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Faulds: A Non-Parametric Iterative Classifier for
Internet-Wide OS Fingerprinting

Zain Shamsi , Daren B. H. Cline , and Dmitri Loguinov , Senior Member, IEEE

Abstract— Recent work in OS fingerprinting has focused on
overcoming random distortion in network and user features
during Internet-scale SYN scans. These classification techniques
work under an assumption that all parameters of the profiled
network are known a-priori – the likelihood of packet loss,
the popularity of each OS, the distribution of network delay,
and the probability of user modification to each default TCP/IP
header value. However, it is currently unclear how to obtain
realistic versions of these parameters for the public Internet
and/or customize them to a particular network being analyzed.
To address this issue, we derive a non-parametric Expectation-
Maximization (EM) estimator, which we call Faulds, for the
unknown distributions involved in single-probe OS fingerprinting
and demonstrate its significantly higher robustness to noise
compared to methods in prior work. We apply Faulds to a new
scan of 67M webservers and discuss its findings.

Index Terms— Stack fingerprinting, network security.

I. INTRODUCTION

THE Internet is a fascinating conglomerate of highly
heterogeneous devices, which differ in hardware capa-

bility, security awareness, software features, and daily usage.
Measuring the amount, type, and behavior of these devices,
as well the networks they connect to, has become an impor-
tant topic [14], [15], [17], [20], [27], [30], [36], [45], [46].
To categorize the makeup of today’s networks, research in
active OS fingerprinting, which is our topic in this paper,
aims to determine the stack of remote hosts using their
responses to external stimuli (i.e., TCP/IP probes) [4], [5], [7],
[10], [18], [25], [26], [31], [33], [39], [44], [49], [53], [54],
[58], [59], [60]. In addition to uncovering the operating sys-
tem of computers, fingerprinting can expose household items
(e.g., printers, cameras, TVs) and various cyber-physical sys-
tems (e.g., temperature monitors, lighting controllers), which
are classes of devices that have enjoyed increased exploitation
in recent years [2], [9].

There are many uses for remote stack fingerprinting.
First, it helps hackers in identification of vulnerable hosts
and general network reconnaissance [52], especially during
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cyber-attacks that target only a specific OS implementa-
tion [22]. Second, OS fingerprinting is routinely deployed in
security, e.g., by administrators of large networks seeking to
find unpatched hosts and rogue entities [1], [32], [50]. Third,
perimeter-defense systems (e.g., IDS, firewalls) may require
the OS of the target host in order to detect certain types of
exploits (e.g., those involving reassembly of IP fragments).
In such cases, autonomous fingerprinting of the protected
network allows these installations to function at maximum
effectiveness [49], [53]. Finally, researchers/organizations use
these techniques to understand usage trends [37], [38], dis-
cover the spread of new technologies [8], [16], [29], [41], and
expose botnets [28].

Active stack fingerprinting can be partitioned into three cat-
egories – banner-grabbing via plain-text protocols (e.g., telnet,
HTTP, FTP) [43], [57], multi-probe tools that elicit OS-specific
responses from various non-standardized combinations of flags
and/or unexpected usage of protocol fields (e.g., nmap [39],
xprobe [58], p0f [60]), and single-probe methods that send a
regular SYN to each host (e.g., Snacktime [6], RING [55],
Hershel [46], Hershel+ [45]).

At large scale, banner-grabbing has several impediments
– frequent removal of OS-identifying strings by administra-
tors (e.g., for security purposes), high bandwidth overhead,
and common interaction with non-platform-specific software
(e.g., apache, nginx). Multi-probe tools have their own chal-
lenges – heavy load on the target, massive complaints about
intrusive activity, and noisy results when the destination
IP is load-balanced across a server farm (i.e., each packet
hits a different machine). More importantly, the accuracy
of multi-packet tools suffers a significant degradation when
firewalls block auxiliary probes (e.g., a UDP to a closed port,
rainbow flags in TCP headers, ICMP port unreachable) and the
underlying classifier is not robust against unexpected feature
removal/modification. As shown in [45], OS classification with
nmap over the public Internet fails in almost 30% of the cases.
Furthermore, nmap sometimes produces nonsensical results
and worse accuracy than the alternatives utilizing a single
probe.

Before modeling and improving multi-packet classifiers,
which are still poorly understood, it is important to ask
whether there exists a set of algorithms for maximizing per-
formance of single-packet tools in Internet-wide scans. Such
techniques provide a maximally stealthy option and may be
able to bypass firewalls/IDS when packets loaded with “tricks”
cannot. As it turns out, even the most advanced model in
single-probe literature, i.e., Hershel+ [45], leaves room for
improvement. It has many built-in assumptions that may be
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violated in practice, which in turn may affect its classification
accuracy and overall performance on such basic metrics as
the fraction of the Internet running a particular stack. Our
motivation for this paper is to understand the limitations of
existing single-probe techniques and offer novel avenues for
increasing both the classification accuracy and amount of
information recovered from responses to a SYN packet.

Compared to the conference version [47], this paper
includes a revised explanation of the material, more chal-
lenging distortion scenarios (i.e., S14 in Tables II-IV and
S24 in Tables V-VI), Figs. 4(c)-(d) with additional accuracy
verification of the proposed estimator, and Section VI.D that
focuses on classification of unknown signatures.

II. BACKGROUND

A. Nmap

Perhaps the most popular and exhaustive tool for OS fin-
gerprinting is nmap [39]. To understand its infeasibility for
wide-area usage, we briefly review its outgoing traffic and
response requirements, as well as the matching algorithm.
By default, nmap starts with a vertical scan of the target using
1, 000 well-known ports in an attempt to find two TCP ports,
one of which is open and the other is closed, as well as a
closed UDP port. It then sends 16 uniquely crafted probes – six
regular TCP packets to an open port, one valid and one invalid
ICMP ping, one UDP packet to a closed port, four malformed
packets to an open TCP port, and three TCP packets to a closed
port. It retransmits all probes multiple times to neutralize the
impact of packet loss, which results in over 100 packets per
host in addition to the initial port scan.

Besides overhead, running nmap against the entire Internet
poses a number of additional challenges. First, there is a low
likelihood that a port scan, combined with probes to closed
ports, gets unnoticed by the IDS. Many software packages
(e.g., snort) contain explicit rules to detect and block the
rather esoteric nmap traffic. Certain networks take offense
at being nmapped, which results in swift action to block
the entire subnet/AS of the scanner and complaints about
abusive behavior. Second, the firewall may allow select ports
to reach the target host (e.g., port 80 to a webserver); however,
there is little incentive to pass UDP or TCP packets to other
ports that do not offer any services. Third, in similar fashion,
the OS firewall can be configured (e.g., using domain group
policy) to silently drop incoming packets to closed ports.
In fact, Windows and Mac OS X suppress outgoing ICMP
port unreachables even when an explicit rule is created to
allow such packets through the firewall [3], [34].

