luvℓ| =
∑

v∈N+
u

p∑
ℓ=1

|N+
u ∩ Zvl|. (35)

Since {Zv1, . . . , Zvp} is a partition of v’s possible neighbor
options [1, v − 1], we get that∑

v∈N+
u

p∑
ℓ=1

|N+
u ∩ Zvl| =

∑
v∈N+

u

|N+
u ∩ [1, v − 1]|

=
Xu(Xu − 1)

2
, (36)

which is exactly the same as in E1.
Now suppose Yvℓ is the in-degree of v from hit lists in

partition ℓ and let Xvℓ be its out-degree in the remote graph
E+

ℓ . Since node v is hit Yvℓ times in ℓ, each causing a scan
over Xvℓ neighbors, the remote intersection overhead for v
equals

p∑
ℓ=1

XvℓYvℓ ≤ Yv

p∑
ℓ=1

Xvz = XvYv. (37)

Combining the upper bound in (37) with (36), we get the
cost of E1 in (1).

The proof of this theorem shows that intersection cost can
actually reduce as p increases. This happens because node v
participates in remote intersection only when there is a hit-list
edge (u, v) in the corresponding companion file. However, if
u has no other neighbors smaller than v in partition ℓ, Line
6 of Algorithm 6 discards v as being ineligible. In practice,
cost reduction only affects the XuYu term in (1) and happens
only in partitioning schemes that break some of the out-lists
N+

u across multiple E+
ℓ (i.e., Pagh and PCF-1A).

C. Trigon

We next decide how to achieve the best admissible partition
within the general framework above. On one hand, it is
theoretically possible to customize set {Bℓ} to a particular
G+

θ in order to achieve the absolute minimum I/O for that
graph. However, this solution is expensive (i.e., NP-hard) as it
requires steam-rolling through all possible subsets of m edges.
Instead, we are interested in alternative approaches that can be
computationally reasonable.

To this end, recall our discussion of PCF and Pagh, where
random assignment of nodes into colors would have produced
stochastically larger Rus and R′

us in (7)-(8). The best tech-
nique, which comes from PCF, is to group nodes of the same
color together. This forces members of N+

u to pick color from
a smaller range of options (i.e., those contained in [1, u− 1]).
Additionally, continuous colors simplify preprocessing, re-
move redundancy between local lists of different hit nodes
v, and improve intersection/compression performance. At the
same time, Pagh’s lowering of c to

√
p is appealing as well.

Combining these ideas, it turns out that the design in Fig. 7(b)
is the most sensible solution.

We call this approach Trigon and discuss its operation next.
Since there are two colors involved (i.e., along the source
and destination nodes), we call the one whose partitions are
decided first primary and the other secondary. One option is
to use c1 primary and c2 secondary colors, which is the case in
Fig. 7(b). This approach starts by selecting vertical boundaries
such that the number of edges contained in each primary color
equals m/c1. This is done by computing set {ak}c1k=1 such that

ak+1−1∑
u=ak

Yu =
m

c1
, (38)

where Yu is the in-degree of u. Note that this is exactly how
PCF-1A begins and that the {Yu} sequence is available during
orientation of G, i.e., at no extra cost.

Then, for each primary color k, suppose boundaries
{bkj}c2j=1 specify the corresponding ranges of secondary col-
ors. This is accomplished by load-balancing the out-degree
within each partition (kj), i.e.,

bk,j+1−1∑
u=bkj

|N+
u ∩ [ak, ak+1)| = M, (39)

which is similar to PCF-1B. For Fig. 7(b), this means each
vertical column has size m/c1 and each rectangle fits in RAM.
Note that if (38) fails to create enough partitions of primary
color, e.g., on star-like graphs, the value of c1 is lowered to
match the particulars of G+

θ . To compensate for the lack of
vertical partitions, (39) automatically increases the number of
secondary colors such that c1c2 = p continues to hold.

The second option is to reverse this process, i.e., use source
nodes for primary colors. However, it is not difficult to see that
this procedure offers no I/O benefits due to symmetry, but at
the same time has a major drawback in inability to adapt c1
to G+

θ . Therefore, the configuration in Fig. 7(b) is preferred.
The Trigon split technique is shown in Algorithm 8, where

we continue using color k for node w and color j for v to
maintain compatibility with Fig. 1(b). The algorithm is pretty
much self-explanatory, with the only caveat being Line 8.
Under Trigon’s coloring model, it is now possible for local
list Luk to contain nodes w larger than any hit node in Hukj .
They can never complete directed triangles in Fig. 1, which
explains their removal.

D. Analysis
Suppose ϕu and ϕus are defined as before, except they now

refer to respectively the primary color of u and that of its
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Algorithm 8: Trigon writing companion files

1 for u = 1 to n do
2 for k = 1 to c1 do ▹ run thru primary colors
3 Luk = N+

u ∩ [ak, ak+1) ▹ local list for color k
4 if Luk ̸= ∅ then ▹ work to be done?
5 for j = 1 to c2 do ▹ run thru secondary colors
6 Hukj = N+

u ∩ [bkj , bk,j+1) ▹ hit list for pair (kj)
7 if Hukj ̸= ∅ and |Luk ∪Hukj | ≥ 2 then
8 Luk = Luk ∩ [1,max(Hukj)] ▹ prune
9 if φu(k) = j then ▹ local list in RAM

10 write (u,Hukj\Luk) to companion C+
kj

11 else
12 write (u,Hukj ∪ Luk) to C+

kj

s-th out-neighbor. In this notation, expression (7) still works
for Rus. Similarly, Ru counts the number of primary colors in
N+

u . To handle the vertical dimension with c2 colors, let φu(k)
be the secondary color of node u with respect to primary color
k and assume φus(k) is the same for u’s out-neighbor s. Then,
(8) is replaced with

R′′
us = |{φut(ϕs) | t > s, φut(ϕs) ̸= φu(ϕs)}|, (40)

which counts the number of secondary colors to the right of s,
again excluding the color of u. Using the analysis of PCF-1B,
the next result follows immediately.

Theorem 12. The I/O complexity of Trigon is

IT (n) ≈
n∑

u=1

[
R′′

u1 +

Xu∑
s=1

(Rus +R′′
us)

]
(41)

and the number of hash-table lookups is

γT (n) =

n∑
u=1

Xu∑
s=1

Rus +m−
n∑

u=1

Ru. (42)

With the exception of minor terms related to overlapping
local/hit lists, the result in (41) is exact. To perform a self-
check, notice that PCF-1A (i.e., c1 = p) has R′′

us = 0, which
converts (41) into (9). For PCF-1B (i.e., c1 = 1), we get Rus =
0 and R′′

us = R′
us, which makes the Trigon model identical

to (10). Intuitively speaking, (41) can be viewed as a sum of
I/O in PCF-1A running with c1 colors and PCF-1B with c2
colors, although this is approximate since R′′

us does not equal
R′

us unless c1 = 1. Recalling (13), also observe that (42) is
exactly the number of lookups in PCF-1A under c1 partitions,
where more primary colors cause more CPU cost.

Following the proof of Theorem 6, there exists a simple
bound on IT (n) that shows the impact of each color.

Theorem 13. The Trigon I/O is upper-bounded by

IT (n) ≤
n∑

u=1

Xuh(Xu), (43)

where h(x) = min(x/2, c1) + min(x/2, c2 − 1).

The first term of h(x) bounds the size of hit lists (and the
number of lookups), while the second models the size of local
lists. Additionally, since h(x) ≤ c1 + c2 − 1, usage of c1 =

c2 =
√
p in (43) yields a looser bound

IT (n) ≤
n∑

u=1

Xu(c1 + c2 − 1) = (2
√
p− 1)m, (44)

which is the I/O cost of Pagh+ in Theorem 1. Since colors are
sequential, Trigon beats (44) even in complete graphs, where
it comes the closest to this bound, by roughly a factor of 2.
It is also clear that (42) is upper bounded by c1m. Recalling
Theorem 2, this makes γT (n) better than the corresponding
metric in Pagh+ for all c1 ≤ √

p.
Under an appropriately-chosen c1, Trigon is no worse than

either of the previous methods; however, the best choice for
the number of primary colors remains far from obvious.