Nmap expects responses to not deviate from those specified
in the database (e.g., a RST to a TCP rainbow packet, ICMP
port unreachable from a closed UDP port, ICMP echo reply
to a ping). Because it considers absence of a response to be a
feature, it can be misled into assigning large positive weights
to firewall actions, which skews the result towards network
stacks that inherently respond with fewer signals. This may
occur despite a complete non-match in other features, meaning
that the target may share nothing in the packet header (e.g.,
TCP window size, TTL, options, MSS) with the signature it is
matched to [45]. Other issues include the database itself, which

Fig. 1. Half-open connections in TCP.

contains signatures that are subsets of others from completely
unrelated stacks and allows special null header fields that can
match any value in the observation. Unless the target responds
to all 16 probes exactly as expected, an obscure device with
the most null fields can trump the other alternatives, including
the correct signature.

Additionally, certain TCP fields are quite volatile,
i.e., change from user tweaks, underlying network MTU, and
software setsockopt function calls. This does not inherently
change the operating system, but creates an illusion of a
different stack. For example, Server 2008 R2 accepts incoming
connections with a kernel buffer (i.e., TCP window size) of
8, 192 bytes; however, an apache webserver can reconfig-
ure this field to an arbitrary value before listening on the
socket. Furthermore, this can be done on a per-socket basis
and may vary over time depending on memory usage or other
considerations. When faced with this type of uncertainty, nmap
uses heuristic weights and thresholds that do not have rigorous
theory/verification behind them. As a result, it exhibits highly
unreliable identification in certain scenarios [45].

B. Single-Packet Tools

For accurate OS fingerprinting at Internet scale,
low-overhead methods resilient to volatility are preferred.
Our focus in this paper is on single-probe techniques, which
generally work by sending a TCP SYN to the target host and
inducing a stream of SYN-ACK responses, possibly with a
RST at the end. Since the connection is kept in the half-open
state, the server continues retransmitting SYN-ACKs until
its internal maximum-retry threshold is exceeded. Delays
between the SYN-ACKs, known as retransmission timeouts
(RTOs), as well as their count and presence of the last RST,
reveal valuable information about the OS of the responding
host. This is illustrated in Fig. 1. Coupling the RTOs with
default TCP/IP header values makes stack classification
possible.

The main difference between prior work [6], [27], [45],
[46], [55] lies in the features they extract from TCP/IP
headers and the assumed distortion model. As of this writing,
Hershel+ [45] is both the most recent effort in this direction
and most robust to observation noise. We review its operation
and formulas later in the paper.

III. LEARNING FROM OBSERVATION

A. General Problem

Suppose the OS database consists of n ≥ 1 known
stacks (ω1, . . . , ωn), each with some vector-valued fingerprint
xi = (xi1, xi2, . . .). Table I shows three examples from
the Plata database [45], where each row represents on OS
and its fingerprint. Vector xi contains a combination of
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TABLE I

FEATURE VECTORS xi (TCP OPTIONS: M = MSS, N = NOP, S = SACK, T = TIMESTAMP, AND W = WINDOW SCALE)

fixed features that are sent by the OS for new connections
(i.e., TCP receiver window size, TTL, the do-not-fragment
flag, supported TCP options, MSS, RST peculiarities) and
SYN-ACK retransmission timeouts (RTOs). Further assume
a set of observations x′ = (x′

1, . . . ,x
′
m) obtained by scanning

the Internet and eliciting responses from m live servers, where
x′

j = (x′
j1, x

′
j2, . . .) is a vector of sampled features from

host j. For the type of OS fingerprinting considered here,
i.e., single-probe, this is done by dispatching a SYN to every
IP address in BGP and collecting SYN-ACKs/RSTs from the
responding servers, as previously shown in Fig. 1.

The goal of the classifier is then to determine for each
x′

j the most-likely fingerprint in the database. This task is
complicated by the presence of distortion (also called volatil-
ity [45]) θ that randomly modifies the original features of the
system before the observer gets them. This may involve a
change in the temporal relationship between the packets (e.g.,
queuing delays), removal of some features (e.g., loss of RST
packets), and rewriting of TCP headers in an effort to optimize
or obscure the end-system.

Define αi = p(ωi) to be the unknown fraction of hosts in
x′ with OS i and let α = (α1, . . . , αn) be the corresponding
vector. Now suppose p(y|ωi, θ) is the probability that the
fingerprint of signature i has been changed into y under θ.
Similarly, assume that p(ωi|y, θ, α) is the probability that an
observed vector y was produced by a host running OS i,
conditioned on distortion model θ and popularity α. Then,
application of Bayes’ rule shows that the classifier must
determine for each j the one database entry ωi with the largest

p(ωi|x′
j , θ, α) =

αip(x′
j |ωi, θ)

p(x′
j |θ, α)

, (1)

where, for any vector of features y, the denominator is

p(y|θ, α) =
n∑

i=1

αip(y|ωi, θ). (2)

Analysis of (1) in existing work [45], [46] assumes that
α is uniform (i.e., αi = 1/n) and θ is fixed by oracle
input. Therefore, both αi and denominator p(x′

j |θ, α) are
independent of i and can be removed from the optimization,
leaving only p(x′

j |ωi, θ). In contrast, our goal here is to
estimate both α and θ dynamically as the classifier is running,
which should both increase its accuracy and yield interesting
Internet-characterization results as byproduct of classification.
Before reaching this objective, a gradual build-up of formaliza-
tion is needed. This section deals with estimating α, the next
one covers network distortion, and the one after that focuses
on modification to fixed header features.

B. Fingerprint Popularity

Observation vector x′ gives rise to a number of equations
in the form of (2), where the left side contains the empirical

(known) probability of observing each unique vector y ∈ x′

and the right side is a model that embeds the unknown
parameters. Extraction of α and θ from such systems of
equations commonly involves the Expectation-Maximization
(EM) method, which produces a solution using fixed-point
iteration [13], [19]. At every step t, it maximizes the expected
log-likelihood function conditioned on the parameters obtained
during the previous iteration t − 1. As long as the number
of equations exceeds the number of unknown parameters,
EM works well for many problems in practice.

For now, we treat p(x′
j |ωi, θ) as a black-box classifier

(e.g., Snacktime, Hershel, Hershel+), which does not attempt
to estimate θ, and focus on determining α. This is the
simplest (and only) case where (2) forms a linear system of
equations, i.e., p(yk|θ, α) =

∑n
i=1 αicik(θ), where all cik(θ)

are constants. Throughout the paper, superscripts applied to
parameters refer to the iteration number during which they are
estimated, e.g., αt

i approximates αi during step t. Now notice
that a sensible estimate of popularity for OS i is the average
probability with which observations map to this fingerprint,
conditioned on the previous estimate of popularity, i.e.,

αt+1
i =

1
m

m∑
j=1

p(ωi|x′
j , θ, α

t). (3)

While the next result is fairly straightforward, its derivation
methodology is needed for later parts of the paper.

Theorem 1: For a classifier with fixed θ, (3) represents the
EM algorithm for recovering the popularity vector α.