E. Minimizing I/O

One big question is whether deploying c1 =
√
p is optimal

for achieving the lowest I/O. This seems logical as it reduces
the number of colors in each direction to their minimum.
Because analysis of the accurate model (41) currently appears
intractable, we only consider insight that might be gained from
the upper-bound (43), which can be written as E[Xh(X)] for
some random variable X .

Since c1 and c2 are almost interchangeable in h(x), it makes
sense to study the following simplified problem. Suppose we
are interested in minimizing

ξ(c) = E[X(min(X, c) + min(X, p/c))], (45)

where X is a random variable that represents the out-degree
of G+

θ and c is the number of primary colors.

Theorem 14. If X has density f(x), (45) is minimized by
c = 1, c = p, or any solution to g(c) = g(p/c), where

g(y) = y

∫ ∞

y

xf(x)dx. (46)

Proof: Suppose X ∼ F (x). Then, we can expand the
expectation in (45) as

ξ(c) =

∫ ∞

0

x(min(x, c) + min(x, p/c))dF (x)

=

∫ c

0

x2dF (x) + c

∫ ∞

c

xdF (x) +

∫ p/c

0

x2dF (x)

+
p

c

∫ ∞

p/c

xdF (x). (47)

Differentiating with respect to c and applying Leibnitz’s
integration rule four times,

dξ(c)

dc
= c2f(c)− c2f(c) +

∫ ∞

c

xf(x)dx− p3f(p/c)

c4

+
p3f(p/c)

c4
− p

c2

∫ ∞

p/c

xf(x)dx

=

∫ ∞

c

xf(x)dx− p

c2

∫ ∞

p/c

xf(x)dx

=
g(c)− g(p/c)

c
. (48)

Optimal c is either a solution to g(c) = g(p/c) or lies on
the boundary, i.e., c = 1 or c = p.
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Notice that c =
√
p is a trivial solution to g(c) = g(p/c).

Furthermore, it is the only solution if g(x) is monotonic.
Outside of certain esoteric cases, this result shows that the
optimal Trigon configuration is PCF-1A, PCF-1B, or c1 =

√
p.

However, there is no clear winner for all graphs G. The next
example shows one such case.

Theorem 15. If X < 2
√
p− 1 with probability 1, then c = 1

or c = p is optimal in (45). On the other hand, if X > 2
√
p−1

with probability 1, then c =
√
p is optimal.

Proof: Because the objective function is symmetric in c,
we only need to consider c ∈ [1,

√
p]. Any optimal solution c

has an optimal counterpart 1/c. Suppose X ∼ F (x) is defined
in [1, n− 1] and rewrite (45) as

ξ(c) =

∫ n−1

1

xξ(c, x)dF (x), (49)

where ξ(c, x) = min(x, c) + min(x, p/c). First suppose that
x ≤ √

p, in which case ξ(c, x) becomes min(x, c) + x. This
is trivially minimized by c = 1. Second, suppose x >

√
p,

in which case we get ξ(c, x) = c + min(x, p/c). There are
two subcases here – 1) x < p/c yields c+ x, where c = 1 is
optimal; and 2) x ≥ p/c produces c + p/c, where c =

√
p is

best. In the former subcase, the lowest cost is x+1 and in the
latter it is 2

√
p. Therefore, c = 1 is better when x < 2

√
p−1,

worse when x > 2
√
p− 1, and the two are equal otherwise.

As a result, if X is limited to [1, 2
√
p−1], we get that (49)

minimized by c = 1. On the other hand, if X is always larger
than 2

√
p− 1, the integral is minimized by

√
p.

One example that falls under Theorem 15 are d-regular
graphs. This is illustrated in Fig. 8(a) using a random graph
with d = 10, n = 10M, and p = 1024. The I/O function
of Trigon in this graph is an inverted cup, with the middle
being the worst and the two boundaries being the best. This
is one of the few cases where PCF-1A wins over PCF-1B. A
more common scenario is given by Twitter in Fig. 8(b), where
c1 =

√
p = 32 is clearly optimal and PCF-1B beats PCF-1A.

If the program has access to G+
θ , it can compute our models

shown earlier in the paper and always make the right decision.
However, if graph G+

θ cannot be examined before choosing c1,
the next result explains which choice would always be safer.

Theorem 16. Usage of c =
√
p in (45) yields at most double

the optimal I/O. On the other hand, c = 1 or c = p can be
worse than optimal by a factor of

√
p.

F. Minimizing Runtime
When achieving the quickest execution time is a priority,

the choice of optimal c1 may involve balancing conflicting
objectives. This is exemplified by Fig. 8(c)-(d), where optimal
points c1 do not coincide with those in plots (a)-(b). Note that
the x-axis is on a log2 scale and lookup growth is sublinear.
On the d-regular graph, Trigon increases γT (n) by 3.5 times
between c1 = 1 and

√
p. On Twitter, the number of lookups

goes up by a factor of 9.8. As predicted earlier, both values
are much smaller than Pagh’s linear (i.e., 32-fold) increase.

With overlapped operation between CPU and I/O, the run-
time is determined by the maximum of disk read time and in-
memory operations. Define SD, SI , and SH to be respectively
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Fig. 8. Trigon tradeoffs between I/O and lookups (p = 1024).

the speed of the disk, intersection, and lookups (in edges/sec),
which can be easily benchmarked on startup. Parameterizing
IT (n) and γT (n) with c1, an objective might be to minimize

r(c1) = max
(IT (n, c1)

SD
,
ρ(n)

SI
+

γT (n, c1)

SH

)
(50)

where ρ(n) is the intersection cost from (1).
To obtain IT (n, c1) and γT (n, c1), one can use (41)-(42).

Direct computation of these values may be costly; however,
approximation (43), as well as its refinement using (16) or
(23), work quite well. A binary search over r(c1) requires
efficient computation of the models, i.e., without scanning
the degree sequence {Xu}, which may not fit in RAM. Our
approach is to create a short digest of the necessary informa-
tion during construction of G+

θ , which summarizes the in/out
degree sequences of the graph. Since {Xu} typically contains
many runs of similar values (Xu, Xu+1, . . . , Xu+s−1), each of
them can be compressed into one entry that keeps track of the
count s and the starting value Xu. As a result, minimization
of (50) often takes negligible time.

VIII. EVALUATION

We finally come to the stage of putting the ideas developed
in the previous section to work. To enable a fair comparison,
we use C++ to implement Trigon and Pagh+ as separate mod-
ules that share the same in-memory and disk components (i.e.,
multi-threading, overlapped I/O, SIMD intersection). Setting
c1 = 1 in Trigon, we obtain PCF-1B. Therefore, the only
difference between the three methods lies in their partitioning
scheme. As PCF-1A is not competitive on most real-world
graphs, we do not consider it here.

Out of the standard graphs used for triangle listing, we
engage the six largest from [9]. Their characteristics are shown
in Table I. In the last two rows, we add into the mixture best-
case scenarios from Pagh and PCF.
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TABLE I
GRAPH PROPERTIES

Graph Nodes n Edges m Size (GB) Triangles
Twitter [19] 41M 1.2B 9.3 35B
Yahoo [41] 720M 6.4B 53.3 86B
IRL-domain [9] 86M 1.7B 13.3 113B
IRL-host [9] 642M 6.4B 52.7 437B
IRL-IP [9] 1.6M 818M 6.1 1040B
ClueWeb [9] 8.2B 51B 358 879B
Complete 100K 5.0B 37.2 167T
Bipartite 100K 2.5B 18.6 0

TABLE II
I/O (BILLION EDGES)

Graph p Pagh+ PCF-1B Trigon RAM
Twitter 1,024 75.6 43.5 19.5 4.5 MB
Yahoo 392.3 25.5 25.5 23.2 MB
IRL-domain 104.8 98.4 33.8 6.2 MB
IRL-host 386.5 137.9 59.7 22.9 MB
IRL-IP 51.5 145.7 23.4 3.0 MB
ClueWeb 2,869.9 457.1 326.2 169.7 MB
Complete 10,000 995.0 15,742 493 1.9 MB
Bipartite 497.0 2.5 2.5 1.0 MB

A. I/O

Performance of triangle listing depends on the ratio between
graph size and available RAM, i.e., p = m/M . Since our
I/O methods are quite efficient, this affords us an opportunity
to examine scenarios where graphs are substantially larger
than memory. In fact, this is the first paper that runs an
actual implementation with RAM size that is 3 − 4 orders
of magnitude smaller than the oriented graph G+

θ .
On real-world graphs, Table II shows that Pagh+ loses to

PCF-1B in five out of the six cases, sometimes by as much as a
factor of 15. The only graph where it wins is IRL-IP, which is
quite dense (average degree 1,030). This is not surprising given
our earlier analysis. If we consider preprocessing to be part of
triangle listing and double the PCF-1B result, it becomes worse
that Pagh+ in three cases. On the other hand, Trigon beats both
previous methods on each of the graphs. Furthermore, even if
its I/O is doubled, it still stays below Pagh+, in some cases
by a wide margin.