Note that this is markedly different from deciding popularity
using the fraction of classification decisions that go to each
OS, which is known as hard EM and commonly used in clus-
tering algorithms such as k-means [23]. In fact, all previous
fingerprinting tools [6], [7], [39], [45], [46], [58], [60] can be
viewed as performing one iteration of hard EM, i.e., outputting
the fraction of classifications that belong to each OS ωi as an
estimate of its popularity αi.

C. Discussion

We now address the question of whether (3) is sufficient
for achieving good classification on its own and how much
of the accuracy depends on knowing the exact distortion
model θ. If the majority of the benefit is already obtained from
recovering α, the extra computational cost and modeling effort
involved in estimating θ may be unnecessary. For discussion
purposes, we use a set of toy databases that allow simple
demonstration of the intended effects. We apply a variety
of distortions θ (from mild to radical) to demonstrate that
a) prior methods can produce arbitrarily inaccurate estimation;
b) both network and user distortion must be taken into account;
and c) the new approach can recover the true underlying
parameters of the network/user despite the heavy noise added
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TABLE II

NETWORK DISTORTION IN SCENARIO S1

Fig. 2. Database and distorted observations.

to the observations. Note that the same observations arise with
larger databases, but finding the corresponding scenarios may
be more time-consuming.

Simulations below apply a forward latency to the SYN
packet, pass each SYN-ACK through a FIFO queue, which
adds random one-way delays along the return path, and drop
packets using an iid (independent and identically distributed)
loss model with some fixed probability. This is similar to the
context in which prior methods [45], [46] have been tested.
For the scenario we call S1, there are four different cases
for the distribution of forward/reverse delays and packet-loss
probability. These are shown in Table II and discussed next.

The first row matches exactly the assumed parameters θ
in Hershel+ [45]. The second row uses Pareto delays with
mean 500 ms and 50% loss, emulating highly noisy network
conditions. The next row uses a shifted reverse-exponential
forward latency with CDF e−λ(2−x), defined for −∞ <
x ≤ 2, which tests contrary-to-intuition examples where larger
delays are more likely than smaller. We employ λ = 2 and
truncate this distribution at zero, obtaining the average forward
SYN delay of 1.5 sec. The last case in the table examines
smaller average delays than the assumed model θ in Hershel+,
but couples it with substantial loss.

Our first database D1 contains truncated signatures of Linux
3.2 (ω1), Windows Server 2003 (ω2), and Novell Netware (ω3)
from Table I. We retain the first two retransmission timeouts
(RTOs), remove all fixed header features, and obtain the
fingerprints in Fig. 2(a). Note that these Linux and Windows
signatures are pretty close to each other, albeit not identical;
however, they are quite different from Novell. Distortion from
case S13 applied to this database is illustrated in subfigure b),
where we show the first 200 samples and remove observations
with lost packets.

Define ρt to be the fraction of correct classifications for a
given method during iteration t, where t = ∞ represents the
convergence point of the underlying estimator (usually 20−40
iterations). If the method does not perform iteration, only
ρ1 is meaningful. We consider three techniques – Hershel+,
hard EM with multiple iterations, and soft EM in (3), all

TABLE III

CLASSIFICATION RESULTS IN D1

using the same function p(x′
j |ωi, θ) and starting from uniform

popularity α0
i = 1/n.

Results of this process with m = 218 observations are
shown in Table III. In the first row, Hershel+ performs quite
well, achieving ρ1 = 67%. Since Novell Netware is an easy-
to-separate signature from the other two, Hershel+ recovers
α3 pretty accurately; however, it is utterly confused about the
frequency of the other two stacks. Applying hard EM increases
accuracy, but full reconstruction of α still proves difficult.
Application of (3) solves this issue.

Swapping (α1, α2), the second simulation in Table III shows
that Hershel+ is essentially guessing between Linux and
Windows, while hard EM is misled into divergence, where
it drops accuracy from 48% to 6%. While (3) is immune
to divergence in this case, its estimate of α suffers from
non-negligible errors. The next two cases in the table are even
more difficult. They show that EM can be driven into inferior
states when the assumed θ greatly deviates from that of the
underlying network. In fact, application of (3) not only fails
to obtain vectors α that resemble the true distribution, but also
harms performance of the system, i.e., ρ∞ � ρ1.

IV. NETWORK FEATURES

A. Distortion Model

Our goal in this section is to estimate unknown distor-
tion parameters θ inside p(x′

j |ωi, θ). Let features xi =
(di,ui) consist of network components (i.e., delays di) and
user-modified header values (i.e., ui). Since classification
[45], [46] usually assumes that distortion is applied to each
subvector independently, it follows that

p(x′
j |ωi, θ) = p(d′

j |ωi, θd)p(u′
j |ωi, θu), (4)

where θd, θu are the network/user distortion models, respec-
tively. Each of them contains multiple PMFs (probability mass
functions) that we elaborate on below. Since in this section
we consider only the network component, we assume that
p(u′

j |ωi, θu) = 1 for all i, j, i.e., all observed user features
are the same and thus perfectly match all fingerprints.

To understand the notation involved in expanding the first
factor in (4), examine Fig. 3 where a host with network
signature di generates an observation d′

j . Measurement begins
with a SYN packet, which takes some time to get to the target,
followed by the server “think” delay before it generates the
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Fig. 3. Delay features (stack ωi produces observation x′
j).

first SYN-ACK response. Database feature vectors di consist
of departure timestamps from the server, where di1 = 0
for all i. Note that di,r+1 − dir is the r-th retransmission
timeout (RTO) of the stack, which was commonly used in
early estimators [6], [46], [55]. Recently, however, usage of
absolute timestamps dir was identified [45] as having certain
modeling advantages, which is our approach as well.

On the client side, arrival timestamps d′jr are measured
relative to the transmission time of the SYN. Assume Tj

represents the sum of the forward delay, server think time, and
propagation/transmission delays of the reverse path, where Tj

has some unknown distribution fT (τ) = P (Tj = τ). Further-
more, let Δj1, Δj2, . . . be iid queuing delays of the return path,
with another unknown distribution fΔ(δ) = P (Δjr = δ).
Then, assuming no loss, d′jr = Tj + dir + Δjr.

To handle packet loss, assume that γj is a random vector
that maps the received packets in observation j to their order
on the server, i.e., γj(r) = k means that the r-th received
packet was originally in position k. In Fig. 3, for example,
we have γj = (1, 3). Then, if the j-th observation comes from
system ωi, it follows that

d′jr = Tj + di,γj(r) + Δjr , r = 1, 2, . . . , |d′
j |. (5)

As in prior work [6], [45], [46], we assume no reordering
due to the large spacing between the packets (often several
seconds), which implies γj(r + 1) > γj(r). Let Γ(i, j) be the
set of all monotonic loss vectors that start with |di| packets
and finish with |d′

j |. Then, the Hershel+ network classifier
uses p(d′

j |ωi, θd) equal to [45]

∑
τ

fT (τ)
∑

γ∈Γ(i,j)

pi(γ)
|d′

j|∏
r=1

fΔ(d′jr − τ − di,γ(r)), (6)

where pi(γ) is the probability to observe loss pattern γ
under |di| transmitted packets. For lack of a better assump-
tion, Hershel+ uses binomial pi(γ), Erlang(2) fT (τ), and
exponential fΔ(δ), all with some fixed parameters. Since θd

encapsulates the set of these distributions, our next goal is to
recover them using EM iteration.