On the complete graph and 10K partitions, Pagh+ has 15
times less I/O than PCF-1B. However, its overhead is still
double that of Trigon, which follows from the dichotomy
of sequential vs random coloring discussed earlier. On the
bipartite graph, PCF-1B and Trigon both annihilate Pagh+ by
issuing 200 times less I/O, which also agrees with our analysis.

B. Runtime

For the experiments, we use one machine with a six-core
Intel i7-3930K (desktop CPU released in 2011). We equip this
computer with a single 3-TB magnetic hard drive (Hitachi
Deskstar 7K3000) that is capable of reads at 160 MB/s. We
omit PCF-1B since slow I/O makes it predictably worse than
Trigon. Instead, we compare against Pagh+ to investigate the
impact of non-sequential colors, lookup load, and disk seeking.
Furthermore, we consider the total delay, which includes the
partitioning phase, as one of the measures of performance.

TABLE III
PREPROCESSING AND ENUMERATION TIME (MINUTES)

Graph Pagh+ Trigon
pre run total pre run total

Twitter 3.3 144.0 147.4 14.8 10.0 24.8
Yahoo 27.8 1,296.4 1,324.2 35.5 19.1 54.6
IRL-domain 3.5 191.4 194.9 21.0 14.8 35.8
IRL-host 26.2 1,070.3 1,096.5 52.7 32.0 84.7
IRL-IP 0.2 31.7 31.9 12.1 8.7 20.8
ClueWeb 181.8 8,331.1 8,512.9 426.8 254.3 681.1
Complete 2.5 1,050.7 1,053.2 624.2 238.6 862.8
Bipartite 8.8 629.5 638.3 6.6 2.3 9.9

TABLE IV
NUMBER OF LOOKUPS (BILLION)

Graph Pagh+ Trigon Ratio
Twitter 38.4 11.5 3.5
Yahoo 199.2 19.9 10.0
IRL-domain 53.2 19.4 2.7
IRL-host 196.3 34.3 5.8
IRL-IP 26.2 13.2 2.0
ClueWeb 1,457.8 205.3 7.1
Complete 500.0 252.0 2.0
Bipartite 250.0 2.5 100.0

Table III shows the result. In the first four rows, Trigon
completes triangle search 15 − 60 times quicker than Pagh+.
One notable example is Yahoo, where purely sequential I/O
in Pagh+ would have been responsible for only 163 minutes
(i.e., 392B edges, four bytes each, read at 160 MB/s). Instead,
Pagh+ spends an additional 1,132 minutes (i.e., 18 hours) on
lookups. A similar scenario occurs with ClueWeb in row six,
where Pagh+ gets bogged down for 5 days just checking the
hash table. Table IV confirms that Pagh+ requires substantially
more random memory access than Trigon. The larger the hash-
table size, the worse the lookup speed, which explains the huge
runtime gap between the two methods on ClueWeb.

In dense-graph scenarios of Table III, Pagh+ is 3− 5 times
slower than Trigon. Usage of 10K partitions for the complete
graph creates a noticeable bottleneck in reading c3 = 1M
combinations of files. Analysis of the total delay, i.e., both
preprocessing and triangle listing, shows a more favorable
outcome for Pagh+; however, Trigon is still faster in all graphs,
sometimes by a wide margin (e.g., 24× on Yahoo).

IX. CONCLUSION

We analyzed I/O complexity of the best methods in the
literature, compared their asymptotics, identified their inherent
strengths and weaknesses, and developed a novel framework
that surpassed the existing efforts in all performance measures
relevant to triangle listing. Our approach works by trading
I/O cost for lookups, which makes the method adaptable
to whatever bottlenecks triangle listing may be facing in a
particular hardware configuration.
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