B. Intuition

We start with a heuristic explanation of the proposed update
formulas, which is followed by a more rigorous treatment.
Recall that f t

T (τ) is an estimate of P (Tj = τ) during iteration
t. Then, one obvious approach is to set this value to the average
probability that each observation j has experienced a forward
latency τ , conditioned on the previous estimates of unknown

parameters, i.e.,

f t+1
T (τ) =

1
m

m∑
j=1

P (Tj = τ |d′
j , θ

t
d, α

t). (7)

Next, each database signature with k original packets admits
2k−1 unique loss patterns γ, where k goes as high as kmax =
21 in the most recent effort in the field [45]. Estimating
the probability pi(γ) for each possible option γ is likely to
produce too many unknown variables and lead to poor conver-
gence of EM. Instead, suppose that all

(
k
�

)
patterns of losing 


packets out of k are equally likely and define the probability of
this event to be qk(
), where k = 1, 2, . . . , kmax. The resulting
reduction in the number of unknown variables is significant –
from roughly 2kmax+1 = 4M to just kmax(kmax−1)/2 = 210.
Despite its simplicity, the framework of using qk(
) allows
more general scenarios than the traditional iid Bernoulli model
used in previous literature [45], [46].

To update distribution qk(
), our approach involves com-
puting the probability that observations experienced loss of 

packets out of k transmitted, normalized by the probability that
the original host sent k packets in the first place. To express
this mathematically, define Yj to be the number of SYN-ACKs
originated by the host in observation j. Letting 1X be an
indicator of event X , we get

qt+1
k (
) =

∑m
j=1 P (Yj = k|θt

d, α
t)1|d′

j|=k−�∑m
j=1 P (Yj = k|θt

d, α
t)1|d′

j|≤k
, (8)

from which the estimated probability of pattern γ is given by

pt
i(γ) =

qt
|di|(|di| − |γ|)

(|di|
|γ|

) . (9)

Finally, updates to PMF f t
Δ(δ) involve computing the

probability that one-way delay of each received packet equals
δ, normalized by the total number of packets collected during
the scan, i.e.,

f t+1
Δ (δ) =

∑m
j=1

∑|d′
j|

s=1 P (Δjs = δ|d′
j , θ

t
d, α

t)∑m
j=1 |d′

j |
. (10)

C. Analysis

To make the framework outlined above usable, our next
task is to express the probability of events that cannot be
directly observed (e.g., Yj = k, Δjr = δ) using a recur-
rence that depends on only the distributions contained in θt

d,
i.e., (f t

T , f t
Δ, qt

k). Let

δijτγr = d′jr − τ − di,γ(r) (11)

be the one-way delay Δjr conditioned on Tj = τ , loss
pattern γ, signature ωi, and observation j. For brevity of
notation, suppose

∑
ijτγs refers to five nested summations,

where i goes from 1 to n, j rolls from 1 to m, τ
moves over all bins of the PMF fT (τ), γ iterates over all
monotonic loss vectors in Γ(i, j), and s travels from 1 to
|d′

j |. If some of the variables are absent from the subscript,
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TABLE IV

CLASSIFICATION RESULTS OF NETWORK EM IN D1

the corresponding sums are omitted from the result. With this
in mind, define

pt
ijτγ := αt

if
t
T (τ)pt

i(γ)
|d′

j|∏
r=1

f t
Δ(δijτγr), (12)

βt
ijτγ := p(ωi, τ, γ|d′

j, θ
t
d, α

t) =
pt

ijτγ∑
iτγ pt

ijτγ

(13)

and consider the next result.
Theorem 2: Under network distortion, estimators (3), (7),

(8), and (10) can be written as

αt+1
i =

1
m

∑
jτγ

βt
ijτγ , (14)

f t+1
T (τ) =

1
m

∑
ijγ

βt
ijτγ , (15)

qt
k(
) =

∑
ijτγ βt

ijτγ1|d′
j|=k−�,|di|=k∑

ijτγ βt
ijτγ1|d′

j|≤|di|=k
, (16)

f t
Δ(δ) =

∑
ijτγs βt

ijτγ1δijτγs=δ∑
j |d′

j |
. (17)

While the result of Theorem 2 may appear daunting due to
the number of nested summations, its implementation in prac-
tice can be done with little extra cost compared to Hershel+.
Specifically, usage of (6) in (1) for all i, j already requires
five nested loops. In the inner-most loop of that algorithm,
(17) adds one increment to a hash table that maintains the
PMF of one-way delay. Updates in (14)-(16) are performed
less frequently and, in comparison, consume negligible time.
The only caveat is that Hershel+ can be optimized [45] to
remove the outer summation in (6) when fT is Erlang(2) and
fΔ is exponential. Our approach, on the other hand, requires a
hash-table lookup for both distributions. This makes its single
iteration similar in speed to unoptimized Hershel+.

Theorem 3: Iteration (14)-(17) is the EM algorithm for
(θd, α).

D. Discussion

We revisit earlier simulations on dataset D1, run (14)-
(17) over the same input, and show the result in Table IV.
Compared to Table III, the derived EM estimator significantly
improves the accuracy of both classification and vector α.
Note that S12 contain 43% of the observations with just one
packet, i.e., zero RTOs. In methods that rely on RTO [6], [46],
[55], these samples would be either discarded as impossible
to classify or assigned to a uniformly random signature.
In contrast, estimator (14)-(17) manages to do much better as
it learns distributions (fT , fΔ, α) and makes the best decision
possible under these conditions. The accuracy of estimated

Fig. 4. Recovery of delay parameters in D1.

delay distributions is shown in Fig. 4. With the exception of
noise at the points of discontinuity of each density, functions
f∞

T , f∞
Δ match the true parameters quite well.

Recalling (5), where Tj+Δjr are always measured together,
it may not be obvious how Tj can be separated from Δjr and
why the result in Fig. 4 is possible. Indeed, this is reminiscent
of the classical deconvolution problem: given observations
{Xi + Yi}m

i=1, where Xi ∼ FX(x) and Yi ∼ FY (x) are iid,
determine the individual distributions FX , FY . Deconvolution
is generally unsolvable unless either FX or FY is known
ahead of time. While our problem is similar, there is a crucial
difference – EM can see the same value Tj coupled with
multiple instances of Δjr , for r = 1, 2, . . . , |d′

j |. As long as
qk(k − 1) < 1 (i.e., packet loss leaves at least two packets in
enough observations) and m → ∞, deconvolution is possible
in our setting, but up to a location shift, i.e., one of the
estimated distributions may be shifted left by a constant and
the other right by the same amount. If we know that one of
them starts at zero, it is possible to determine the shift after the
fact. Furthermore, if both estimated densities f∞

T , f∞
Δ already

begin at zero, no correction is needed. This is the case in
Fig. 4 and later in our Internet scan.

Since all signatures in D1 had three packets, it was easy to
figure out the number of them lost in each d′

j , which led to
q∞k being perfectly accurate, regardless of whether (16) was
used or not. In a more interesting database, which we call D2,
Linux is augmented with a fourth packet that follows after
a 3-second RTO. To experiment with different loss patterns,
define BinT(k, p) to be a binomial distribution with parameters
(k, p) truncated to the range [0, k − 1]. Since the loss of all
k packets cannot be observed, we avoid generating this case
in the simulator. Additionally, suppose RevBin(k, p) is the
reverse binomial distribution such that X ∼ BinT(k, p) and
Y = k − 1 − X implies Y ∼ RevBin(k, p). This is used in
scenario S2 from Table V, which shows qk and the average
observed loss rate among the signatures with k packets.

Table VI shows classification results for three methods –
Hershel+, the partial EM framework without loss updates (16),
and the full algorithm from Theorem 2. Not surprisingly,
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TABLE V

NETWORK PARAMETERS OF SCENARIO S2

TABLE VI

CLASSIFICATION RESULTS IN D2

Hershel+ again struggles to recover α, even when its classi-
fication accuracy is pretty high. Omission of (16) does create
challenges for partial EM, where in all four cases it produces
worse results than Hershel+. On the other hand, the full
algorithm improves accuracy and delivers the exact α despite
complex underlying network conditions.

V. USER FEATURES

A. Distortion Model

Our goal in this section is to expand the second factor in
(4) and develop an estimator for its distortion model. This
is done in isolation from the network features, i.e., using
p(d′

j |ωi, θd) = 1 for all i, j. Assume b ≥ 1 user features,
where each observation j provides a constant-length vector
u′

j = (u′
j1, . . . , u

′
jb). These include the TCP window size,

IP TTL (time to live), IP DF (do not fragment), TCP MSS
(maximum segment size), and TCP options, for a total of b = 5
integer-valued fields. Since RST features depend on network
loss, we delay their discussion until the next section. Note that
each field may be allocated a different number of bits in the
header and the number of available options av for u′

jv may
depend on v (e.g., two for DF and 64K for Win).

Modification to user features at the target host, which we
model with a set of distributions θu, can be accomplished
by manually changing default OS parameters (e.g., editing
the registry), using specialized performance-tuning software,
requesting larger/smaller receiver kernel buffers while waiting
on sockets (i.e., using setsockopt), and deploying network/host
scrubbers [12], [40], [42], [51], [56] whose purpose is to
obfuscate the OS of protected machines. Besides intentional
feature modification, distortion θu may also accommodate
unknown network stacks that build upon a documented OS, but
change some of its features (e.g., new versions of embedded
Linux customized to a particular device).

Prior work either omits formally modeling user volatility
[6], [7], [39], [58], [60] or assumes that uiv stays the same

with some probability πv and changes to another integer with
probability 1−πv [45], [46]. While the latter approach works
well in certain cases, it has limitations. Besides the fact that πv

is generally unknown, binary decision-making fails to create a
distribution over the available choices. For example, πv = 0.9
assumes that each of the 65,534 non-default window sizes
occurs with probability 0.1. Instead, a more balanced approach
is to normalize 1 − πv by the number of available distortion
options av − 1. Second, it is likely that certain devices are
modified less frequently than others (e.g., due to firmware
restrictions) and individual distortions are OS-specific, which
implies that πv should depend on i. Finally, the existing
methods have no way of tracking the location and probability
mass of distortion, which does not have to be uniform in
practice (e.g., window size 257 bytes is less likely than 64K).

To overcome these problems, assume that πiv(y) is the
probability that feature v of OS i is modified to become y,
which gives rise to a set of nb distributions that comprise our
user-distortion model θu. Then, the proposed classifier is

p(u′
j |ωi, θu) =

b∏
v=1

πiv(u′
jv), (18)

where modification to features is assumed to be independent.
Note that doing otherwise does not appear tractable at this
point (i.e., estimation of covariance matrices produces too
many variables for EM to handle).

B. Iteration

We begin by discussing under what conditions the problem
is identifiable, despite having a large number of unknown
distributions. Assume φiv := πiv(uiv) is the probability with
which feature v stays the same for OS i. Because we do not
know ahead of time the reasoning of the user for changing the
features or the new values of modified fields, the estimation
problem for πiv is unsolvable unless enough of the probability
mass remains at the original location, i.e., φiv is above some
threshold. From common sense, it is likely that φiv ≥ 0.5
holds among the general population of Internet hosts; however,
EM converges under even weaker conditions (e.g., when φiv

is the largest value in each PMF πiv). Coupling this with an
initial state that satisfies the same constraint allows EM to
discover a unique solution.

We define the estimator for user distortion as the probability
to observe y in feature v across all matches against OS i, i.e.,

πt+1
iv (y) =

∑m
j=1 p(ωi|u′

j , θ
t
u, αt)1u′

jv=y∑m
j=1 p(ωi|u′

j , θ
t
u, αt)

. (19)

To allow simplification of this expression below, define

pt
ij := αt

ip(u′
j |ωi, θ

t
u, αt) = αt

i

b∏
v=1

πt
iv(u′

jv), (20)

βt
ij := p(ωi|u′

j , θ
t
u, αt) =

pt
ij∑n

i=1 pt
ij

. (21)

The next result follows from substitution of (20)-(21) into
(3) and (19), as well as earlier proofs of Theorems 1 and 2.
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TABLE VII

USER FEATURES OF DATABASE D3

Theorem 4: Under user distortion, estimators (3) and (19)
can be written as

αt+1
i =

1
m

m∑
j=1

βt
ij , (22)

πt+1
iv (y) =

∑m
j=1 βt

ij1u′
jv=y

mαt+1
i

. (23)

Furthermore, this is the EM algorithm for (θu, α).

C. Discussion

To evaluate the result of Theorem 4, we construct a new
database D3, shown in Table VII, by switching from RTOs
to user features. Note that this Linux signature ties Novell
in DF and MSS, while Windows does the same in TTL. For
simplicity of presentation, we use scenarios with φiv = φv for
all i, where φv is the probability with which feature v stays at
the default value. This replaces matrix φiv with a vector φv ,
which is easier to follow across the different tables.

The initial PMFs π0
iv of EM are set up to include 90% of the

mass on the default value and split the remainder uniformly
across the viable alternatives. Since it is believed [46] that
the order of non-NOP options cannot be changed without
rewriting the TCP/IP stack of the OS, we initialize π0

i4 to allow
only candidates compatible with the original ui4. For example,
MST is feasible for Linux, but not the other two signatures
in Table VII. Note that any single option (M, S, W) and the
empty set are valid for all three OSes.

We use two models for generating noisy observations. The
first one, which we call RAND, picks uniformly from the
space of possible values observed in our Internet scan, except
OPT is limited to compatible subsets/supersets of the original.
We have 5,695 candidates for Win, four for TTL, two for
DF, 266 for OPT, and 1,082 for MSS. Decisions are made
independently for each feature v and each observation j, which
models users “tweaking” their OS without coordinating with
each other or sharing a common objective. Although RAND
can generate 13.1 billion unique combinations u′

j , only a small
subset is encountered by the classifier in simulations below.

The second model, which we call PATCH, selects an
alternative vector of features u′′

i for each OS ωi and switches
the default value uiv to u′′

iv with probability 1 − φv , again
independently for each v. This represents deployment of
software patches that change one of the features to an updated
value. The probability for a host to use multiple patches is the
product of corresponding (1−φv)’s. For example, modification
to both Win and OPT affects (1 − φ1)(1 − φ4) fraction of
hosts. Vectors u′′

i are non-adversarial and do not attempt to
confuse the classifier. We construct them by flipping the DF
flag, setting OPT to M, and adding i to all remaining fields
(modulo the max field value). The result is given in Table VIII.

TABLE VIII

PATCHED USER FEATURES

TABLE IX

PARAMETERS OF SCENARIO S3

TABLE X

CLASSIFICATION RESULTS IN D3

To estimate vector φt
v in the classifier, we use a weighted

average of feature non-modification across all OSes, i.e., φt
v =∑n

i=1 αt
iφ

t
iv . Our next scenario S3 is detailed in Table IX and

the corresponding outcome is given by Table X. We omit
vector α∞ since it matches ground-truth α very accurately.
Due to the new treatment of non-default features in (18),
the first iteration of EM in Table X is superior to Hershel+.
However, both are much worse than the last iteration. It should
be noted that the second case S32 modifies Win, TTL, and
MSS in 100% of the samples. Identifiability in such conditions
is helped by the fact that OPT is constrained to a subset of
the original string, which makes a certain fraction of randomly
generated values feasible for only one OS. This allows EM
to learn to ignore (Win, TTL, MSS) and focus decisions on
(DF, OPT). Furthermore, when guessing is involved, EM uses
its knowledge of α to correctly pick the most-likely OS. It is
also interesting that S33 is classified with 100% accuracy once
EM gets a grasp on the new values in Table VIII and their
probability of occurrence.

VI. COMPLETE SYSTEM

A. Reset Packets

Because loss of RST packets causes the corresponding user
features (i.e., ACK/RST flags, ACK sequence number, window
size [46]) to be wiped out, there is dependency between
distortion applied by the network and the user. As a result,
this case should be handled separately. The first modification
needed is to increase the length of network vectors di and d′

j

to accommodate the RST timestamp. The second change is
to add RST values into user features. Since RST fields are
often implementation choices/bugs that cannot be modified
independently of each other [46], they can be combined into
a single integer and appended to user vectors ui and u′

j in
position b + 1.
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TABLE XI

HANDLING OF RST PACKETS

There are four possible scenarios for handling RST packets.
They are shown in Table XI, each with a certain probability
ζt
ij that must be factored into the formulas developed earlier.

When both the observation and candidate signature contain a
RST, the only multiplier needed is the probability that the
received feature was produced by that OS. If the sampled
OS has a RST, but the signature does not, this indicates a
possible interference from an intermediate device (e.g., IDS
after expiring connection state, scrubbers). In this case, it is
likely meaningless to use the temporal characteristics of the
RST, which is why we omit it from d′

j before computing
the loss and delay probabilities. However, multiplication by
πt

i,b+1(uj,b+1) is still warranted since we must assign a proper
weight to this mismatch. The third row of the table corresponds
to packet loss, which is handled automatically in pt

i(γ), i.e., no
additional actions or multipliers are needed. Finally, the last
row is identical to the setup assumed in preceding sections.

B. Final Model

We now combine the developed network, user, and RST
models into a single framework. Redefining (12) as

pt
ijτγ = αt

iζ
t
ij

( b∏
v=1

πt
iv(u′

jv)
)
f t

T (τ)pt
i(γ)

|d′
j|∏

r=1

f t
Δ(δijτγr)

(24)

allows us to compute βt
ijτγ still via (13), as well as reuse

(14)-(17). However, (23) requires an update to

πt+1
iv (y) =

�m
j=1 1ujv=y

�
τγ βt

ijτγ

mαt+1
i

, (25)

where v = 1, 2, . . . , b + 1. The final classifier, which we call
Faulds,1 is applied after EM has converged and is given by

p(ωi|x′
j , θ

∞, α∞) =
∑
τγ

β∞
ijτγ . (26)

It is easy to generalize our earlier results to cover the
complete model, as given in the next theorem without proof.

Theorem 5: Under both network and user distortion, esti-
mator (13)-(17), (24)-(25) is the EM algorithm for (θ, α).

C. Scaling the Database

Due to the large number of features it combines, Faulds is
not challenged by the previous toy databases. We therefore
switch to a more realistic set of signatures created by Plata

1Henry Faulds was a Scottish scientist who extended the ideas of William
Herschel and proposed the first usable forensic fingerprint-identification
method in 1880.

Fig. 5. Results in D4.

in [45]. We call this database D4 and note that it contains
420 stacks, among which some have the same exact RTO
vector and others overlap in all user features. The database was
constructed to ensure that signatures were sufficiently unique
under delay distortion, but packet loss and user modifications
were not taken into account. As a result, the database contains
a number of entries that would be difficult to distinguish
under the types of heavy distortion considered in this paper.
Nevertheless, these tests should indicate how well Faulds
scales to larger databases and whether its recovery of the
unknown parameters (α, θ) is affected by an increased uncer-
tainty during the match.

We set popularity α to the Zipf distribution with shape
parameter 1.2 and continue using m = 218 observations,
which gives us 64K samples from the most common OS and
just 49 from the least. We borrow the delay from case S13 (i.e.,
reverse-exponential T with mean 1.5 sec, Erlang(2) Δ with
mean 0.5) and packet loss from S23 (i.e., reverse-binomial).
Finally, we use RAND with stay probability φv = 0.8.

The first iteration of Faulds produces a respectable ρ1 =
0.42. This is gradually improved with each step, until con-
vergence to a more impressive ρ∞ = 0.70. To make sense
out of α∞, we sort all signatures in rank order from the most
popular to the least and plot the result in Fig. 5(a). There
is a strong match in the top-100, while the random noise
in the tail is explained by the scarcity of these OSes in the
observation (i.e., below 250 samples each). For comparison,
the outcome of Hershel+ is displayed in part (b) of the figure.
To complete the big picture, subfigures (c)-(d) show estimates
of fT and fΔ. Despite an overall 30% classification mismatch,
these PMFs are no worse than previously observed in Fig. 4,
which indicates that incorrect decisions overwhelmingly went
to signatures with similar RTO vectors as the true OS.

Instead of scrutinizing 21 different loss PMFs, suppose we
compute a single metric – the fraction of packets dropped
within the entire observation x′, conditioned on at least one
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TABLE XII

INJECTION CLASSIFICATION SUMMARY

packet surviving. To this end, define during step t

Lt
k =

k−1∑
�=1


qt
k(
) (27)

to be the average number of lost replies in signatures with k
packets. Then, taking an estimated ratio of all dropped packets
to the total transmitted yields the expected loss rate

pt
loss =

∑n
i=1 αt

iL
t
|di|∑n

i=1 αt
i|di| . (28)

Recall that the simulation allowed loss to affect at most k−1
packets in OSes with |di| = k. Therefore, its ground-truth
packet loss should represent the same quantity as (28). Traces
show that 70.1% of the packets were dropped, which matches
quite well against p∞loss = 69.3%.

Since φv = 0.8 was a constant in this simulation, it makes
sense to compare it against feature-modification estimates
averaged across all fields and all OSes, i.e.,

E[φt
v] =

1
b + 1

b+1∑
v=1

φt
v =

1
b + 1

b+1∑
v=1

n∑
i=1

αiφ
t
iv. (29)

Results show that E[φ∞
v ] = 0.802, which is very close to

the actual value. While there is some variation in individual
φiv , it is of little concern due to the small number of samples
seen by Faulds from these OSes.

D. Unknown Signatures

We recognize that having a database that knows all devices
on the Internet is near impossible. Therefore, infiltration of
samples from unknown signatures into x′, which we call
injections, is inevitable in practice. Understanding their impact
is our next topic.

Suppose x′
j is produced by some unknown OS ω that does

not belong to the database. If x′
j is so different from the known

signatures that p(x′
j |θt, αt) = 0, i.e., it matches each OS with

probability 0, its injection into the observation will contribute
nothing to updates of (αt, θt) and thus will have no impact on
classification decisions. In order to achieve a flat-out mismatch
of this type, either delay δijτγ must be negative for all i, τ, γ
or the product in (24) must be smaller than the precision of
floating-point arithmetic.

For injections with p(x′
j |θt, αt) > 0 the situation is less

clear-cut. For such cases, we want the classifier to select the
statistically most likely OS among the database, which Faulds
naturally does after EM convergence. Almost all injected cases
in this section fall into this category; however, because there
is no easy way to evaluate such matches, we do not focus on

Fig. 6. Recovered delay under 72% injection.

them here. Instead, we are interested in classification accuracy
of the samples generated by the known OSes, where the result
may become affected by the EM feedback loop that learns
potentially incorrect information from injected samples.

When the unknown OS ω is close to an existing signature
ωi, injections are minimally different from distorted instances
of xi. As a result, they do not negatively impact EM or its
convergence point. On the other hand, it is also possible that
x′

j is a potential match to multiple unrelated OSes and the
amount of distortion needed to make them appear as x′

j is
much greater than the underlying θ. If the volume of injections
is high, how likely is EM to introduce bias into distributions
of delay/loss to the point of impacting classification accuracy
for non-injected samples?

We do not consider encountering of adversarial injections
(i.e., special signatures crafted to cause maximum harm for
a given database and classifier) to be likely in practice
and instead focus on evaluating the effect of random subset
removal from D4. Specifically, assume the simulator produces
distorted observations using all 420 network stacks; however,
Faulds has access to only some of the original signatures. For
the next simulation, we use Pareto fT and fΔ, both with mean
0.1 seconds, iid packet loss at 10%, and φv = 0.8.

Define ρt
∗ to be the classification accuracy among non-

injected observations during step t and consider Table XII,
which shows the shrunk database size, number of injected
samples among m = 218 observations, and the output of
Faulds. The result shows that removal of signatures does not
carry a significant negative impact on accuracy of classification
for the known OSes. In fact, ρt

∗ slightly rises as the database
shrinks since it becomes easier to classify among fewer
options. Packet loss p∞loss also appears immune, except in
the last row where 72% of x′ contains observations from
unknown OSes. Its increase to 17% is explained by more
frequent matches that require high packet loss to be feasible.
Finally, the feature-stay probability in the last column is the
most affected, which was also expected due to the increased
header-field mismatch.

Fig. 6 shows the two delay PMFs estimated by Faulds in
the last row of Table XII. Recovery is quite good, except for
a slight bump in fΔ between 200 and 400 ms. This shows
that removing 70% of the signatures in D4 still leaves enough
unique RTO vectors to produce highly accurate results. In the
actual Internet, however, we do not expect injection conditions
to be anywhere near these levels because D4 contains an
array of major network stacks (e.g., Windows, Unix), printer
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Fig. 7. Internet delay distributions.

firmware (e.g., HP, Lexmark, Brother), Cisco equipment, and
various derivative implementations that run on embedded
devices. See [45] for more details.

VII. INTERNET MEASUREMENT

This section illustrates how Faulds can be applied in practice
and the types of information it produces. Since the algorithms
proposed earlier in the paper are based on fundamental prop-
erties of fingerprints and rigorous statistical theory, without
being tied to any particular training input or a-priori assump-
tions, Faulds is guaranteed to converge to the optimal (in the
EM sense) result given the available information. This applies
to measurements collected in the past, present, and future,
including wide-area networks, LANs, and other scenarios. As a
result, it is sufficient to discuss any one Internet snapshot
and leave other cases for the future, where our release of
Faulds source code and its database [21] should enable the
community to perform additional measurements and network
characterization as needed.

A. Overview

Our dataset comes from [47], which is the most recent
Internet-wide scan that captured all of the parameters needed
for Faulds. On December 14, 2016, this experiment probed all
2.8B BGP-reachable IPv4 addresses on port 80 and gathered
responses from 67.6M hosts. Using a dual 8-core AMD
Opteron 6320 @ 2.8 GHz, Faulds executed at 3,801 hosts
per second and completed a full pass over the data in roughly
5 hours. In large-scale classification, such as the one attempted
here, Faulds produces a huge volume of information in the
form of various PMFs and estimates. Due to limited space,
we present only a brief review of the obtained results and
leave more detailed analysis (including attempts to uncover
injections and correct for them) for future work. We start with
basic sanity checks of the estimated distortion θ and then delve
into classification result α.

B. Network Distortion

Fig. 7(a) shows the recovered distribution fT using bin
size 30 ms. Delays below 60 ms (29%) represent unloaded
servers in close proximity to the scanner, most likely within
the continental US. Those in the 120 − 200 ms range (40%)
indicate targets whose RTTs are consistent with destinations
in Europe and Asia. The remaining cases covers longer paths,
OS scheduling delays, non-trivial CPU load on the server,

Fig. 8. Internet packet-loss PMFs.

and involvement of various backend databases to set up the
connection. Overall, we obtain E[Tj ] = 148 ms, 80% of the
samples below 200 ms, and 99.2% below 450 ms. Fig. 7(b)
plots the distribution of one-way delay fΔ, in which 92% of
the mass concentrates below 30 ms and 97% below 100 ms.
The average queuing delay E[Δjr ] = 15 ms also sounds quite
reasonable.

To examine packet loss, define ηt
k =

∑n
i=1 αt

i1|di|=k to
be the estimated fraction of observations that use an OS with
k packets. The top values of k are four (η∞

4 = 0.42, 112
stacks in Plata database D4), six (η∞

6 = 0.31, 80 stacks), three
(η∞

3 = 0.07, 72 stacks), and five (η∞
5 = 0.04, 54 stacks).

Fig. 8 plots the recovered loss PMFs for these values of k,
each fitted with an iid binomial model and accompanied by
the average loss rate L∞

k /k from (27). First, it is interesting
that the loss rate is heterogeneous, ranging from 0.3% in
q6 to 12.6% in q5. This phenomenon may be inherent to
the signatures that map to each k (e.g., certain printers cut
the SYN-ACK sequence when their tiny SYN backlog queue
overflows [45]), the load on the corresponding OSes, and
host location on the Internet, all of which suggests there is
an extra benefit to estimating qk independently for different
k. Second, while in a few of the plots the binomial model
shows a reasonable fit, this does not universally hold. Finally,
computing (28) for the Internet scan yields an average loss
rate of 3.3% across all observations. This is consistent with
3.8% found in a Google study of SYN-ACK retransmission
rates [11].

C. User Distortion

Computing (29), we obtain E[φ∞
v ] = 0.81, i.e., the average

probability to encounter a non-default value was 19%. Faulds
produced 420 × 6 = 2,520 distributions of user features,
among which we highlight several interesting cases, focusing
on the two most volatile fields – Win and MSS – and limiting
all PMFs to values above the 1% likelihood. Since MSS
sometimes depends on the MTU of the underlying data-link
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TABLE XIII

FAULDS CLASSIFICATION AT ITERATION 1 (LEFT) AND 100 (RIGHT)

Fig. 9. Internet distributions πi1 and πi5 (default values have an asterisk).

layer and/or tunneling protocol (e.g., IPv6), this field may
experience fluctuation even if the OS does not allow explicit
means for changing this value.

We expected devices with firmware restrictions that prevent
user access to the configuration of SYN-ACK parameters
to exhibit high φiv . One example is shown in Fig. 9(a)
for a popular Dell printer. Among 976K occurrences on the
Internet, this device keeps the default window with probability
1. Intuition also suggests that general-purposes OSes are more
susceptible to modification and/or existence of alternatively
patched versions. One example is 21M hosts with Ubuntu
Linux, where Fig. 9(b) shows that Faulds discovers 31% of
the cases with window size exactly half of the default (i.e.,
14,480 instead of 28,960). A more dispersed case is Mac OS
X Server in part (c), which exhibits noticeable variation in
both Win and MSS. Its default values remain with probability
73% and 89%, respectively. Finally, in subfigure (d), CentOS
(enterprise Linux) has its original combination (17,896, 8,960)
occurring in only 1% of the cases. We conjecture that the Plata
database [45], which was constructed from production devices
in a large campus network, captured a non-standard version of
this stack with jumbo Ethernet frames enabled. Since this is
an inherent property of any database, it is important to allow
great flexibility in the match process to accommodate such
scenarios.

D. Classification Results

We define Faulds to be successful for sample j if the denom-
inator of (1) is non-zero, i.e., p(xj |θt, αt) > 0. This means
that at least one OS matches x′

j with a non-zero probability.
Using the Plata database with 420 network stacks [45], Faulds
successfully classified 63.1M hosts (i.e., 93%). From a pure
statistical point of view, the remaining 4.5M devices should
be assigned to the OS with the highest α∞

i . But it is also
likely these cases come from unknown stacks or observations
with too much packet loss, in which case excluding them from
classification might be prudent as well, which is our approach
below.

The left side of Table XIII shows the top ten OSes after
one iteration of Faulds. Note that the Plata database was
auto-generated from a pool of devices found at a university
network. Even though this process [45] produced only a
high-level description of each OS, additional manual effort
can be used to provide each signature with a more specific
kernel version and/or physical device. We consider this issue
orthogonal to the topic of the paper since Faulds operates on
TCP/IP signatures and its accuracy does not depend on the
name affiliated with each fingerprint xi.

The dominance of Linux and embedded devices in Table
XIII (left) matches the statistics reported in prior work [27],
[45], [46], although a more interesting result is the amount of
relative change occurring in the classification as Faulds goes
through its iterations. Table XIII (right) shows the α vector
after 100 steps. The top Linux signature gains 52%, Windows
7 in third place increases by 25%, and two other Linux stacks
drop 17% each. Further down the list, there is significant
movement as well, where certain embedded systems, such as
Schneider APC (data-center hardware solutions), Dell printers,
and Cisco, increase their membership by 25− 229%. There is
even more shuffle outside the top-10, which underscores the
importance of using proper algorithms for estimating α.

Table XIV splits all classified hosts into eight categories.
The top two signatures are desktop/server OSes and various
stacks from network-device manufacturers (i.e., switches and
routers). In third place, there are 7M hosts with no label, which
means Faulds finds a matching signature for each of them, but
Plata does not know what these devices are. The bottom half
of the table, with a substantial count of cyber-physical systems
and office equipment, is more alarming. These oftentimes run
on default manufacturer passwords and allow reconfiguration
using a built-in webserver. Investigating further, Table XV
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TABLE XIV

TYPES OF DEVICES RUNNING WEBSERVERS

TABLE XV

UNPROTECTED INDUSTRIAL AND ENTERPRISE DEVICES

TABLE XVI

OSES WITH EXPIRED SUPPORT LIFE CYCLES

shows the top-ten signatures from these categories, which
include camera systems, building lighting controllers, and
temperature monitors. They present high security risks to
organizations because malicious actors may be able to use
these systems to gain access to workplace audio/video record-
ings, printed documents, and environmental settings of critical
infrastructure (e.g., cooling in data-centers).

With the recent leaks of NSA exploits and massive
world-wide infection by ransomware WannaCry [24], [35],
outdated operating systems (i.e., Windows XP/Server 2003)
gained renewed attention. In Table XVI, we show several
signatures that have reached the end of support and are no
longer being patched to keep up with the latest vulnerabilities.
These are obvious security threats; however, we find over 1.8M
old Windows hosts still visible over the public Internet, 500K
FreeBSD, and 78K Solaris. Faulds not only allows for a timely
measurement of such devices, but also paves the way for
scalable, low-overhead Internet characterization, robust device
identification, and better modeling of distortion θ experienced
by the numerous hardware artifacts found on the Internet.

VIII. CONCLUSION

In this work, we developed novel theory and algorithms
for improving OS-classification accuracy in single-probe

fingerprinting, measuring one-way Internet path properties,
and extracting latent distributions of feature distortion. Simu-
lations showed exceptional robustness of our EM techniques
against various types of noise, as well as injection of unknown
devices. Applied to Internet scans, this methodology can be
used to detect vulnerable devices, as well as estimate stack
popularity, network delays, packet loss, and header-tuning
probabilities.

Future work involves construction of fingerprint databases
with specimens that are pairwise separable under more com-
plex distortion than just delay, detection of unknown stacks
among the observations, automatic generation of signatures
for them, and extensive comparison against nmap.
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